Теплоемкость и сопротивление икосаэдрического сплава Zr₇₀Pd₃₀ и его аморфного и кристаллического аналогов

© Г.Х. Панова, Н.А. Черноплеков, А.А. Шиков

Российский научный центр «Курчатовский институт», 123182 Москва, Россия E-mail: shikov@isssph.kiae.ru

(Поступила в Редакцию 16 июля 2004 г.)

В процессе кристаллизации из аморфного состояния при термообработке получены бинарные икосаэдрическая и кристаллическая фазы сплава $Zr_{70}Pd_{30}$. Измерены теплоемкость и сопротивление икосаэдрической, аморфной и кристаллической фаз и проведено их сравнение. Обнаружено увеличение плотности электронных состояний на поверхности Ферми, смягчение решетки и возрастание параметра электрон-фононного взаимодействия при уменьшении структурного порядка. Несмотря на большую концентрацию валентных электронов в икосаэдрической фазе, где плотности электронных состояний вдвое больше, чем в кристаллической фазе, электросопротивление в икосаэдрической фазе больше в ~ 50 раз. Впервые обнаружена сверхпроводимость в икосаэдрической фазе бинарной системы из атомов переходных металлов $Zr_{70}Pd_{30}$.

Работа поддержана Российским фондом фундаментальных исследований (проект № 04-02-16017-а).

Образование икосаэдрической фазы было обнаружено в ряде сплавов на основе Zr в процессе кристаллизации металлического стекла при термообработке. Проведенные ранее исследования предполагали, что квазикристаллические фазы в многокомпонентных сплавах на основе Zr стабилизируются рядом элементов, таких как O, Pd, Ag, Au, Pt и Ti [1–6]. В последнее время появились сообщения о получении бинарных квазикристаллических икосаэдрических фаз в сплавах Zr–Pd и Zr–Pt [7–10]. Это позволило заключить, что многокомпонентность системы не является необходимым условием образования икосаэдрической фазы.

Структура квазикристаллической фазы Zr₇₀Pd₃₀, полученной в процессе кристаллизации аморфного сплава Zr₇₀Pd₃₀, подробно исследовалась в ряде работ [7–11]. Анализ структур закаленного и отожженного образцов сплава Zr₇₀Pd₃₀ показал, что в закаленных сплавах центром икосаэдрических кластеров является Zr (а не Pd) и фракция икосаэдрических кластеров возрастает при отжиге [8]. Отметим, что бинарная икосаэдрическая фаза в сплавах на основе Zr ограничивается системами Zr-Pd и Zr-Pt. Это может быть связано с большой отрицательной энтальпией смеси Zr и Pt, являющейся критерием образования квазикристаллических фаз в любых системах [11]. Результаты выполненных ранее исследований сплавов Zr₇₅Rh₂₅ [12], Zr₇₀Be₃₀ [13], Zr₇₀Co₃₀, Zr₇₀Ni₃₀, Zr₅₀Cu₅₀ [10] показали, что образования икосаэдрических фаз в процессе кристаллизации из аморфного состояния в этих сплавах не наблюдается.

Сплав Zr₇₀Pd₃₀ интересен по ряду причин. Как установлено в работе [9], он может находиться в трех фазовых состояниях: аморфном, икосаэдрическом и кристаллическом, что позволяет изучать влияние изменения ближнего порядка без изменения концентрации компонентов в процессе перехода из аморфного в икосаэдрическое и кристаллическое состояние. Кроме того, как обнаружено в настоящей работе, во всех трех фазах сплав является сверхпроводящим, что дает возможность не только экспериментально определить некоторые фононные и электронные характеристики, но и оценить величину электрон-фононного взаимодействия. Отсутствие сложных магнитных эффектов упрощает выделение фононных и электронных характеристик исследуемых фаз.

Для понимания условий возникновения и стабилизации квазикристаллической структуры, а также природы многих физических свойств квазикристаллов необходима детальная информация о колебательном спектре и плотности электронных состояний на поверхности Ферми. Для исследуемых образцов такая информация отсутствовала.

В связи с этим целью настоящей работы было сравнительное исследование электронных, колебательных и сверхпроводящих характеристик квазикристаллов и их кристаллических и аморфных аналогов с использованием методов измерения температурных зависимостей теплоемкости и сопротивления.

1. Приготовление образцов и их характеристика

Сплав $Zr_{70}Pd_{30}$ был приготовлен из электролитически чистого циркония (99.99%) и чистого палладия (99.96%). Для получения кристаллических образцов исходные элементы плавились в индукционной печи в атмосфере аргона. Для получения аморфных образцов они помещались в ампулу из нитрида бора, плавились в индукционной печи под небольшим давлением аргона и закалялись из жидкого состояния на наружной поверхности вращающегося медного диска. Скорость закалки по оценкам составляла ~ 10^6 °/s. Аморфные образцы, приготовленные таким образом, представляли собой ленты шириной 1.5–2 mm и толщиной ~ 0.03 mm.

Рис. 1. Рентгеновские дифракционные картины для аморфной (*a*), икосаэдрической с $T_{ann} = 740$ (*b*) и 760 K (*c*) и с $T_{ann} = 760$ K и выдержкой при этой температуре в течение 2.5 min (*d*), а также кристаллической (*e*) фазы Zr₇₀Pd₃₀. Брэгговские пики, соответствующие икосаэдрической структуре, проиндексированы согласно схеме, предложенной в [14].

После измерений аморфные образцы отжигались в токе газообразного гелия в кварцевой трубке, помещенной в муфельную печь. Для поиска режима получения наиболее совершенного икосаэдрического образца отжиг проводился при нескольких температурах с последующей быстрой закалкой.

Исследование кинетики кристаллизации сплава Zr₇₀Pd₃₀ проводилось с помощью дифференциального сканирующего калориметра. Термограмма нагрева со скоростью 18 К/min показала, что при кристаллизации наблюдается два экзотермических пика. Первый соответствует переходу в икосаэдрическую фазу при T = 723 К, а второй — переходу в кристаллическую фазу, при T = 800 К, что согласуется с результатами работ [8–11].

Структура полученных образцов и влияние на их состояние отжига определялась рентгенографически с помощью излучения $Cu K_{\alpha}$ на дифрактометре ДРОН-2. Идентификация фаз и определение параметров решетки проводились по рентгенограммам. Дифрактограмма закаленного из жидкого состояния образца Zr₇₀Pd₃₀ представлена на рис. 1, а. Общая форма кривой типична для аморфного металла и показывает отсутствие дальнего порядка. Первый широкий максимум локализован около $2\theta = 37^\circ$, а второй — при $2\theta = 63^\circ$. Для поиска режима получения наиболее совершенного икосаэдрического образца отжиг проводился при нескольких температурах: 740 и 760 К, а также 760 К с выдержкой при этой температуре в течение 2.5 min с последующей быстрой закалкой. Возрастание сопротивления икосаэдрического образца после отжига до температуры 760 К и отрицательный температурный коэффициент сопротивления связаны с улучшением качества икосаэдрического образца. Однако после отжига до 760 К с выдержкой при этой температуре в течение 2.5 min на дифракционной картине, характерной для икосаэдрической фазы, начинают появляться пики, характерные для кристаллической фазы. Рентгеновские дифракционные картины для икосаэдрической фазы, представленные на рис. 1, b-d, обнаруживают брэгговские пики, которые соответствуют икосаэдрической структуре и проиндексированы согласно схеме, предложенной Банселом и др. [14]. Величина шестимерного гиперкубического параметра решетки рассчитана по положению пиков [100000] и [110000] и составляет 7.624 Å. На рис. 1, е представлена рентгеновская дифракционная картина для кристаллической фазы. Эта фаза имеет структуру тетрагональной решетки с пространственной группой J4/mmm и параметрами решетки a = 3.306 Å, c = 10.894 Å (согласно [15]).

Теплоемкость образцов измерялась в адиабатическом калориметре с импульсным нагревом [16]. Экспериментальная ошибка определения теплоемкости составляла 2% в температурной области 2–4 K, 1% в области 4–10 K и 0.2–0.5% в области 10–40 K. Температура сверхпроводящего перехода определялась по скачку теплоемкости.

Сопротивление образцов измерялось четырехконтактным методом. Измерения проводились на лентах размером примерно $0.03 \times 1.5 \times 9$ mm. Измерительный ток был достаточно мал (< 1 mA), что позволяло обеспечить отсутствие перегрева образца. Измерения температуры проводились с помощью угольного термометра TCУ. Точность измерения температуры составляла ±0.01 К. Значение T_c по сопротивлению определялось по середине сверхпроводящего перехода.

Экспериментальные результаты и их обсуждение

На различных стадиях структурной релаксации в процессе термического упорядочения изучена температурная зависимость электросопротивления сплава Zr₇₀Pd₃₀ в аморфном, икосаэдрическом и кристаллическом состояниях в области температур 2–300 К (рис. 2).

Кривые $\rho(T)$ смещаются при термообработке в сторону увеличения ρ , причем почти параллельно самим себе. Это означает, что температурно-зависимые составляющие $\rho(T)$ практически не связаны с термообработкой. Найденные величины ρ можно рассматривать как меру концентрации носителей тока, поскольку величина ρ в квазикристаллах определяется в основном концентрациями свободных носителей заряда и структурных дефектов.

Наблюдаемое возрастание ρ с ростом температуры отжига и отрицательный температурный коэффициент сопротивления для икосаэдрической фазы (отожженной до 760 K) подтверждают улучшение качества икосаэдрического образца [17]. Сопротивление икосаэдрической фазы ($T_{ann} = 760$ K) значительно больше сопротивления

Рис. 2. Температурные зависимости электросопротивления в аморфном (*a*), икосаэдрическом с $T_{ann} = 740$ (*b*) и 760 K (*c*) и с $T_{ann} = 760$ K и выдержкой в течение 2.5 min (*d*), а также в кристаллическом (*e*) состоянии в системе Zr₇₀Pd₃₀ в области температур 2–300 K. На вставке — те же зависимости в области сверхпроводящего перехода.

аморфной, а по сравнению с кристаллической фазой оно возрастает в ~ 50 раз в области низких температур.

На вставке к рис. 2 приведены результаты измерений низкотемпературного сопротивления и Т_с аморфной и кристаллической фаз, а также икосаэдрической фазы, полученной при отжиге до температур 740, 760 К и до 760 К с выдержкой при этой температуре в течение 2.5 min. Эти образцы во всех трех фазах являются сверхпроводящими с температурой перехода $T_c = 2.97 \, {
m K}$ для аморфной фазы, T_c = 2.54 К для икосаэдрической при отжиге до 740 К и $T_c = 2.05$ К при отжиге до 760 К. При отжиге до 760 К с выдержкой в течение 2.5 min, когда икосаэдрическая фаза начинает переходить в кристаллическую и на рентгенограмме появляются кристаллические пики, сверхпроводящий переход до 1.5 К не выявлен. Наблюдаемые при отжиге скачки по сопротивлению, предшествующие переходу в сверхпроводящее состояние, по-видимому, связаны с остатками аморфной фазы в икосаэдрическом образце. Таким образом, улучшение качества икосаэдрического образца приводит к возрастанию сопротивления, появлению отрицательного температурного коэффициента сопротивления и уменьшению Т_с. Для кристаллической фазы сверхпроводящий переход наблюдается при $T_c = 1.5$ K, что ниже, чем для аморфной и икосаэдрической фаз. Как видно, полученные результаты отражают влияние кинетики образования бинарной икосаэдрической фазы сплава Zr₇₀Pd₃₀ в процессе кристаллизации аморфного сплава Zr₇₀Pd₃₀.

Проведенные измерения температурной зависимости электросопротивления в икосаэдрическом состоянии в сплаве Zr₇₀Pd₃₀ показали, что эта зависимость радикально отличается от имеющих место для кристаллической и аморфной структур, т. е. сопротивление икосаэдрической фазы много больше, чем для ее аналогов, и возрастает с ростом структурного совершенства квазикристалла.

Изучение эволюции электронных параметров икосаэдрической фазы Zr₇₀Pd₃₀ в зависимости от совершенства структуры позволяет понять причины превращения "хорошего" металла в пограничный металл и сделать заключение общего характера о том, что причиной такого превращения является электронная локализация (это качественно согласуется с кластерной моделью строения квазикристаллов [17]).

Теплоемкость сплава Zr₇₀Pd₃₀ в икосаэдрическом, аморфном и кристаллическом состояниях была измерена в области температур 1.5–40 К. Во всей исследованной области температур теплоемкость икосаэдрической фазы меньше, чем для аморфной, но больше, чем для кристаллической фазы.

На рис. З показано поведение низкотемпературной теплоемкости трех фаз в интервале 1.5-4.5 К в координатах $C/T-T^2$. Для аморфной фазы наблюдается резкий сверхпроводящий переход при температуре $T_c = 2.6$ К с шириной перехода $\Delta T_c = 0.2$ К. Для икосаэдрической и кристаллической фаз сверхпроводящие переходы, согласно данным по теплоемкости,

более широкие и наблюдаются при близких температурах: $T_c = 2.1 \,\mathrm{K} \,(\Delta T_c = 0.6 \,\mathrm{K})$ для икосаэдрической и $T_c = 1.9 \,\mathrm{K} \,(\Delta T_c = 0.7 \,\mathrm{K})$ для кристаллической фазы. Каждая фаза обнаруживает скачок теплоемкости примерно при той же температуре, что и в случае измерений по сопротивлению. Это свидетельствует об объемном характере сверхпроводимости. Отметим, что отсутствие второго скачка в случае теплоемкости, свя-

Рис. 3. Температурные зависимости теплоемкости $Zr_{70}Pd_{30}$ в аморфном (*a*), икосаэдрическом (*c*) и кристаллическом (*e*) состояниях в области температур 1.5–4.5 К в координатах $C/T-T^2$.

Рис. 4. Температурные зависимости $\Theta_D(T)$ в области температур 3–40 К для аморфной (*a*), икосаэдрической (*c*) и кристаллической (*e*) фаз $Zr_{70}Pd_{30}$.

Параметры, характеризующие систему Zr₇₀Pd₃₀ в аморфном, икосаэдрическом и кристаллическом состояниях

Параметр	Аморфная фаза	Икосаэдри- ческая фаза	Кристалли- ческая фаза
$\rho_{330}, \mu\Omega \cdot cm$	250	310	70
$\rho_{4.2}, \mu\Omega \cdot cm$	270	324	7
T_c (по сопр.), K	2.97	2.05	1.5
ΔT_c (по сопр.), К	0.05	0.15	0.1
γ , mJ/mol · K ²	5.25	4.75	2.45
β , mJ/mol · K ⁴	0.195	0.114	0.063
<i>T</i> _c (по тепл.), К	2.6	2.1	1.9
ΔT_c (по тепл.), К	0.2	0.6	0.7
$C_{\rm es}/C_{\rm en}(T_c)$	1.98	1.15	1.15
$\Theta_{\rm D}, {\rm K}$	215	257	313
λ	0.58	0.54	0.51
$N_{\rm F}(0)$, state/eV·at.	0.70	0.66	0.34

Примечание. $\rho_{4.2}$ и ρ_{330} — удельное сопротивление при 4.2 и 330 К соответственно; коэффициенты γ и β аппроксимируют теплоемкость в области низких температур зависимостью вида $C = \gamma T + \beta T^3$; $C_{\rm es}/C_{\rm en}(T_c)$ – отношение электронных теплоемкостей в сверхпроводящем и нормальном состоянии; $\Theta_{\rm D}$ — низкотемпературный характеристический параметр Дебая; $N_{\rm F}(0)$ — плотность электронных состояний на поверхности Ферми; λ — константа электронфононного взаимодействия.

занного со следами аморфной фазы, который наблюдался по сопротивлению, указывает на малое количество аморфной фазы в икосаэдрическом образце (по грубым оценкам $1 \div 2\%$).

Экспериментальные результаты, полученные на основании данных по сопротивлению и теплоемкости, представлены в таблице. Как видно, величины характеристических параметров для икосаэдрической фазы находятся между аналогичными параметрами для аморфной и кристаллической фаз. Сравнение коэффициентов электронной теплоемкости для икосаэдрической фазы с коэффициентами для аморфной и кристаллической указывает на уменьшение плотности электронных состояний на поверхности Ферми в икосаэдрической фазе Zr₇₀Pd₃₀ по сравнению с аморфной фазой, однако по сравнению с кристаллической она вдвое больше.

Из данных по теплоемкости следует смягчение фононного спектра с уменьшением структурного порядка по мере перехода от кристаллической к икосаэдрической и далее к аморфной фазе (рис. 4).

Полученные результаты позволили оценить величины электрон-фононного взаимодействия λ и плотность электронных состояний $N_{\rm F}(0)$ в рамках теории Макмиллана [18]. Величины λ и $N_{\rm F}(0)$ возрастают с уменьшением структурного порядка. Для всех трех фаз характерна сверхпроводимость со слабой связью.

Проведенные исследования кинетических и термодинамических свойств аморфной, икосаэдрической и кристаллической фаз сплава Zr₇₀Pd₃₀ позволяют высказать предположение о механизме формирования псевдощели в плотности электронных состояний на уровне Ферми в икосаэдрической фазе. Для объяснения аномально большой величины сопротивления наличия псевдощели недостаточно. Причина кроется в аномально низкой подвижности электронов в совершенном квазикристалле, что связано с отсутствием трансляционной симметрии и универсального ближнего порядка во взаимном расположении конфигураций. Как известно [19], квазипериодичность может существенно изменить электронную структуру, а взаимодействие поверхности Ферми с гранями зоны Бриллюэна может привести к образованию псевдощели в плотности электронных состояний.

Локализация электронов в квазикристалле отличается от андерсоновской локализации, которая происходит из-за атомного разупорядочения в системе. В квазикристалле электронное состояние может быть локализовано за счет квазипериодического потенциала [20].

Полученные результаты позволили положительно ответить на вопрос о возможности локализации системы валентных электронов в среде, состоящей только из металлических атомов, в которой нет атомов металлоидов и которая является металлом со стандартной концентрацией электронов.

Анализ полученных экспериментальных данных подтверждает выводы, сделанные в работе Гантмахера [21], о том, что, несмотря на большую концентрацию валентных электронов в квазикристаллической системе, состоящей только из металлических элементов, при приближении к переходу металл–изолятор должны возникать устойчивые конфигурации атомов, которые бы служили глубокими потенциальными ямами-ловушками для валентных электронов.

3. Выводы

Впервые проведено сравнительное исследование электронных, колебательных и сверхпроводящих характеристик икосаэдрического квазикристалла Zr₇₀Pd₃₀ и его кристаллического и аморфного аналогов по данным измерений теплоемкости и сопротивления.

Высокая величина электросопротивления в квазикристалле $Zr_{70}Pd_{30}$, в ~ 50 раз бо́льшая, чем в кристаллической фазе, отрицательный температурный коэффициент сопротивления, электронный вклад в теплоемкость, вдвое больший, чем в кристаллической фазе, связаны, по-видимому, с электронной локализацией и существованием псевдощели в плотности электронных состояний на поверхности Ферми.

Впервые в икосаэдрической фазе $Zr_{70}Pd_{30}$ обнаружена сверхпроводимость при температуре сверхпроводящего перехода $T_c = 2.1$ K.

В заключение авторы выражают благодарность В.С. Круглову за интерес к работе, ценные замечания и советы, Ю.Х. Векилову и А.С. Нигматулину за обсуждение полученных результатов, Г.Ф. Сырых за приготовление аморфного образца и Г.В. Ласковой за проведение рентгеноструктурного анализа образцов.

Список литературы

- U. Koster, J. Meinhardt, S. Roos, H. Liebertz. Appl. Phys. Lett. 69, 2, 179 (1996).
- [2] B.S. Murty, D.H. Ping, K. Mono, A. Inoue. Appl. Phys. Lett. 76, 1, 55 (2000).
- [3] B.S. Murty, D.H. Ping, K. Mono, A. Inoue. Acta Mater. 48, 15, 3985 (2000).
- [4] J. Saida, M. Matsushita, A. Inoue. Intermetallics 10, 11–12, 1089 (2002).
- [5] J. Saida, A. Inoue. J. Non-Cryst. Sol. 317, 1-2, 97 (2003).
- [6] L.Q. Xing, J. Eckert, W. Loser, L. Schultz. Appl. Phys. Lett. 74, 5, 664 (1999).
- [7] T. Takagi, T. Ohkudo, Y. Hirotsu, B.S. Murty, K. Hono, D. Shindo. Appl. Phys. Lett. **79**, *3*, 485 (2001).
- [8] M. Kitada, M. Imafuku, J. Saida, A. Inoue. J. Non-Cryst. Sol. 312–314, 594 (2002).
- [9] B.S. Murty, D.H. Ping, M. Ohnuma, K. Hono. Acta Mater. 49, 17, 3453 (2001).
- [10] J. Saida, M. Matsushita, A. Inoue. Appl. Phys. 90, 9, 4717 (2001).
- [11] B.S. Murty, K. Hono. Appl. Phys. Lett. 84, 10, 1674 (2004).
- [12] Г.Х. Панова, Н.А. Черноплеков, А.А. Шиков, Б.И. Савельев. ЖЭТФ 82, 2, 548 (1982).
- [13] Г.Х. Панова, Б.И. Савельев, М.Н. Хлопкин, Н.А. Черноплеков, А.А. Шиков. ЖЭТФ 85, 4 (10), 1308 (1983).
- [14] P.A. Bancel, P.A. Heiney, P.W. Stephens, A.I. Goldman, P.M. Horn. Phys. Rev. Lett. 54, 22, 2422 (1985).
- [15] M. Nevitt, J. Downey. Trans. Met. Soc. AIME 224, 195 (1962).
- [16] М.Н. Хлопкин, Н.А. Черноплеков, П.А. Черемных. Препринт ИАЭ № 3549/10. М. (1982).
- [17] A.F. Prekul, N.Yu. Kuzvin, N.I. Shchetgolikhina. J. Alloys Comp. 342, 1–2, 405 (2002).
- [18] W.L. McMillan. Phys. Rev. 167, 331 (1968).
- [19] Z.M. Stadnik. Phys. Propert. Quasicryst. 126, 257 (1999).
- [20] Y.K. Vekilov, E.I. Isaev, S.F. Arslanov, P.V. Slobodyanyuk. Mater. Sci. Eng. A 294–296, 556 (2001).
- [21] В.Ф. Гантмахер. УФН 172, 11, 1283 (2002).