Флуктуационная модель высокочастотной прыжковой электропроводности умеренно компенсированных полупроводников с водородоподобными примесями

© Н.А. Поклонский, С.А. Вырко, А.Г. Забродский*

Белорусский государственный университет, 220050 Минск, Белоруссия * Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

E-mail: poklonski@bsu.by

(Поступила в Редакцию 20 октября 2004 г.)

Разработана модель, согласно которой прыжок электрона (или дырки) между двумя водородоподобными донорами (или акцепторами) происходит лишь при выравнивании их энергетических уровней за счет тепловых и/или электростатических флуктуаций в легированном кристалле. Считается, что основной вклад в действительную часть высокочастотной прыжковой электропроводности вносят пары акцепторов, время туннелирования дырки внутри которых равно половине периода внешнего электрического поля и совпадает с ним по фазе. Тогда мнимая и действительная части прыжковой электропроводности примерно равны. Приведено сравнение расчетов по предложенной модели с экспериментальными данными для *p*-Ge:Ga с промежуточной степенью компенсации основной легирующей примеси.

Работа поддержана Белорусским республиканским фондом фундаментальных исследований (грант № Ф01-199), Российским фондом фундаментальных исследований (грант № 04-02-16587) и грантом Президента Российской федерации (НШ-2223.2003.02).

1. Введение

Экспериментально установлено (см., например, [1,2]), что в легированных полупроводниковых кристаллах при прыжковом движении электронов (дырок) между локализованными состояниями на радиочастотах ($10^2 < \omega/2\pi < 10^7 \text{ Hz}$) действительная часть высокочастотной электропроводности $\text{Re} \, \sigma_h(\omega) \propto \omega^s$, где 0.6 < s < 1.

Аналитическое описание прыжковой электропроводности на переменном токе по основным состояниям примесей в компенсированных ковалентных кристаллических полупроводниках до сих пор отсутствует (см. обзоры [3–5]). В работах [6,7] представлены параметрические зависимости прыжковой электропроводности от частоты тока и температуры для случая предельно низкой степени компенсации, когда прыжки электрона (дырки) осуществляются только посредством поглощения или испускания фонона. Роль подгоночного параметра играет константа взаимодействия фононов с локализованными на донорах (акцепторах) носителями заряда. Так, для полупроводника *n*-типа считалось [6], что высокочастотная прыжковая проводимость обусловлена прыжками электрона между основными состояниями двух ближайших по расстоянию доноров в зарядовых состояниях (0) и (+1) в окрестности акцептора в зарядовом состоянии (-1). В [7] особенности температурной зависимости высокочастотной прыжковой электропроводности слабокомпенсированных кристаллов *n*-типа описываются с учетом того, что возможны прыжки электрона между двумя донорами через третий (промежуточный) донор в окрестности одного отрицательно заряженного акцептора. При этом один ионизованный донор является ближайшим к нейтральному донору по расстоянию, а другой ионизованный донор — ближайшим к нему по энергии. В моделях [3,6,7] примесная зона полагалась "классической", т.е. считалось, что разброс энергетических уровней основной легирующей примеси по кристаллу значительно больше квантовомеханического уширения этих уровней вследствие конечности времени локализации на них носителей заряда. В работе [8] для описания температурной зависимости высокочастотной прыжковой электропроводности аморфных германия и кремния предложена модель перехода (прыжка) электрона между парами дефектов с глубокими уровнями в запрещенной энергетической щели. Модель учитывает одно возбужденное и два основных состояния пары дефектов, между которыми происходит переход электрона: термический заброс электрона с одного дефекта на возбужденное состояние пары и последующее туннелирование на другой дефект.

Важно отметить, что в моделях [3–8] энергия каждого одноэлектронного состояния (примесного уровня) в легированных ковалентных кристаллах считалась фиксированной, т. е. не изменяющейся при прыжках электрона (дырки) между примесными атомами.

В то же время для описания прыжков полярона малого радиуса по узлам решетки в ионном кристалле Холстейн (см. репринт его статьи 1959 г. [9], а также [10–12]) ввел понятие "случая совпадения" поляронных потенциальных ям. Энергетический уровень полярона является функцией мгновенного положения ближайших к нему атомов. Из-за тепловых колебаний атомов эти положения постоянно меняются, так что энергия электрона проводимости, захваченного им же созданной поляризацией решетки, также меняется во времени. В некоторый момент может возникнуть ситуация, при которой энергия узла со связанным электроном равна энергии ближайшего свободного узла кристаллической решетки. Такое моментальное событие называется "случаем совпадения" энергетических уровней. В модели [9] считается, что прыжки полярона происходят, когда занятое начальное и незанятое конечное состояния совпадают по энергиям, но при этом деформация решетки в конечном состоянии не обязательно такая же, как в начальном состоянии. Поэтому в единичном акте прыжка энергия фононов либо отдается, либо забирается от решетки, однако в среднем энергия поляризации при движении полярона не переносится.

В работе [13] для описания прыжковой электропроводности на постоянном токе в легированных полупроводниках предложена модель флуктуационного "выравнивания" энергетических уровней локализованных состояний (примесных атомов).¹ Считалось, что временные флуктуации энергии локализованных состояний обусловлены прыжковой диффузией по ним электронов. Однако предложенные в этой работе формулы лишь качественно согласуются с известными экспериментальными данными.

В [15,16] для описания прыжковой электропроводности на постоянном токе и термоэдс развита модель, согласно которой в кристаллической матрице основная примесь (акцепторы) и компенсирующая (доноры) образуют единую простую кубическую "примесную решетку". Прыжки дырок происходят при термически активируемом выравнивании энергетических уровней акцепторов, в то время как доноры блокируют соответствующие узлы решетки из примесных атомов. Пронумеруем акцепторы; номера будем обозначать индексами α, β . Заметим далее, что выравнивание (совпадение) уровней двух близких акцепторов может происходить как за счет упругой деформации кристаллической решетки вблизи акцепторов, создаваемой фононами, так и за счет влияния кулоновских флуктуаций, возникающих вследствие прыжков дырок между другими акцепторами. В момент совпадения уровней² нейтрального и отрицательно заряженного акцепторов образуется "резонансный" двухузельный кластер: дырка, находящаяся на акцепторе α , связывается с некоторым отрицательно заряженным акцептором β и принадлежит одновременно двум акцепторам. Через какое-то время резонансные условия перестают выполняться, и дырка может оказаться на акцепторе β или же снова на акцепторе α . После этого акцепторы α и β могут снова образовать резонансный кластер или включиться в другие резонансные кластеры (пары). Для режима прыжков по ближайшим примесным

¹ Модель флуктуационного приготовления барьера для туннелирования атома (или молекулы) позволила объяснить основные характеристики твердофазных криохимических реакций (см., например, [14]).

² С точностью до квантовомеханического уширения уровней акцепторов из-за конечности времени локализации на них дырки.

атомам в [15] дано количественное описание концентрационной зависимости энергии активации прыжковой электропроводности с приложением к *p*-Ge:Ga, а также ее предэкспоненциального множителя. Результаты расчетов по модели [16] согласуются с известными экспериментальными данными по низкотемпературной прыжковой термоэдс и теплоемкости на диэлектрической стороне фазового перехода изолятор-металл.

Цель настоящей работы — развитие модели [15,16] флуктуационного выравнивания уровней энергии акцепторов в запрещенной зоне кристалла для описания высокочастотной прыжковой проводимости в парном приближении. Проанализирован случай, когда концентрации акцепторов в зарядовых состояниях (0) и (-1) примерно равны, т. е. случай умеренных степеней компенсации акцепторов донорами. Рассматриваются относительно небольшие уровни легирования образцов *p*-типа вдали от перехода изолятор-металл при температурах, когда доминируют прыжки дырок между ближайшими по расстоянию акцепторами (nearest neighbor hopping, NNH).

2. Плотность прыжкового тока и электропроводность

Рассмотрим кристаллический полупроводник *p*-типа с концентрацией $N = N_0 + N_{-1}$ водородоподобных акцепторов (индексы обозначают их зарядовые состояния) и $N_{+1} = KN$ доноров в зарядовом состоянии (+1), где K — степень компенсации акцепторов донорами.³ Условие электронейтральности имеет вид: $N_{-1} = KN$. Считаем температуру достаточно низкой, так что обмен дырками между акцепторами в зарядовых состояниях (0) и (-1) осуществляется только прыжковым образом (без участия состояний *v*-зоны и возбужденных состояний акцепторов), а уровень легирования слабым, так что боровский радиус локализации дырки на акцепторе много меньше средней длины прыжка.

Пусть к макроскопическому трехмерному образцу полупроводника вдоль оси *x* приложено внешнее переменное во времени электрическое поле напряженностью $\mathscr{E} = \mathscr{E}_0 \sin(\omega t)$, где $2\pi/\omega$ — период гармонических колебаний, *t* — время.

Изменение во времени вероятности f_{α} того, что акцептор с номером α находится в зарядовом состоянии (0), удовлетворяет уравнению баланса [3]

$$\frac{df_{\alpha}}{dt} = \sum_{\beta} \left[f_{\beta} (1 - f_{\alpha}) \Gamma_{\beta \alpha} - f_{\alpha} (1 - f_{\beta}) \Gamma_{\alpha \beta} \right], \qquad (1)$$

где индексы $\alpha, \beta = 1, 2, 3, ...$ нумеруют в образце все акцепторы, $\Gamma_{\alpha\beta}$ — вероятность прыжка дырки с акцептора α на акцептор β в единицу времени (темп, или частота переходов дырки).

³ К умеренным степеням компенсации условно относим значения 0.1 < K < 0.9, которые не подходят под определение низких ($K \ll 1$) и высоких ($1 - K \ll 1$). Именно при умеренной степени компенсации величина прыжковой электропроводности на постоянном токе максимальна [17].

Плотность переменного прыжкового тока J_h определяется изменением во времени проекции на ось xэлектрического дипольного момента единицы объема кристалла с равным числом ионизованных акцепторов и доноров (ср. с [18])

$$J_h = \frac{e}{2V} \left[\sum_{\alpha} x_{\alpha} \frac{df_{\alpha}}{dt} - \sum_{\beta} x_{\beta} \frac{d(1 - f_{\beta})}{dt} \right], \qquad (2)$$

где e — модуль заряда электрона, V — объем образца, x_{α} — координата акцептора с номером α .

Из (2) с учетом (1), следуя [3,19], имеем

$$J_{h} = \frac{e}{2V} \sum_{\alpha} \sum_{\beta} (x_{\beta} - x_{\alpha}) \left[f_{\alpha} (1 - f_{\beta}) \Gamma_{\alpha\beta} - f_{\beta} (1 - f_{\alpha}) \Gamma_{\beta\alpha} \right],$$
(3)

где $(x_{\beta} - x_{\alpha}) = r_{\alpha\beta} \cos \theta_{\alpha\beta}$ — проекция вектора $\mathbf{r}_{\alpha\beta}$, соединяющего акцепторы α и β , на ось x (вдоль напряженности внешнего электрического поля), $\theta_{\alpha\beta}$ — угол между вектором $\mathbf{r}_{\alpha\beta}$ и осью x.

Примем, что во внешнем однородном электрическом поле $\mathscr{E} = \mathscr{E}_0 \sin(\omega t)$ частота прыжков дырки между акцепторами имеет вид

$$\Gamma_{\alpha\beta} = \Gamma_{\alpha\beta}^{(\text{eq})} \exp\left(\frac{e(x_{\beta} - x_{\alpha})\mathscr{E}}{k_{B}T}\right), \qquad (4)$$

где индекс (eq) обозначает равновесное (при $\mathscr{E}_0 = 0$) значение $\Gamma^{(\text{eq})}_{\alpha\beta}$ для акцепторов α и β , находящихся на расстоянии $r_{\alpha\beta}$ друг от друга, k_B — постоянная Больцмана, T — температура.

Для случая слабого электрического поля $(|e(x_{\beta} - x_{\alpha})\mathscr{E}_{0}| \ll k_{B}T)$, когда $f_{\alpha} \approx f_{\alpha}^{(eq)}$, из (3) с учетом (4) следует выражение для действительной части прыжковой электропроводности (по форме напоминающее соотношение Титейки [20,21])⁴

$$\operatorname{Re}\sigma_{h} = \frac{e^{2}}{Vk_{B}T} \sum_{\alpha} \sum_{\beta} (x_{\beta} - x_{\alpha})^{2} f_{\alpha}^{(\operatorname{eq})} (1 - f_{\beta}^{(\operatorname{eq})}) \Gamma_{\alpha\beta}^{(\operatorname{eq})}, \quad (5)$$

индекс (eq) далее не пишем, так как все используемые величины будут равновесными.

Следует заметить, что в выражениях (1)-(5) координаты x_{α} и x_{β} акцепторов считаются заданными, фактически же они неизвестны, поэтому формулы такого типа напрямую неприменимы к задаче количественного описания экспериментальных данных по прыжковому электропереносу.

Перейдем от дискретного описания прыжкового переноса дырок внутри пар акцепторов к непрерывному. Для замены суммирования в (5) по α и β на интегрирование по непрерывным переменным r и θ , где $r_{\alpha\beta} \rightarrow r$, $\theta_{\alpha\beta} \rightarrow \theta$, найдем плотность распределения расстояния rмежду акцепторами в зарядовых состояниях (0) и (-1), а также угла θ , задающего ориентацию пар акцепторов относительно оси x. В умеренно компенсированном полупроводнике распределение зарядовых состояний примесных атомов по узлам кристаллической решетки можно считать случайным даже при достаточно низких температурах. Тогда вероятность того, что в объеме v находится l акцепторов в зарядовом состоянии (-1) не зависит от формы и месторасположения объема v и дается распределением Пуассона [22–25]

$$\mathscr{P}(l, vN_{-1}) = \frac{1}{l!} (vN_{-1})^l \exp(-vN_{-1}), \qquad (6)$$

где $N_{-1} = KN$ — средняя по кристаллу концентрация ионизованных акцепторов.

Рассмотрим произвольный акцептор в зарядовом состоянии (0). Выберем сферическую систему координат с центром в этом акцепторе. Между сферами радиусами rи r + dr выделим кольцо радиусом $r \sin \theta$, шириной $rd\theta$ и толщиной dr. Тогда из (6) для l = 1 получаем вероятность того, что в кольце объемом $v = 2\pi \sin \theta r^2 d\theta dr$ найдется акцептор в зарядовом состоянии (-1)

$$P(r,\theta)d\theta dr = 2\pi\sin\theta r^2 K N d\theta dr, \qquad (7)$$

где $0 \le \theta \le \pi$.

Будем считать, что вклад в действительную часть высокочастотной прыжковой электропроводности вносят лишь пары акцепторов, содержащие акцепторы в зарядовых состояниях (0) и (-1). При этом расстояние R_{ω} между акцепторами в паре должно быть таким, чтобы время туннелирования дырки между ними было равно половине периода гармонических колебаний внешнего электрического поля, поскольку переходы дырок как с меньшим, так и с большим временем не дают вклада в $\operatorname{Re} \sigma_h(\omega)$. Это означает, что надо умножить плотность $P(r, \theta)$ распределения пар по расстояниям на безразмерную дельта-функцию $\delta(1-r/R_{\omega})$, которая удовле-творяет соотношению $\int_0^{\infty} \delta(1-r/R_{\omega}) dr = R_{\omega}$. Тогда вероятность того, что в произвольной паре акцепторы находятся на расстоянии $r = R_{\omega}$ в интервале (r, r + dr)и в объеме $2\pi \sin \theta r^2 d\theta dr$ равна $P(r, \theta) \delta(1 - r/R_{\omega}) dr d\theta$, где плотность распределения угла θ между осью координат x и вектором длиной R_{ω} , равномерно распределенным на сфере, равна $(1/2)\sin\theta$ [22,25]. Итак, вероятность того, что на расстоянии $r = R_{\omega}$ от акцептора в интервале (r, r + dr) в телесном угле $2\pi \sin \theta d\theta$ найдется другой акцептор, есть

$$\frac{1}{2}\sin\theta P(r,\theta)\delta\left(1-\frac{r}{R_{\omega}}\right)d\theta dr,\tag{8}$$

где $P(r, \theta)$ дается формулой (7).

В соответствии с указанным выше в формуле (5) проведем замены $f_{\alpha} \rightarrow (1-K), (1-f_{\beta}) \rightarrow K,$ $(x_{\beta} - x_{\alpha}) \rightarrow r \cos \theta, \Gamma_{\alpha\beta}(r_{\alpha\beta}) \rightarrow \Gamma_h(r)$ и перейдем от суммирования по β к интегрированию по объему V кристалла. Тогда оставшаяся сумма по α содержит (1-K)NVодинаковых ненулевых слагаемых, где (1-K)NV число акцепторов в зарядовом состоянии (0). Поэтому

⁴ Гармонические колебания плотности прыжкового тока J_h со сдвигом во времени относительно колебаний электрического поля \mathscr{E} определяются мнимой частью электропроводности σ_h .

в парном приближении согласно (5) действительная часть высокочастотной прыжковой электропроводности $\operatorname{Re} \sigma_h(\omega)$ с учетом (8) имеет вид

$$\operatorname{Re}\sigma_{h}(\omega) = \frac{e^{2}K(1-K)^{2}N}{k_{B}T} \int_{0}^{\pi} \frac{\sin\theta}{2} \int_{0}^{\infty} 2\pi \sin\theta r^{2}KN$$
$$\times \delta\left(1-\frac{r}{R_{\omega}}\right) (r\cos\theta)^{2}\Gamma_{h}(r)drd\theta = \frac{\pi^{2}e^{2}N_{h}^{2}R_{\omega}^{5}\Gamma_{h}(R_{\omega})}{4k_{B}T},$$
(9)

где $N_h = N_0 N_{-1}/N = K(1-K)N$ — эффективная концентрация участвующих в прыжковой электропроводности акцепторов, $\Gamma_h(R_\omega)$ — частота прыжков дырки между акцепторами в зарядовых состояниях (0) и (-1), которую следует вычислить.

Частота прыжков дырок между акцепторами

Примем гауссову (нормальную) плотность распределения $g_a(E_a - \overline{E}_a)$ акцепторных уровней энергии E_a относительно среднего значения \overline{E}_a . Пусть $f_0(E_a)$ — вероятность того, что акцептор с энергетическим уровнем E_a находится в зарядовом состоянии (0). Усреднение по энергии дает⁵ вероятность того, что произвольно выбранный в полупроводнике акцептор нейтрален

$$\overline{f}_{0} = \int_{-\infty}^{+\infty} f_{0}g_{a}d(E_{a} - \overline{E}_{a})$$
$$= \frac{1}{\sqrt{2\pi\gamma}} \int_{-\infty}^{+\infty} \frac{\exp(-u^{2}/2\gamma^{2})}{1 + \exp(-\xi - u)} du, \qquad (10)$$

где $g_a = \left(\sqrt{2\pi}W\right)^{-1} \exp\left[-(E_a - \overline{E}_a)^2/2W^2\right]$ — плотность распределения энергетических уровней акцепторов в запрещенной зоне; W — эффективная ширина акцепторной зоны; $1 - f_0 = f_{-1} = \{1 + \beta_a \times \exp[(E_a + E_F)/k_BT]\}^{-1}$ — вероятность того, что акцептор с уровнем $E_a > 0$ ионизован; β_a — фактор вырождения уровня; $E_F < 0$ — уровень Ферми, отсчитанный от потолка v-зоны, в запрещенной зоне; $\overline{E}_a > 0$ — центр акцепторной зоны; $u = (E_a - \overline{E}_a)/k_BT$, $\xi = (E_F + \overline{E}_a + k_BT \ln \beta_a)/k_BT$, $\gamma = W/k_BT$ — безразмерные параметры.

Ширина "классической" акцепторной зоны W в основном обусловлена кулоновским взаимодействием только ближайших зарядов (ионизованных акцепторов и доноров), и согласно [26], равна⁶

$$W = \left(\int_0^\infty U^2 P(r) dr\right)^{1/2} \approx 1.64 \frac{e^2}{4\pi\varepsilon} \left(\frac{8\pi}{3} KN\right)^{1/3}, \ (11)$$

где $|U| = e^2/4\pi\varepsilon r$ — модуль кулоновской энергии взаимодействия двух ионов; $\varepsilon = \varepsilon_r \varepsilon_0$ — статическая диэлектрическая проницаемость кристаллической решетки; ε_0 — электрическая постоянная; $P(r)dr = 4\pi r^2 (N_{-1} + N_{+1}) \exp[-(4\pi/3)r^3 (N_{-1} + N_{+1})]dr$ — согласно (6), (7), вероятность того, что ближайшим к акцептору в зарядовом состоянии (-1) является ион примеси, расположенный в интервале расстояний (r, r + dr)от него; $N_{-1} + N_{+1} = 2KN$ — суммарная концентрация ионизованных акцепторов и доноров.

Итак, согласно (10), средние по кристаллу концентрации нейтральных и ионизованных акцепторов (без учета их возбужденных состояний)

$$N_0 = N\overline{f}_0 = N(1-K), \quad N_{-1} = N(1-\overline{f}_0) = KN.$$

Из условия электронейтральности $\overline{f}_{-1} = 1 - \overline{f}_0 = K$ с учетом (11) определяется далее зависимость уровня Ферми E_F от температуры T, степени компенсации Kи концентрации $N = N_0 + N_{-1}$ акцепторов.

Вследствие тепловых (поглощение или испускание фононов) и кулоновских (из-за прыжков дырок между акцепторами) флуктуаций положения энергетических уровней акцепторов относительно потолка v-зоны полупроводника изменяются во времени. Следуя [13,15], полагаем, что прыжок дырки между двумя акцепторами в зарядовых состояниях (0) и (-1) может произойти лишь при совпадении энергетических уровней этих акцепторов.⁷

Число переходов дырки между акцепторами в зарядовых состояниях (0) и (-1) за один акт флуктуационного выравнивания их уровней $E_{a1} = \overline{E}_a + u_1 k_B T$ и $E_{a2} = \overline{E}_a + u_2 k_B T$ равно целой части отношения продолжительности $t_i(u)$ одного акта совпадения уровней $(u_1 = u_2 = u)$ ко времени акта туннелирования $\tau(u, r)$. Положим, что за промежуток времени t суммарная продолжительность всех случаев совпадения уровней двух акцепторов есть $t_c(u) = \sum_i t_i(u)$. Вероятность того, что при совпадении уровней акцепторов, находящихся на расстоянии r друг от друга, произойдет j = 0, 1, 2, ...переходов дырки между ними, аппроксимируем распределением Пуассона [22–25,27]

$$\mathscr{P}(j) = \frac{[t_c(u)/\tau(u,r)]^j}{j!} \exp\left[-\frac{t_c(u)}{\tau(u,r)}\right], \quad (12)$$

где $t_c(u)/\tau(u, r) = \sum_{j=0}^{\infty} j\mathscr{P}(j)$ — среднее число переходов дырки между ближайшими акцепторами. Частота прыжков дырок между двумя акцепторами в зарядовых состояниях (0) и (-1) при флуктуационном выравнивании

стояниях (0) и (-1) при флуктуационном выравнивании их энергетических уровней ($E_{a1} = E_{a2} = E_{\tau}$) за время *t* есть [15]

$$\Gamma(u,r) = \frac{1}{t} \sum_{j=0}^{\infty} j \mathscr{P}(j) = \frac{t_c(u)}{t\tau(u,r)}.$$
 (13)

⁵ При промежуточной степени компенсации акцепторов корреляцией между их местоположением (в узле кристаллической решетки) и энергией можно пренебречь.

⁶ Рассматриваются образцы на изоляторной стороне фазового перехода изолятор-металл.

 $^{^{7}}$ Вследствие прыжков дырок зарядовые состояния (-1) неподвижных акцепторов мигрируют по кристаллу.

Из теории марковских цепей [22,27] следует, что при наблюдении процесса переходов дырки между двумя акцепторами в течение длительного интервала времени $(t \gg \tau(u, r))$ доля времени $t_c(u)/t$, проведенного акцепторами в одном из двух возможных состояний (совпадение и несовпадение энергетических уровней) приближенно равна стационарной вероятности $\mathscr{P}(u, \xi)$ пребывания акцепторов в этих состояниях. Таким образом, отношение $t_c(u)/t$ приближенно определяется вероятностью того, что энергетические уровни двух акцепторов в зарядовых состояниях (0) и (-1) выровнены [15]

$$\frac{t_c(u)}{t} \approx \mathscr{P}(u,\xi) = \frac{f_0(u,\xi)f_{-1}(u,\xi)}{K(1-K)}, \qquad (14)$$

где $f_0(u, \xi) = [1 + \exp(-\xi - u)]^{-1}$ — вероятность того, что один из акцепторов пары с энергетическим уровнем $E_{\tau} = \overline{E}_a + uk_BT$ заполнен дыркой, $f_{-1}(u, \xi) = [1 + \exp(u + \xi)]^{-1}$ — вероятность того, что другой акцептор пары с таким же энергетическим уровнем E_{τ} находится в зарядовом состоянии (-1), т.е. ионизован; $\overline{f}_0 = (1 - K)$, $\overline{f}_{-1} = K$ (см. формулу (10)).

По аналогии с теорией молекулярного иона водорода (H_2^+) время туннелирования дырки между двумя акцепторами в зарядовых состояниях (0) и (-1) на расстоянии *r* друг от друга при случайном совпадении их энергетических уровней ($u_1 = u_2 = u$) оценим так [15,28,29]:

$$\tau(u,r) = \frac{\pi\hbar}{\delta E_{\tau}(r)},\tag{15}$$

где $\delta E_{\tau}(r)$ — величина энергетического "расщепления" (уширения) уровня туннелирования $E_{\tau} = \overline{E}_a + uk_B T$ дырки между акцепторами, отсчитанного от потолка *v*-зоны нелегированного кристалла; $a_{\tau} = e^2/(8\pi\varepsilon E_{\tau})$ боровский радиус локализации дырки на акцепторе.

В квазиклассическом приближении без учета возбужденных состояний акцепторов для $\delta E_{\tau}(r) \ll E_{\tau}$, согласно [29,30], имеем

$$\delta E_{\tau}(r) = 4E_{\tau} \\ \times \frac{\rho(1+\rho)\exp(-\rho) - [1 - (1+\rho)\exp(-2\rho)]S}{\rho(1-S^2)}, \quad (16)$$

где $\rho = r/a_{\tau}$; $S = [1 + \rho + (\rho^2/3)] \exp(-\rho)$.

Усредним $\Gamma(u, r)$ по распределению $g_a = g_a(u, \gamma)$ энергетических уровней туннелирования $u = (E_{\tau} - \overline{E}_a)/k_BT$ в акцепторной зоне шириной $\gamma = W/k_BT$. С учетом (13)–(15) и (10) средняя частота прыжков $\Gamma_h(r)$ дырки между двумя находящимися на расстоянии r акцепторами представляется в виде

$$\Gamma_{\hbar}(r) = \int_{-\infty}^{+\infty} \Gamma(u, r) g_{a}(u, \gamma) du$$
$$= \int_{-\infty}^{+\infty} \frac{\mathscr{P}(u, \xi) g_{a}(u, \gamma)}{\tau(u, r)} du, \qquad (17)$$
где $g_{a}(u, \gamma) = \left(\sqrt{2\pi\gamma}\right)^{-1} \exp(-u^{2}/2\gamma^{2}).$

Из (15) и (16) следует, что время туннелирования $\tau(u, r)$ монотонно возрастает при смещении уровня туннелирования E_{τ} в глубь запрещенной зоны кристалла, т.е. с ростом *и*. Если температура достаточно низкая, так что $W \gg k_B T$, функция $\mathcal{P}(u, \xi)g_a(u, \gamma)$ имеет узкий максимум⁸ при $u = -\xi$. Это позволяет в (17) вынести монотонную функцию $\tau(u, r)$ из-под знака интеграла при $u = -\xi$. Таким образом, средняя равновесная частота прыжков дырки между находящимися на расстоянии *r* акцепторами [15]

$$\Gamma_h(r) \approx \frac{1}{\tau_h(r)\xi_h},$$
(18)

где $\tau_h(r) \equiv \tau_h(u = -\xi, r)$ — время туннелирования дырки между акцепторами в зарядовых состояниях (0) и (-1) с одинаковыми (совпадающими с точностью до $\delta E_\tau \ll E_\tau$) энергетическими уровнями $E_\tau = \overline{E}_a - \xi k_B T$; безразмерный параметр ξ_h с учетом (10) и (14) определяется соотношением [31]

$$\frac{1}{\xi_h} = \frac{1}{K(1-K)} \frac{1}{\sqrt{2\pi}} \\ \times \int_{-\infty}^{+\infty} \frac{\exp(-u^2/2) \exp(\xi + \gamma u)}{[1 + \exp(\xi + \gamma u)]^2} du.$$
(19)

Для случаев узкой по сравнению с энергией тепловых возбуждений ($\gamma = W/k_BT \ll 1$) и широкой ($\gamma = W/k_BT \gg 1$) акцепторной зоны формулы (10) и (19) для ξ и ξ_h упрощаются

1) при $\gamma \ll 1$ имеем $\xi \approx -\ln[K/(1-K)], \xi_h \approx 1;$ 2) при $\gamma \gg 1$ имеем

$$K = 1 - \overline{f}_0 \approx \frac{1}{2} \left[1 - \operatorname{erf}\left(\frac{\xi}{\gamma\sqrt{2}}\right) \right],$$

$$\xi_h \approx \gamma K (1 - K) \sqrt{2\pi} \exp\left[\frac{1}{2} \left(\frac{\xi}{\gamma}\right)^2\right], \qquad (20)$$

где ξ/γ — отношение энергии, соответствующей положению уровня Ферми, к ширине акцепторной зоны.

4. Действительная часть прыжковой электропроводности на переменном токе

Примем, что в действительную часть электропроводности на переменном токе вносят вклад только пары акцепторов, время туннелирования $\tau_h(r = R_{\omega})$ дырок внутри которых равно половине периода π/ω внешнего электрического поля,⁹ т.е. $\tau_h(R_{\omega}) = \pi/\omega$. Тогда

Физика твердого тела, 2005, том 47, вып. 7

⁸ В случае узкой примесной зоны ($W \ll k_B T$) функция $g_a(u, \gamma) \mathscr{P}(u, \xi)$ имеет максимум при u = 0, и энергетический уровень туннелирования дырок $E_\tau \approx \overline{E}_a$.

⁹ В этом приближении мнимая часть прыжковой электропроводности на переменном токе равна ее действительной части.

 $\Gamma_h(R_{\omega}) = \omega/(2\pi\xi_h)$ и из (9) с учетом (18) для действительной части высокочастотной прыжковой электропроводности Re $\sigma_h(\omega)$ окончательно получаем

$$\operatorname{Re}\sigma_{h}(\omega) = \frac{\pi e^{2} N_{h}^{2} R_{\omega}^{5}}{8k_{B} T \xi_{h}} \omega, \qquad (21)$$

где $R_{\omega} = \rho_{\omega} a_{\tau}$ — длина прыжка дырки между акцепторами в паре, $a_{\tau} = e^2/[8\pi\varepsilon(\overline{E}_a - \xi k_B T)]$ — боровский радиус, ρ_{ω} — решение уравнения

$$\frac{4(\overline{E}_{a} - \xi k_{B}T)}{\pi\hbar} \times \frac{\rho_{\omega}(1 + \rho_{\omega}) \exp(-\rho_{\omega}) - [1 - (1 + \rho_{\omega}) \exp(-2\rho_{\omega})]S_{\omega}}{\rho_{\omega}(1 - S_{\omega}^{2})} = \frac{\omega}{\pi}$$
(22)

при $S_{\omega} = [1 + \rho_{\omega} + (\rho_{\omega}^2/3)] \exp(-\rho_{\omega})$. Величины $\xi k_B T = E_F + \overline{E}_a + k_B T \ln \beta_a$ и $\xi_h \ge 1$ находятся из (10) и (19); значения ξ и ξ_h для узкой и широкой акцепторной зоны¹⁰ даются соотношениями (20); $N_h = K(1 - K)N$.

Из (22) видно, что R_{ω} зависит от угловой частоты ω , энергетического положения центра акцепторной зоны \overline{E}_a , уровня Ферми E_F (относительно потолка *v*-зоны) и температуры. Величина R_{ω} через \overline{E}_a и E_F зависит от концентрации акцепторов N и степени их компенсации Kдонорами. Оценим влияние R_{ω} на зависимость $\text{Re }\sigma_h(\omega)$ от частоты $10^2 \text{ Hz} < \omega/2\pi < 10^7 \text{ Hz}$ при $K \approx 0.5$ и низких температурах ($\overline{E}_a \gg |\xi| k_B T$) для легированных атомами галлия кристаллов германия ($N = 10^{15} \text{ cm}^{-3}$, $\overline{E}_a = 10 \text{ meV}$, $\varepsilon_r = 15.4$). В этих условиях из (22) получаем аппроксимацию $R_{\omega} = 155 - 11.3 \text{ lg}(\omega/2\pi)$, где [R_{ω}] — пт, [$\omega/2\pi$] — Нz. В итоге, согласно (21) имеем $\text{Re }\sigma_h(\omega) \propto R_{\omega}^5 \omega \propto \omega^s$, где $s \approx 0.76$, что близко к экспериментальным значениям (рис. 1).

Входящее в уравнение (22) среднее по кристаллу значение энергии \overline{E}_a термической ионизации нейтрального водородоподобного акцептора (без учета сдвига и флуктуаций энергии потолка v-зоны), согласно [26], есть

$$\overline{E}_a = I_a - \frac{3e^2}{16\pi\varepsilon(\Lambda_s + d)},\tag{23}$$

где I_a — энергия ионизации одиночного акцептора, $d = 0.554[(1 + K)N]^{-1/3}$ — среднее расстояние между атомами примесей, Λ_s — длина (радиус) электростатического экранирования кулоновского потенциала мигрирующими по акцепторам дырками. Согласно [31], длина экранирования (по Дебаю–Хюккелю)

$$\Lambda_s = \sqrt{\frac{\varepsilon k_B T \xi_h}{e^2 N_h}} \tag{24}$$

обусловлена наличием в акцепторной зоне прыгающих дырок с концентрацией $N_h = K(1-K)N$; заметим, что

величина $\xi_h \ge 1$ показывает, во сколько раз отношение коэффициента диффузии к дрейфовой прыжковой подвижности дырок на постоянном токе больше классического значения $k_B T/e$.

Отметим, что описываемый формулой (23) сдвиг центра акцепторной зоны $\overline{E}_a > 0$ к потолку *v*-зоны объясняется уменьшением энергии сродства ионизированного акцептора к дырке *v*-зоны из-за статического экранирования ионов примесей дырками, прыгающими по акцепторам [26]. Для высоких температур $(k_B T \gg W)$ из (24) с учетом (20) получаем длину экранирования [32,33]: $\Lambda_s = [\varepsilon k_B T/e^2 N_h]^{1/2}$. Для низких температур $(k_B T \ll W)$ таким же путем получаем [31]: $\Lambda_s = [\varepsilon W \sqrt{2\pi}/(e^2 N)]^{1/2} \exp(\xi^2/4\gamma^2)$, где ξ/γ определяется из уравнения $2K = 1 - \operatorname{erf}(\xi/\gamma\sqrt{2})$.

Итак, находя из уравнения (22) среднее расстояние R_{ω} между участвующими в прыжковой электропроводности на частоте $\omega/2\pi$ акцепторами, по формуле (21) с учетом (10), (11), (19), (23) и (24) рассчитываем искомое значение Re $\sigma_h(\omega)$.

Отметим, что из формулы (21) с учетом (22) следует: $\operatorname{Re} \sigma_h(\omega)|_{\omega\to 0} \to 0$, т.е. $\operatorname{Re} \sigma_h(\omega)$ — это превышение действительной части прыжковой электропроводности на переменном токе над прыжковой электропроводностью на постоянном токе.

5. Сравнение расчетов с экспериментальными данными

В работах [34,35] приведены экспериментальные данные по прыжковой электропроводности нейтроннотрансмутационно легированных атомами галлия кристаллов *p*-Ge (K = 0.4)¹¹ при различных температурах и частотах электрического поля, которые мы, пользуясь результатами данной работы, пытаемся количественно описать без каких-либо подгоночных параметров.

Результаты расчета частотных зависимостей прыжковой электропроводности Re $\sigma_h(\omega)$, обусловленной переменным электрическим полем, по формуле (21) с учетом (22)–(24) в сравнении с экспериментальными данными [34,35] показаны на рис. 1. При расчетах для *p*-Ge:Ga использовались следующие значения величин: $\varepsilon_r = \varepsilon/\varepsilon_0 = 15.4$, $I_a = 11.32$ meV, $\beta_a = 4$. Из рис. 1 видно, что результаты расчета по развитой в работе модели высокочастотной прыжковой электропроводности в целом согласуются с экспериментальными данными [34,35] в широком диапазоне частот электрического поля.

Экспериментальные [34] и расчетные зависимости Re $\sigma_h(\omega)$ от концентрации N атомов Ga в кристаллах *p*-Ge: Ga при K = 0.4 для $\omega/2\pi = 10^3$ и 10^5 Hz показаны на рис. 2, где также видно вполне удовлетворительное согласие.

1200

¹⁰ Согласно (20) и (11), величина $k_B T \xi_h$ для широкой акцепторной зоны ($W \gg k_B T$) определяется только концентрацией акцепторов и степенью их компенсации донорами.

¹¹ Впоследствии было показано [36], что степень компенсации германия с природным изотопным составом изменяется в пределах от K = 0.3 до 0.6 в зависимости от "жесткости" спектра энергии реакторных нейтронов. В частности, работе [35] соответствует значение K = 0.35.

На рис. З представлены температурные зависимости прыжковой электропроводности *p*-Ge:Ga на переменном токе с частотами $\omega/2\pi = 10^5$ и 10^6 Hz согласно экспериментальным данным [34,35]. Расчет высокочастотной прыжковой электропроводности (рис. 1–3) проводился для интервала температур между низкотемпературной (T_l) и высокотемпературной (T_h) границами области NNH-режима

Рис. 1. Частотные зависимости прыжковой электропроводности. Точки a-c — экспериментальные данные для p-Ge:Ga при K = 0.4: a - T = 4 K, $N = 3.2 \cdot 10^{14}$ cm⁻³ [34], b - T = 4 K, $N = 7.8 \cdot 10^{14}$ cm⁻³ [34], c - T = 2.3 K, $N = 3.4 \cdot 10^{15}$ cm⁻³ [35]. Кривые 1-3 — расчет по (21) для данных a-c соответственно.

Рис. 2. Зависимости действительной части прыжковой электропроводности кристаллов германия от концентрации атомов галлия при K = 0.4 для T = 3.3 К. Точки — экспериментальные данные из [34]: $a - \omega/2\pi = 10^3$ Hz, $b - \omega/2\pi = 10^5$ Hz. Кривые *1*, 2 — расчет по (21) для данных *a*, *b* соответственно.

Рис. 3. Температурные зависимости высокочастотной прыжковой электропроводности в нейтронно-легированных кристаллах германия. Точки a-c — экспериментальные данные для p-Ge:Ga (K = 0.4, $\omega/2\pi = 10^5$ Hz) [34]: $a - N = 3.2 \cdot 10^{14}$, $b - 7.8 \cdot 10^{14}$ и c — $2.14 \cdot 10^{15}$ cm⁻³; d — K = 0.4, $\omega/2\pi = 10^6$ Hz, $N = 3.4 \cdot 10^{15}$ cm⁻³ [35]. Кривые 1-4 — расчет по (21) для данных a-d соответственно.

проводимости на постоянном токе.¹² Экспериментальные данные [37,38] для T_l и T_h в *p*-Ge:Ga при $2 \cdot 10^{14} < N < 2 \cdot 10^{16}$ сm⁻³ и K = 0.3 можно аппроксимировать выражениями $T_l \approx 2.67 \cdot 10^{-4} N^{0.244}$, $T_h \approx 7.6 \cdot 10^{-4} N^{0.258}$, где $[T_l]$, $[T_h] = K$, [N] = сm⁻³. Видно, что согласно расчетам по предлагаемой модели Re $\sigma_h(\omega)$ практически не зависит от температуры как при $T \approx T_l$, так и при $T \approx T_h$. В то же время эксперимент показывает тенденцию к уменьшению высокочастотной прыжковой электропроводности при $T < T_l$.

Для широкой акцепторной зоны ($W \gg k_B T$) уменьшение Re $\sigma_h(\omega)$ при $T < T_l$ даже для промежуточных степеней компенсации ($K \approx 0.5$), возможно, обусловлено корреляцией между пространственным распределением акцепторов и их энергией (VRH-режим проводимости). Эта корреляция ведет к тому, что усреднения по расстоянию между акцепторами и по распределению их энергетических уровней нельзя рассматривать порознь (см. формулы (9) и (17)).

Для узкой акцепторной зоны ($W \ll k_B T$) формула (21) предсказывает, что высокочастотная прыжковая электропроводность компенсированного полупроводника должна уменьшаться с ростом температуры, так как при этом влияние переменного электрического поля постоянной амплитуды на частоту прыжков дырок ослабевает (см. вывод формулы (5)). Этот эффект, хоть

¹² С понижением температуры (при $T < T_l$) NNH-режим трансформируется в режим прыжков дырок с переменной длиной (variable range hopping, VRH). При $T = T_h$ прыжковая электропроводность в NNH-режиме равна зонной электропроводности дырок v-зоны.

и слабо выраженный, можно заметить на наименее легированном образце при относительно высоких температурах. Заметим, что при температурах $T \approx T_h$ (т. е. в области насыщения прыжковой электропроводности на постоянном токе [37,38]) при расчете $\text{Re }\sigma_h$, повидимому, необходимо учитывать возбужденные состояния акцепторов [39]. Возможно также, что даже для полупроводников с промежуточной степенью компенсации при приближении по уровню легирования к переходу изолятор-металл следует учитывать в высокочастотной проводимости вклад A^+ -зоны акцепторов [40,41], сформированной акцепторами в зарядовых состояниях (+1).

6. Выводы

Для описания высокочастотной прыжковой проводимости легированных кристаллических ковалентных полупроводников с умеренной степенью компенсации предложена модель прыжков дырок (электронов) внутри пар водородоподобных акцепторов (доноров) при хаотическом распределении их зарядовых состояний. Плотность распределения энергетических уровней акцепторов в запрещенной зоне считается гауссовой. Предполагалось, что ширина акцепторной зоны определяется чисто кулоновским взаимодействием ближайших ионизованных акцепторов и доноров, случайно (пуассоновски) распределенных по кристаллу. Идея предлагаемой модели состоит в том, что основной вклад в прыжковую электропроводность $\operatorname{Re} \sigma_h(\omega)$ на переменном токе вносят только пары акцепторов в зарядовых состояниях (0) и (-1) с совпадающими уровнями энергии. В рамках равновесной термодинамики определена вероятность совпадения энергетических уровней двух акцепторов под действием тепловых и/или кулоновских флуктуаций прыжковой природы. Важный для расчета результат состоит в том, что оптимальные пары акцепторов оказываются расположенными на таком расстоянии, чтобы время туннелирования дырки между ними было равно половине периода колебаний внешнего электрического поля. Время туннелирования дырки между акцепторами вычисляется в рамках модели ионизованной молекулы водорода (H₂⁺), т.е. считается, что прыжок дырки происходит только при совпадении уровней двух водородоподобных акцепторов. Получены аналитические выражения, описывающие связь частоты прыжков дырки в парах с концентрацией акцепторов и степенью их компенсации *K* донорами. Расчеты $\operatorname{Re} \sigma_h(\omega)$ согласуются с экспериментальными данными для трансмутационно легированных кристаллов *p*-Ge:Ga.

Список литературы

- [1] Н. Мотт, Э. Девис. Электронные процессы в некристаллических веществах. Мир, М. (1982). 664 с.
- [2] J.C. Dyre, T.B. Schrøder. Rev. Mod. Phys. 72, 3, 873 (2000).
- [3] И.П. Звягин. Кинетические явления в неупорядоченных полупроводниках. МГУ, М. (1984). 192 с.

- [4] J.C. Dyre, T.B. Schrøder. Phys. Stat. Sol. (b) 230, 1, 5 (2002).
- [5] M. Pollak. Phys. Stat. Sol. (b) **230**, *1*, 295 (2002).
- [6] С.Д. Барановский, А.А. Узаков. ФТП 15, 5, 931 (1981).
- [7] B.V. Klimkovich, N.A. Poklonski, V.F. Stelmakh. Phys. Stat. Sol. (b) 134, 2, 763 (1986).
- [8] Б.В. Климкович, Н.А. Поклонский, В.Ф. Стельмах. ФТП 19, 5, 848 (1985).
- [9] T. Holstein. Ann. Phys. 281, 1-2, 706 (2000).
- [10] R.R. Heikes. In Thermoelectricity: science and engineering. Interscience Publishers, N.Y. (1961). Ch. 4.
- [11] Поляроны / Под ред. Ю.А. Фирсова. Наука, М. (1975). 424 с.
- [12] П. Нагельс. В сб.: Аморфные полупроводники / Под ред. М. Бродски. Мир, М. (1982). С. 177.
- [13] А.Л. Бурин, Л.А. Максимов. ЖЭТФ 95, 4, 1345 (1989).
- [14] В.И. Гольданский, Л.И. Трахтенберг, В.Н. Флеров. Туннельные явления в химической физике. Наука, М. (1986). 296 с.
- [15] Н.А. Поклонский, С.Ю. Лопатин, А.Г. Забродский. ФТТ 42, 3, 432 (2000).
- [16] Н.А. Поклонский, С.Ю. Лопатин. ФТТ 43, 12, 2126 (2001).
- [17] H. Fritzsche, M. Cuevas. Proc. Int. Conf. on Semicond. Phys. Pub. Czech. Acad. Sci., Prague (1961). P. 222.
- [18] B. Sandow, O. Bleibaum, W. Schirmacher. Phys. Stat. Sol. (c)
 1, 1, 92 (2004).
- [19] A. Miller, E. Abrahams. Phys. Rev. 120, 3, 745 (1960).
- [20] S. Titeica. Ann. Phys. (Leipzig) 22, 2, 129 (1935).
- [21] П.С. Зырянов, М.И. Клингер. Квантовая теория явлений электронного переноса в кристаллических полупроводниках. Наука, М. (1976). 480 с.
- [22] П. Уиттл. Вероятность. Наука, М. (1982). 288 с.
- [23] D.K. Pickard. J. Appl. Probability 19, 2, 444 (1982).
- [24] К. Хир. Статистическая механика, кинетическая теория и стохастические процессы. Мир, М. (1976). 600 с.
- [25] М. Кендалл, П. Моран. Геометрические вероятности. Наука, М. (1972). 192 с.
- [26] Н.А. Поклонский, А.И. Сягло, Г. Бискупски. ФТП 33, 4, 415 (1999).
- [27] Д.Р. Кокс, У.Л. Смит. Теория очередей. Мир, М. (1966). 218 с.
- [28] Е.О. Кейн. В сб.: Туннельные явления в твердых телах / Под ред. Э. Бурштейна, С. Лундквиста. Мир, М. (1973). С. 9.
- [29] Л.А. Блюменфельд, А.К. Кукушкин. Курс квантовой химии и строения молекул. Изд-во МГУ, М. (1986). 136 с.
- [30] А.С. Давыдов. Квантовая механика. Наука, М. (1973). 626 с.
- [31] N.A. Poklonski, V.F. Stelmakh. Phys. Stat. Sol. (b) 117, 1, 93 (1983).
- [32] N.A. Poklonski, V.F. Stelmakh, V.D. Tkachev, S.V. Voitikov. Phys. Stat. Sol. (b) 88, 2, K165 (1978).
- [33] А.А. Узаков, А.Л. Эфрос. ЖЭТФ **81**, 5(11), 1940 (1981).
- [34] S. Golin. Phys. Rev. 132, 1, 178 (1963).
- [35] И.В. Кляцкина, И.С. Шлимак. ФТП 12, 1, 134 (1978).
- [36] А.Г. Забродский, М.В. Алексеенко. ФТП 28, 1, 168 (1994).
- [37] А.Г. Забродский, А.Г. Андреев, М.В. Алексеенко. ФТП 26, 3, 431 (1992).
- [38] A.G. Zabrodskii, A.G. Andreev. Int. J. Mod. Phys. B 8, 7, 883 (1994).
- [39] Н.А. Поклонский, С.А. Вырко, А.Г. Забродский, С.В. Егоров. ФТТ 45, 11, 1954 (2003).
- [40] Н.А. Поклонский, А.И. Сягло. ФТП 33, 4, 402 (1999).
- [41] В.Д. Каган. ЖЭТФ 117, 2, 452 (2000).