Низкотемпературные магнитные свойства монокристалла HoMn_{0.5}Co_{0.5}O₃

© В.И. Гатальская*,**, С.В. Ширяев*,**, С.Н. Барило*, R. Szymczak**, М. Baran**

 * Институт физики твердого тела и полупроводников Национальной академии наук Белоруссии, 220072 Минск, Белоруссия
 ** Институт физики Польской академии наук, 02-668 Варшава, Польша

E-mail: v_gatal@ifttp.bas-net.by

(Поступила в Редакцию 21 сентября 2004 г.)

Изучено магнитное поведение монокристалла HoMn_{0.5}Co_{0.5}O₃, выращенного методом электрохимического осаждения, на основании измерений намагниченности в области температур 5–300 K и в магнитных полях до 50 kOe. Полученные результаты проанализированы в рамках модели двухфазного магнитного состояния кристалла. Проведен сравнительный анализ магнитных свойств монокристаллов HoMn_{0.5}Co_{0.5}O₃ и LaMn_{0.5}Co_{0.5}O₃.

Работа частично поддержана Комитетом научных исследований в рамках проекта KBN 1 PO3B 038 27 (г. Варшава) и NATO-linkage грант PST CLG N 979369.

Замещение марганца магнитными и немагнитными ионами является одной из причин возникновения металлического ферромагнитного (ФМ) состояния в антиферромагнитном (АФМ) диэлектрике, каким является идеальный LaMnO₃. Последний изучен довольно глубоко (обзор [1] и ссылки в нем). Исследованию структурных и магнитных свойств LaMn_{1-x}Co_xO₃ с целью установления источника ФМ в этой системе посвящен ряд работ [2-8]. За исключением работ [7,8], исследования системы La-Mn-Co-O (LMCO) выполнены на поликристаллических образцах; выводы этих работ довольно противоречивы. ФМ состояние в LMCO связывается, например, с моновалентным Mn³⁺-O-Mn³⁺ [2] или с положительным сверхобменным Mn⁴⁺-Co²⁺ [3-9] взаимодействием. С другой стороны, соединения RMnO₃, где R — редкоземельный ион, изучены сравнительно мало. Отметим некоторые работы по изучению PrMnO₃ и NdMnO₃ [10] и HoMnO₃ [11]. Насколько нам известно, система HoMnO₃ с частичным замещением марганца кобальтом практически не исследована. Известна работа [12], в которой проведено изучение структурных и магнитных характеристик поликристаллических образцов RMn_{0.5}Co_{0.5}O₃ и RMn_{0.5}Ni_{0.5}O₃ для серии редкоземельных элементов. Получение монокристаллов НоМп_{0.5}Со_{0.5}О₃ (НМСО) высокого качества и изучение их магнитных характеристик позволит расшифровать наши представления о конкурирующих взаимодействиях в подрешетках Mn (Co) и Ho. Кроме того, проведенный сравнительный анализ магнитных свойств монокристаллов НМСО и LMCO (результаты измерений последних опубликованы ранее в наших работах [7,8]) позволит объяснить в рамках модели двухфазного магнитного состояния кристалла при низких температурах в виде АФМ матрицы с ФМ кластерами в ней особенности этих двух систем магнитных полупроводников.

1. Образцы и методика исследований

Монокристаллы НМСО с содержанием кобальта, близким к 0.5, получены методом электрохимического осаждения в платиновых тиглях объемом 100 cm³ из раствора-расплава бинарной системы Cs₂MnO₄-MoO₃ мольном отношении 2.2:1. Кристаллообразуюв щие вносили в расплав в мольном отношении $Ho_2O_3: Mn_2O_5: Co_3O_4 = 1:0.14:0.31$. Выращивание кристаллов проводили при плотности тока $5-10 \,\mathrm{mA}\cdot\mathrm{cm}^{-2}$ в течение 80-100 h при температуре 1000°C. Катионный состав монокристаллов определен методом рентгенофлуоресцентного анализа (РФА) на рентгеновском спектрометре с полупроводниковым Si (Li) детектором с разрешением 200 eV на линии 5.9 keV. По данным РФА, кристаллы имели состав HoMn_{0.57}Co_{0.43}O₃. Определение фазового состава, параметров решетки и ориентирование монокристалла проведено рентгенографическим способом. Лауэграммы подтверждают, что полученные образцы являются монокристаллами с небольшим количеством двойников. Рентгеноструктурные изменения порошков кристаллического материала показали, что монокристаллы НМСО являются однофазными. обладают орторомбической структурой: a = 5.26 Å, b = 5.57 Å, c = 7.45 Å (пространственная группа *Pbnm*). В табл. 1 приведены кристаллографические характеристики монокристалла НМСО, в том числе расстояния *т* между Mn(Co) и апикальным ионом кислорода (Mn–O₁), а также короткое s и длинное l расстояния между ионами Mn(Co) и O_{11} в MnO_4 -плоскости. Величины *m*, *s*, *l* вычислены способом, представленным в работе [13],

$$m^{2} = (a^{2} + b^{2} + c^{2})/32; \quad s^{2} = c^{2}/8 - m^{2};$$
$$l^{2} = b^{2}s^{2}/(16s^{2} - b^{2}). \tag{1}$$

В качестве примера, характеризующего ян-теллеровские искажения структуры, выбран $R_t = l/s$, как это сделано в работе [14].

Таблица 1. Структурные данные монокристаллов $R(Mn_{1-x}Co_x)O_3 \ (R = Ho, La, x \approx 0.5)$

Ν	Іонокристалл	НМСО	LMCO	
Простр	оанственная группа	Pbnm	Pbnm	
300 K	a, Å	5.26	5.451	
	$b, m \AA$	5.57	5.509	
	$c, m \AA$	7.45	7.742	
	V/z, Å ³	54.57	58.23	
	Структура	0	0	
300 K	$m(Mn(Co)-O_1), Å$	1.89	1.937	
	$s(Mn(Co)-O_{11}), Å$	1.834	1.934	
	$l(Mn(Co)-O_{11}), Å$	2.14	1.962	
	$R_t = l/s$	1.17	1.014	
	$r_A, m \AA$	1.072	1.216	
	t	0.86	0.91	

Намагниченность монокристаллов измерялась с помощью СКВИД-магнитометра (Quantum design, MPMS-5) в магнитных полях *H* до 50 kOe в температурном интервале 5–300 K.

2. Результаты эксперимента

На рис. 1 приведена температурная зависимость обратной восприимчивости $\chi^{-1}(=H/M)$ для монокристалла НМСО. В области высоких температур $\chi^{-1}(T)$ подчиняется закону Кюри–Вейсса, отклонение $\chi^{-1}(T)$ от этого закона наблюдается для температур ниже ~ 80 К. Константа Кюри *C* для температур 80–300 К составляет 16.48 ети · K · Oe⁻¹ · mol⁻¹, а парамагнитная (ПМ) температура Кюри $\Theta_p = 10.94$ К для всех полей выше 50 Ое. Эффективный ПМ момент иона Ho³⁺ $p_{\rm eff}$ (Ho) рассчитан из константы Кюри *C* вычитанием вкладов от ионов Mn⁴⁺ и Co²⁺

$$p_{\text{eff}}^2 = 0.57g^2 S_{\text{Mn}(+4)} (S_{\text{Mn}(+4)} + 1) + 0.43g^2 S_{\text{Co}(+2)} (S_{\text{Co}(+2)} + 1) + p_{\text{eff}(\text{Ho})}^2, \qquad (2)$$

где $p_{\text{eff}}^2 = 3Ck_B/(N\mu_B^2)$, g = 2, k_B — постоянная Больцмана, N — число Авогадро, μ_B — магнетон Бора, $S_{\text{Mn}(+4)}$ и $S_{\text{Co}(+2)}$ — квантовые числа спинового момента для ионов Mn^{4+} и Co^{2+} соответственно. Экспериментальное значение $p_{\text{eff}(\text{Ho})}$ составляет 10.7 μ_B , что очень близко к теоретическому значению 10.6 μ_B для свободного иона Ho^{3+} .

На рис. 2 приведены температурные зависимости восприимчивости $\chi = M/H$ для монокристалла НМСО, измеренной в различных полях в режимах FC и ZFC соответственно. Для H = 0.1 кОе ПМ–ФМ переход осуществляется при $T_c = 74$ К. Величина T_c слабо возрастает с ростом магнитного поля: для 1 кОе $T_c = 76$ К, для 10 кОе $T_c = 78$ К. Таким образом, с ростом поля от 0.1 до 10 кОе T_c возрастает на 4 К, но переход ПМ–ФМ

становится размытым (рис. 2, *a*). В области низких температур ($T \leq 30$ K) наблюдается отклонение поведения $\chi(T)$ от типичного ФМ (насыщения при низких температурах), происходит возрастание восприимчивости

Рис. 1. Температурная зависимость обратной величины восприимчивости монокристалла НМСО.

Рис. 2. Температурные зависимости восприимчивости монокристалла HMCO, измеренной в различных магнитных полях в режиме FC (*a*) и ZFC (*b*).

Моно- кристалл	<i>Т</i> _с , К	$\Theta_p,\ \mathrm{K}$	$\exp p_{\mathrm{eff}}, \mu_B$	calc p_{eff}, μ_B	calc μ_s (Mn–Co), μ_B	$\exp \mu_s, \mu_B$	2 <i>H</i> _c (5 K) kOe	$\begin{array}{c} \Delta H \\ (5 \text{ K}) \\ \text{Oe} \end{array}$	χ_{hf} emu/(g · Oe)	J_F/k_B	J_A/k_B
HMCO LMCO	74 170	10.94 173	10.64 0	10.7 0	3.00 3.00	2.41 1.84	$\begin{array}{c} 0.29 \\ \sim 20 \end{array}$	10 250	$2.4\cdot 10^{-3} \\ 8\cdot 10^{-4}$	4.25 17.15	$-6.3 \\ -0.3$

Таблица 2. Магнитные характеристики монокристаллов НМСО и LMCO

(намагниченности) монокристалла, связанное с вкладом ПМ иона гольмия. При этом степень отклонения от типичного ФМ поведения с ростом магнитного поля возрастает: величина отклонения намагниченности M(T) составляет ~ 1 ети/g (0.1 kOe), ~ 2.7 ети/g (1 kOe), 25 ети/g (10 kOe). Это представляется естественным, поскольку отношение намагниченности ФМ ионов марганца и кобальта к намагниченности ПМ иона гольмия уменьшается с ростом магнитного поля.

Из сравнения рис. 2, *а* и *b* следует, что между $\chi_{ZFC}(T)$ и $\chi_{FC}(T)$ существует ярко выраженная (особенно в малых полях) температурная необратимость. Отклонение кривой $\chi_{ZFC}(T)$ от $\chi_{FC}(T)$ начинается вблизи T_c ; с понижением температуры на кривых $\chi_{ZFC}(T)$ обнаруживается максимум, положение которого зависит от величины приложенного магнитного поля. С ростом поля максимум $\chi_{ZFC}(T)$ сдвигается в область низких температур: 69 К (0.1 кОе) и 60 К (1 кОе). В поле 10 кОе этот максимум весьма размытый (рис. 2, *b*). Ниже температуры ~ 30 К происходит резкое возрастание восприимчивости, основной вклад в $\chi(T)$ связан с ПМ ионами гольмия. Отметим, что термомагнитная необратимость между $\chi_{ZFC}(T)$ и $\chi_{FC}(T)$ в полях $H \ge 10$ кОе для НМСО практически отсутствует.

Для температур 5–100 К были измерены полевые зависимости намагниченности M(H) монокристалла НМСО; в качестве примера на рис. 3 приведены изотермы M(H) для 5 и 65 К в интервале полей $-50 \le H \le +50$ кОе. При 65 К изменение намагничен-

Рис. 3. Полевые зависимости намагниченности M(H) монокристалла НМСО, измеренные при 65 (1) и 5 К (2). Вставка — M(H) в малых полях.

ности с полем почти линейное, за исключением области малых полей $|\mu_0 H| \leq 1.5$ kOe (вставка на рис. 3), в которой наблюдается небольшой гистерезис зависимости M(H) с шириной петли по оси $H \sim 290$ Oe. Таким образом, ФМ компонента в НМСО наблюдается в низкополевой области при $T \leq 65$ K. При более низких температурах (T = 5 K) гистерезисное поведение M(H) сохраняется до полей $|\mu_0 H| \leq 15$ kOe, но насыщение намагниченности не достигается вплоть до 50 kOe. Значение высокополевой восприимчивости при 5 K, полученное из кривой M(H) монокристалла НМСО, составляет $\chi_{hf} \approx 2.4 \cdot 10^{-3}$ emu/(g · Oe).

Необходимо отметить, что в FC режиме по оси H наблюдается смещение ΔH петель гистерезиса. Например, для 5 К величина ΔH составляет 10 Ое при ширине петли ~ 290 Ое (вставка на рис. 3). Полученные результаты сведены в табл. 2, там же для сравнения приведены магнитные характеристики монокристалла LMCO (с близким содержанием марганца и кобальта: Mn_{0.46} и Co_{0.54}), взятые из наших работ [7,8]. Отметим, что для LaMn_{0.5}Co_{0.5}O₃ существуют две ФМ фазы с различными структурами и различными T_c : ромбоэдрическая структура характеризуется высокой T_c (220–240 K), орторомбическая — низкой T_c (150–170 K) [4,5,9]. Исследованные монокристаллы LMCO [7,8] имели орторомбическую структуру с $T_c = 170$ К (табл. 1).

Обсуждение результатов. Сравнительный анализ магнитных свойств НМСО и LMCO монокристаллов

Исходя из значений катионных радиусов r_A и r_B и анионного радиуса r₀, нами рассчитан фактор толерантности $t = (r_A + r_0)/\sqrt{2}(r_B + r_0)$ для перовскитов с общей формулой АВО3, характеризующий степень отклонения данной структуры от идеального кубического перовскита с t = 1. Для расчетов принимались значения $r_A = 1.072$ и 1.216 Å для Ho³⁺ и La³⁺ и $r_B = 0.530$ и 0.745 Å для Mn⁴⁺ и Co²⁺ соответственно [15]. Для НМСО t = 0.86, для LMCO t = 0.91 (табл. 2). Величины Т_с, при которых происходит ПМ-ФМ переход, заметно отличаются для двух кристаллов, что хорошо согласуется с данными работ [12,16]. Такое различие Т_с для двух исследуемых систем связано с тем, что при замещении самого большого трехвалентного иона лантаноида La³⁺ ионами гольмия с гораздо меньшим радиусом величина t уменьшается. Угол связи В-О-В зависит

от размера иона в А-позиции (а значит, и от фактора толерантности t): с уменьшением t искажение структуры возрастает, угол связи уменьшается, все больше отклоняясь от идеального значения 180° (для t = 1). Последнее приводит к возрастанию напряжений, вызванных замещением La^{3+} ионом Ho^{3+} , приводящим к заметному уменьшению Т_с (табл. 2). Отметим, что для НМСО ПМ температура Кюри Θ_p является положительной (как и для LMCO [7,8]), но Θ_p для HMCO ниже на ~ 162 К. Интересно, что для соединений HoMnO₃ и HoCoO₃ Θ_p является отрицательной величиной и составляет -17 К [11] и -15.8 К [17] соответственно, что свидетельствует о АФМ характере этих соединений, в отличие от НМСО и LMCO. Подчеркнем общее для этих систем поведение M(T) зависимостей: (1) термомагнитная необратимость между $M_{\rm FC}(T)$ и $M_{\rm ZFC}(T)$, особенно ярко выраженная в малых полях; (2) наличие максимума на кривых $M_{\rm ZFC}(T)$, положение которого зависит от поля; (3) отсутствие этого максимума в больших полях; (4) сохранение термомагнитной необратимости вплоть до высоких полей. Наблюдаемые эффекты свидетельствуют о двухфазном магнитном состоянии этих кристаллов. Различие между этими системами заключается в том, что для LMCO необратимость между $M_{ZFC}(T)$ и $M_{FC}(T)$ сохраняется даже в поле 50 kOe для температур ниже 50 К (рис. 2 [7]), в то время как в НМСО это различие наблюдается в полях, заметно меньших ($H \sim 10 \, \text{kOe}$). Температурные зависимости M(T) для обоих кристаллов в больших полях описываются функцией Ланжевена с эффективным магнитным моментом кластеров $10 \mu_{B}$ (НМСО) и 15 μ_B (LMCO) [7,8]. Эти значения соответствуют эффективному магнитному моменту кластеров, содержащих несколько формульных единиц.

Экстраполируя 1/H к нулю в зависимости M - 1/H в пределе больших полей, получаем значение магнитного момента насыщения $\mu_{sexp} = 2.41 \mu_B$ на формульную единицу для НМСО; для LMCO $\mu_{sexp} = 1.84 \mu_B$ (табл. 2). В случае LMCO (ион La³⁺ имеет нулевой магнитный момент) величину μ_s мы связываем с суммарным вкладом ионов Mn^{4+} и Co^{2+} [7,8]. В то же время ожидаемое значение μ_{scale} , связанное с ФМ упорядочением спинов Mn⁴⁺ и Co²⁺ ионов (чисто спиновое значение $\mu_{s \text{ calc}} = g S \mu_B$, где g = 2, S = 3/2 для обоих ионов), составляет $3\mu_B$ /form. units, что значительно больше μ_{sexp} . Этот факт также свидетельствует в пользу двухфазного магнитного состояния кристаллов. Отметим, что такое расхождение между μ_{sexp} и μ_{scalc} для LMCO в работе [18] связывалось с уменьшением соотношения Mn/Co (для концентрации кобальта $x_{Co} \ge 0.5$), а также и с усилением Mn(Co)d-Op гибридизации, вызывающим уменьшение магнитного момента ионов марганца и кобальта. Рассчитанное в [18] значение μ_s для LMCO практически совпадает с наблюдаемой величиной 1.84µ_B. Другая ситуация реализуется в системе НМСО, в которой ионы Но³⁺ обладают магнитным моментом. Предположив, что средний момент Мп-Со подрешетки в обеих системах одинаков (т.е. для $T < T_c \Phi M$ упорядочение Mn^{4+} и Со²⁺ ионов), рассмотрим два возможных варианта для НМСО: спины (Mn⁴⁺–Co²⁺) и Ho³⁺ упорядочены ФМ образом и спины (Mn⁴⁺–Co²⁺) и Ho³⁺ упорядочены АФМ образом. Чисто спиновое значение магнитного момента иона Ho³⁺ 4 μ_B . Таким образом, общий магнитный момент составит 7 и 1 μ_B /form. units для первого и второго вариантов соответственно, что плохо согласуется с наблюдаемым значением 2.41 μ_B (табл. 2).

Характер полевых зависимостей M(H) кристаллов НМСО и LMCO заметно различается. Для LMCO петля гистерезиса при 5К характеризуется величиной $H_c \approx 10 \,\mathrm{kOe}$, а изотермы нелинейны вплоть до 200 К $(T_c = 170 \,\mathrm{K})$ (рис. 4 [8]). Большие величины H_c при низких температурах свидетельствуют о важности доменных эффектов в этом материале. Подобная картина наблюдалась в LaMn_{0.5}Co_{0.5}O₃ в работе [9]. В случае НМСО намагниченность ионов Ho³⁺ имеет значительную величину только в низкотемпературной области (ниже $\sim 30 \,\mathrm{K}$) и накладывается на намагниченность ионов Mn^{4+} и Co²⁺. Вдали от T_c , например, при 5 K, намагниченность 3*d* ионов насыщается в относительно малых полях, в то время как намагниченность ионов Но³⁺ индуцируется приложенным магнитным полем, вследствие чего высокополевая восприимчивость χ_{hf} в НМСО заметно выше χ_{hf} в LMCO (табл. 2).

Величина сдвига ΔH петли гистерезиса вдоль оси Hпри 5 К в НМСО порядка 10 Ос, что составляет $\sim 5\%$ от ширины петли; для LMCO $\Delta H \approx 250$ Oe, т. е. $\sim 1\%$. Смещение петель гистерезиса впервые наблюдалось в частично окисленном кобальте [19], CuMn и AgMn [20]. Эффект сдвига петли гистерезиса в СоО наблюдался только для температур ниже температуры Нееля T_N, когда материал находился в АФМ состоянии. Для СоО $T_N \sim 300 \, {\rm K}$ и смещение петли возрастало с понижением температуры. Смещение ΔH в [19] связывалось с обменным взаимодействием ФМ частиц кобальта с покрывающими их АФМ оболочками СоО. Этот новый тип анизотропии получил название обменной анизотропии. Смещение ΔH также наблюдалось в монокристалле La_{0.9}Sr_{0.1}MnO₃, тонких эпитаксиальных пленках R_{0.6}Ba_{0.4}MnO₃ (R = La, Pr, Nd, Gd) [21,22]. Из величины ΔH можно определить постоянную обменной анизотропии K_u : $K_u = \Delta H \cdot M_s$, где M_s — намагниченность насыщения в кристаллах [19]. Величины $K_u \sim 10^4 \, {\rm erg/cm^3}$ для кристаллов НМСО и LMCO, что согласуется с результатами работ [21,22].

Явление смещения петли гистерезиса подтверждает обоснованность применения модели двухфазного магнитного состояния в кристаллах. По аналогии с работой [19] постоянная обменной анизотропии для наших монокристаллов характеризует величину обменного интеграла J, описывающего связь Mn(Co)–O–Mn(Co) через поверхность раздела ФМ и АФМ фаз. Оценочная величина $|J| \sim 10^{-6}$ eV [21,22] на 2 порядка меньше величины отрицательного обменного интеграла между ФМ слоями в LaMnO₃, полученной по данным нейтронографических измерений [23]. В нашей работе [24] по изучению магнитного упорядочения в монокристаллах

LaMnO_{3+ δ} с различным содержанием кислорода были проведены оценки обменных констант, связанных с положительным взаимодействием внутри плоскости (*ab*) J_F и отрицательным взаимодействием вдоль оси с J_A [23]. Для этой цели мы использовали измеренные значения T_c и Θ_p и следующие соотношения [25]:

$$T_c = 2/3S(S+1)(4|J_F| + 2|J_A|)/k_B,$$

$$\Theta_p = 2/3S(S+1)(4J_F + 2J_A)/k_B.$$
(3)

Рассчитанные для НМСО и LMCO значения J_F/k_B и Ј_А/k_В приведены в табл. 2. Наблюдаемое различие в величинах обменных взаимодействий этих двух систем можно связать с отличиями магнитных структур LaMnO₃ и HoMnO₃, исследованных в работе [1]. На основании нейтронографических измерений показано, что в случае катиона с большим радиусом (т.е. La³⁺) магнитное взаимодействие между соседними ионами марганца внутри Mn-O слоев, перпендикулярных оси с (пространственная группа Pbnm), является ФМ; соседние слои связаны АФМ взаимодействием. Это означает, что для каждого иона марганца существуют четыре ФМ и две АФМ связи. В случае катиона с меньшим радиусом (т.е. Ho³⁺) магнитное взаимодействие внутри Mn-O слоев может быть описано как АФМ с двумя ионами марганца и ФМ с двумя другими ионами марганца. Соседние слои вдоль оси с связаны АФМ образом, что означает, по данным [11], две ФМ и четыре АФМ связи для каждого иона марганца. Магнитная структура как LaMnO₃, так и HoMnO₃ интерпретируется в терминах орбитального упорядочения ε_g орбиталей внутри каждого слоя Mn-O, но для HoMnO3 отклонение угла связи Mn-O-Mn от 180° велико по сравнению с LaMnO₃, как об этом говорилось выше, и составляет 141.1, а величина наклона октаэдров $MnO_6 \omega = (180 - \langle Mn-O-Mn \rangle)/2$ возрастает от 24.8° для La³⁺ до 36.5° для Ho³⁺ [11].

Анализ совокупности полученных результатов измерений магнитных характеристик двух монокристаллов НМСО и LMCO с содержанием кобальта, близким к 0.5, позволяет сделать заключение, что при низких температурах в обеих системах наблюдается двухфазное магнитное состояние. Иными словами, при достаточно низких температурах кристаллы можно описать как АФМ матрицу с ФМ кластерами (каплями) в ней [26,27]. Подтверждением этому служат следующие факты, характерные для монокристаллов НМСО и LMCO: (1) наблюдаемая термомагнитная необратимость между кривыми $M_{\rm FC}(T)$ и $M_{\rm ZFC}(T)$, (2) магнитный момент на формульную единицу заметно ниже теоретического значения для полного ФМ упорядочения, (3) температурные зависимости M(T) в сильных магнитных полях описываются функциями Ланжевена с моментом кластеров 10µ_B и $15\mu_B$ для НМСО и LMCO соответственно, (4) петли гистерезиса смещены по оси магнитного поля. Наблюдаемые различия магнитных свойств двух систем связаны с особенностями магнитных структур НМСО и LMCO.

Список литературы

- J.M.D. Coey, M. Viret, S. von Molnár. Adv. Phys. 48, 2, 167 (1999).
- [2] J.B. Goodenough, A. Wold, R.J. Arnott, N. Menyuk. Phys. Rev. 124, 2, 373 (1961).
- [3] J.H. Jonker. J. Appl. Phys. 37, 3, 1424 (1966).
- [4] P.A. Joy, Y.B. Khollam, S.K. Date. Phys. Rev. B 62, 13, 8608 (2000).
- [5] V.L.J. Joly, P.A. Joy, S.K. Date. J. Phys. Condens. Matter. 13, 10, L841 (2001).
- [6] J.-H. Park, S.-W. Cheong, T.C. Chen. Phys. Rev. B 35, 17, 11072 (1997).
- [7] S.N. Barilo, V.I. Gatalskaya, S.V. Shiryaev, L.A. Kurochkin, R. Szymczak, M. Baran. Low Temp. Phys. 28, 11, 853 (2002).
- [8] S.N. Barilo, V.I. Gatalskaya, S.V. Shiryaev, L.A. Kurochkin, S.N. Ustinovich, H. Szymczak, R. Szymczak, M. Baran. Phys. Stat. Sol. (a) **199**, *3*, 484 (2003).
- [9] R. Machenkiran, Y. Bread, M. Hervieu, B. Raveau, P. Schiffer. Phys. Rev. B 68, 104 402 (2003).
- [10] V.A. Cherepanov, L.Yu. Barkhatova, A.N. Petrov, V.I. Voronin. J. Solid. State Chem. 118, 1, 53 (1995).
- [11] A. Muñoz, M.T. Casáls, J.A. Alonso, M.J. Martinez-Pope, J.L. Martinez, M.T. Fernandez-Diaz. Inorg. Chem. 40, 5, 1020 (2001).
- [12] K. Asai, K. Fujiyoshi, N. Nishimori, Y. Sator, Y. Kobayashi, M. Mizoguchi. J. Phys. Soc. Jap. 67, 13, 4218 (1998).
- [13] A.K. Bogush, V.I. Pavlov, L.V. Balyko. Cryst. Res. Technol. 18, 3, 589 (1983).
- [14] C. Ritter, M.R. Ibarra, J.M. De Teresa, P.A. Algasaba, C. Marquina, J. Blanco, J. Garcia, S.B. Ozeroff, S.W. Cheong. Phys. Rev. B 56, 12, 8902 (1997).
- [15] R.D. Shannon. Acta Crystallogr., Sect. A 32, 5, 751 (1976).
- [16] V.L.J. Joly, P.A. Joy, S.K. Date. Solid State Commun. 121, 3, 219 (2002).
- [17] Y.S. Im, K.H. Ryu, K.H. Kim, Ch.H. Yo. J. Phys. Chem. Solids 58, 12, 2079 (1997).
- [18] Zh. Yang, L. Ye, X. Xie. Phys. Rev. B 59, 10, 7051 (1999).
- [19] W.H. Meiklejohn, C.P. Bean. Phys. Rev. 102, 5, 1413 (1956);
 105, 3, 904 (1957).
- [20] J.S. Kouvel. J. Phys. Chem. Sol. 21, 1, 57 (1961).
- [21] Р.В. Демин, Л.И. Королева, Р. Шимчак, Г. Шимчак. Письма в ЖЭТФ 75, 7, 402 (2002).
- [22] О.Ю. Горбенко, Р.В. Демин, А.Р. Кауль, Л.И. Королева, Р. Шимчак, Г. Шимчак, М. Баран. ЖЭТФ 125, 3, 693 (2004).
- [23] F. Moussa, M. Hennion, J. Rodriguez-Carvajal, H. Moudden, L. Pinsard, A. Revcolevschi. Phys. Rev. B 54, 22, 15149 (1996).
- [24] С.Н. Барило, В.И. Гатальская, С.В. Ширяев, Г.Л. Бычков, Л.А. Курочкин, С.Н. Устинович, R. Szymczak, M. Baran, В. Krzymańska. ФТТ 45, 1, 139 (2003).
- [25] V. Skumryev, F. Ott, J.M.D. Coey, A. Anane, J.-P. Renard, L. Pinsard-Gaudar, A. Revcoevschi. Eur. Phys. J. B 11, 3, 401 (1999).
- [26] Э.Л. Нагаев. УФН 166, 8, 833 (1996).
- [27] E. Dagotto, J. Burgy, A. Moreo. Solid State Commun. 126, 1, 9 (2003).