02;07

Триплетные молекулы группы симметрии D₅ на основе фуллерена C₆₀

© С.С. Моливер, Ю.Ф. Бирюлин

Ульяновский государственный университет Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: biryulin@nano.ioffe.rssi.ru

Поступило в Редакцию 4 июля 2000 г.

Проведен квантово-химический анализ возможности получить спин-триплетное основное состояние в высокосимметричных химических производных молекулы фуллерена с пятью насыщенными двойными связями — изомерах вида $D_5-C_{60}(R - r_6 - R)_5$, где радикал — это атом водорода или метильная группа. Найдены энергии образования (гидрированный изомер эндометричен, а метилированный — экзотермичен), а также энергии термов. Основное состояние, спиновый триплет $e_1^2({}^{3}A_2)$, лежит примерно на 0.3 eV ниже бесспиновых. Результаты расчета можно интерпретировать в рамках приближения сильной связи для базисных $p\pi$ орбиталей фуллерена (радиально направленных гибридных C2p атомных орбиталей). Делокализованность открытой электронной оболочки изомеров по большой поверхности фуллерена позволяет с большой уверенностью предположить, что именно спин-триплетное состояние будет основным, а не стабилизированное эффектом Яна–Теллера $e_1^2({}^1E_2)$.

Ваедение. Рассмотрим химическую модификацию молекулы фуллерена, при которой происходит частичное насыщение ковалентной связи r_6 , разграничивающей две гексагональные грани фуллерена. Соответствующие производные с n насыщенными связями обозначим $C_{60}(R_1 - r_6 - R_2)_n$. Такая модификация происходит, например, при метилировании фуллерена, когда радикалом является CH₃, или гидрировании, когда радикал — атом водорода. Химический синтез фуллерен-содержащих звездообразных полистиролов [1] дает пример смешанного насыщения вида $C_{60}(CH_3 - r_6 - H)_n$, где метильная группа изображает полимерную цепочку, присоединенную к фуллерену.

Модель сильной связи [2] и квантово-химический расчет [3] показывают, что изменение электронной структуры *π*-оболочки при такой химической модификации описывается влиянием ближайшего мономер-

72

ного звена полимера, например метильной группы. Эти теоретические выводы подтверждаются оптическими спектрами пленок и растворов фуллеренсодержащих звездообразных полистиролов с переменным числом n присоединенных ковалентно лучей полимера [2]. Высокосимметричные изомеры фуллерена представляют особый интерес [3]: вопервых, потому, что имеют бо́льшую теплоту образования, чем низкосимметричные и, следовательно, синтезируются в большей концентрации; во-вторых, потому, что при высокой симметрии химической модификации π -оболочки фуллерена становится возможным вырождение как орбитальное, так и спиновое и, как следствие, основное состояние может подвергнуться эффекту Яна–Теллера или оказаться спин-триплетным.

Ниже проводится теоретический квантово-химический анализ возможности получить спин-триплетное основное состояние в изомерах типа $D_5-C_{60}(R - r_6 - R)_5$. Первое указание на такую возможность было получено ранее [3], техника расчетов по методу открытой оболочки (ROHF, согласно квантово-химической терминологии), а также параме-

Рис. 1. Схема построения изомеров "тропик". Атомы углерода фуллерена сгруппированы в 12 правильных пятиугольников со стороной r_5 , которые образованы сечением вершин икосаэдра. Для лучшего восприятия показаны только некоторые из пятиугольников, их относительный размер уменьшен по сравнению с истинным. Выделенные связи r_6 опоясывают одну из осей пятого порядка, сохраняются диэдрические оси типа U₂.

тризация атомных орбиталей углерода [4] хорошо зарекомендовали себя при решении задач о вакансии в алмазе [5] и об электронной структуре трехмерного графита [6].

Квантово-химический расчет. Изомеры $D_5 - C_{60}(R - r_6 - R)_5$ имеют конфигурацию насыщенных связей "тропик" [3] (рис. 1, см. таблицу). Начальное приближение (Хюккеля) для изомеров обоего типа, гидрированного и метилированного, имеет близкие по энергии верхние молекулярные орбитали (МО): синглет и орбитальный дублет. Таким образом, самосогласованный расчет можно начинать для состояния либо с замкнутой оболочкой (конфигурация a_2^2 , терм 1A_1), либо с открытой (конфигурация e_1^2 , термы 1E_2 , 1A_1 и 3A_2).

Коэффициенты ROHF для термов конфигурации e_1^2 [5] для групп D₅ и C_{3ν} совпадают. Расчет показывает, что, несмотря на четность полного числа электронов и ковалентный характер связей, основным состоянием обоих изомеров является спиновый триплет. Ниже приводятся энергии образования изомеров и энергии термов относительно основного. Гидрированный изомер эндотермичен, а метилированный — экзотермичен:

$$C_{60}+5H_2 \rightarrow C_{60}(H-r_6-H)_5-6.9 \,\text{eV}, \quad \begin{cases} a_2^2({}^{1}A_1)\\ e_1^2({}^{1}E_2) \end{cases} = e_1^2({}^{3}A_2) + \begin{cases} 0.23 \,\text{eV}\\ 0.31 \,\text{eV}, \end{cases}$$

 $C_{60} + 5C_2H_6 \rightarrow C_{60}(CH_3 - r_6 - CH_3)_5 + 25.5 \text{ eV},$

$$\begin{cases} e_1^2({}^{1}\text{E}_2) \\ a_2^2({}^{1}\text{A}_1) \end{cases} = e_1^2({}^{3}\text{A}_2) + \begin{cases} 0.26 \text{ eV} \\ 0.32 \text{ eV}. \end{cases}$$
(1)

Электронная структура обоих изомеров ясна из рис. 2, где показаны верхние заселенные и нижние пустые уровни молекулы фуллеренов [3] (в центре) и изомеров (слева и справа). Уровни МО открытых оболочек (пустые квадраты) нарисованы произвольно, поскольку в отличие от орбитальных энергий МО замкнутой и виртуальной оболочек орбитальные энергии этих МО, найденные по методу ROHF, не равны собственным значениям матрицы Фока. Поэтому теорема Купманса [7] об ионизации и электронном сродстве неприменима к этим орбитальным энергиям, их положение на рис. 2 указывает на электронную конфигурацию: все орбитали ниже данных полностью заселены (замкнутая оболочка), а выше данных — пустые (виртуальная оболочка).

Рис. 2. Схема образования молекулярных орбиталей изомеров из молекулярных орбиталей фуллерена. Орбитальные энергии (уровни) изомеров сгруппированы в столбцы в соответствии с их неприводимыми представлениями (см. таблицу), как показывают вертикальные прямые. Незаполненные МО расположены выше условного уровня открытой оболочки изомеров ореп и указаны тонкими птрихами. Для невырожденных МО изомеров линиями показано, расщеплением каких оболочек в поле D_5 они образованы. Справа условно показан источник электронов, легирующий верхние МО изомеров: десять электронов верхних заполненных орбиталей пяти молекул этана или водорода (1).

Классифицировать МО изомеров по неприводимым представлениям удалось либо по знакам коэффициентов МО ЛКАО на атомах, переходящих друг в друга при вращениях вокруг осей U₂ (случай невырожденных МО a_1 и a_2), либо по парциальной электронной плотности, в зависимости от того, являются ли оси U₂ узловыми (тогда это МО e_1 , как на карте g рис. 2), или нет (e_2).

Обсуждение результатов и выводы. Покажем, что результаты расчета можно интерпретировать в рамках приближения сильной связи для базисных $p\pi$ орбиталей (радиально направленных гибридных атомных C2p орбиталей) [8]. Эти базисные орбитали образуют оболочки симметрии I_h молекулы фуллерена C₆₀: LUMO t_{1u} , (LUMO+1) t_{1g} , (LUMO+2) h_g и HOMO h_u , орбитальные энергии которых показаны на рис. 2; при понижении симметрии они расщепляются, как указано в последнем столбце таблицы.

Из схемы МО рис. 2 видно, что указанных оболочек молекулы фуллерена достаточно для получения МО любого представления, с точки зрения симметрии даже и оболочки выше LUMO не обязательны для разложения МО изомеров по орбиталям фуллерена. Вопрос же о минимально необходимом числе базисных орбиталей для количественного успеха приближения сильной связи решается с помощью сравнения парциальных электронных плотностей оболочек фуллерена и групп орбиталей изомеров, указанных на рис. 2 как HOMO* и LUMO*. Электронные плотности построены в виде карт уровней в плоскости, проходящей через диэлектрическую ось U₂ (рис. 3).

Полные электронные плотности (a) и (b) визуализируют молекулу фуллерена и ее метилированный изомер. Остальные карты рис. 3 показывают, что нет никакого вклада орбиталей метильных групп (для гидрированного изомера — атомов водорода) в парциальные электронные плотности и, следовательно, в молекулярные орбитали указанного диапазона энергий. Таким образом, химия насыщения двойных связей молекулы фуллерена оказывается похожей на донорное легирование полупроводников, где донорный уровень описывается волновыми функциями зоны проводимости, аналога оболочек (LUMO+n) фуллерена.

Группа орбиталей НОМО^{*} имеет близкие энергии, их неприводимые представления как раз разлагают оболочку h_u фуллерена. Небольшое различие соответствующих парциальных плотностей на картах *c* и *d* (рис. 3) свидетельствует о том, что приближения сильной связи до-

Рис. 3. Полная и парциальные электронные плотности. Координаты на картах уровней указаны в атомных единицах (радиус Бора), горизонтальная ось направлена вдоль U_2 (рис. 1), вертикальная — вдоль соответствующей насыщенной связи r_6 . Карты *a* и *b* показывают полные электронные плотности фуллерена и метилированного изомера, у последнего видны две метильные группы, насыщающие связь r_6 . Остальные карты показывают парциальные плотности на группах МО, выделенных на схеме рис. 2, как указано в заголовках карт.

D_5	Е	$2C_5$	$2C_{5}^{2}$	$5U_2$	x_i	$x_i x_k$	
A_1	1	1	1	1		$(x^2 + y^2, z^2)$	$\alpha = \cos(\pi/5) = (1+\sqrt{5})/4$
A_2	1	1	1	-1	z		$(2\alpha - 1)^2 = (3 - \sqrt{5})/2$
E_1	2	$2\alpha - 1$	-2α	0	(x, y)	(xz, yz)	$(2\alpha)^2 = (3 + \sqrt{5})/2$
E_2	2	-2α	$2\alpha - 1$	0		$(x^2 - y^2, xy)$	$2\alpha(2\alpha-1)=1$
Ι							D_5
							5
G	4	-1	-1	0			$E_1 + E_2$
G H	4 5	$-1 \\ 0$	$-1 \\ 0$	0 1			$\begin{array}{c} E_1+E_2\\ A_1+E_1+E_2\end{array}$
G H T ₁	4 5 3	$-1 \\ 0 \\ 2\alpha$	-1 0 $1-2\alpha$	0 1 -1			$\begin{array}{c} E_1+E_2\\ A_1+E_1+E_2\\ A_2+E_1\end{array}$

Характеры и разложения представлений

статочно для описания этого различия за счет гибридизации орбиталей HOMO и LUMO фуллерена, причем гибридизация затронет лишь MO e_1 группы HOMO*.

Группа орбиталей LUMO^{*} разлагает по симметрии оболочки t_1 фуллерена, отличие же ее парциальной плотности от LUMO на картах *е* и *f* довольно значительное. С точки зрения приближения сильной связи это означает, что гибридизации LUMO t_{1u} с одной оболочкой HOMO h_u мало, необходимо принять во внимание другие орбитали фуллерена. Наличие в выделенной части спектра изомеров двух MO a_2 означает, что для описания группы LUMO^{*} в первую очередь необходима гибридизация с (LUMO+1) t_{1g} .

Согласно таблице, только орбитали e_1 могут получаться гибридизацией оболочек НОМО, LUMO и (LUMO + 1), у остальных МО изомеров имеется однозначное происхождение (указано на рис. 2). Замечая, что в спектре изомеров имеется еще одна МО a_1 , помимо входящей в НОМО^{*}, причем эта орбиталь высоколежащая, делаем вывод о необходимости добавления оболочки (LUMO + 2) h_g [3] к базису сильной связи.

Поскольку многоэлектронные эффекты (1) определяют в решающей степени свойства исследуемых изомеров, для аналитических методов, основанных, например, на приближении сильной связи, важным является вопрос о заполнении молекулярных орбиталей. На рис. 2 показано, что если строить анализ на $p\pi$ базисных орбиталях, то их следует

заполнить 18 электронами, т.е. к 10 электронам оболочки НОМО фуллерена следует добавить 8 электронов от 5 молекул этана или водорода (1). Говоря языком приближения сильной связи, 8 из 10 электронов внешних оболочек пяти насыщающих фуллерен молекул легируют оболочки LUMO и (LUMO + 1), а оставшаяся электронная пара занимает молекулярную орбиталь в глубине заполненной оболочки получающихся изомеров, как показано стрелками на рис. 2.

Карта g (рис. 3) демонстрирует электронную плотность открытой оболочки изомеров, которая в основном состоянии $e_1^2({}^{3}A_2)$, согласно проведенному расчету (1), заселена двумя электронами с суммарным спином 1. Электронная плотность слабо локализована, она распределена по пяти двойным связям r₆, но не тем, которые насыщены, а инверсным, которые располагаются на "тропике" фуллерена между насыщенными связями (одна из них показана пунктиром на рис. 1). Поскольку метод молекулярных орбиталей склонен к занижению энергии спин-триплетных состояний [7], следует подчеркнуть, что делокализованность открытой электронной оболочки по большой поверхности фуллерена в отличие, например, от локализованной открытой оболочки вакансии в алмазе [5] позволяет с большой уверенностью предположить, что именно спин-триплетное состояние будет основным, а не стабилизированное эффектом Яна–Теллера $e_1^2({}^1\text{E}_2)$. Впрочем, и в случае сильного эффекта Яна-Теллера (согласно (1), энергия стабилизации должна быть около 0.3 eV), рассмотренные изомеры будут иметь низколежащее спинтриплетное состояние, что делает их интересным объектом молекулярной спектроскопии.

Работа выполнена в рамках межотраслевой научно-технической программы России "Фуллерены и атомные кластеры" по проекту 98076 "Полимер-2", а также поддержана Российским фондом фундаментальных исследований (проект 98–02–03327).

Список литературы

[1] Aleshin A.N., Biryulin Yu., Mironkov N.B., Sharonova L.V., Fadeeva E.N., Zgonnik V.N. // Fullerene Science and Technology. 1998. V. 6. N 3. P. 545.

- [2] Бирюлин Ю.Ф., Вихнин В.С., Згонник В.Н. // ФТТ. 2000. Т. 42. В. 1. С. 188.
- [3] Моливер С.С., Бирюлин Ю.Ф. // ФТТ. 2000. Т. 42. В. 10.
- [4] Моливер С.С. // ФТТ. 1996. Т. 38. В. 7. С. 2029.

- [5] Моливер С.С. // ФТТ. 2000. Т. 42. В. 4. С. 655.
- [6] Моливер С.С. // ФТТ. 2000. Т. 42. В. 8. С. 1518.
- [7] McWeeny R. Methods of Molecular Quantum Mechanics. London: Academic, 1982. XV p. 573 p.
- [8] Laouini N., Andersen O.K., Gunnarsson O. // Phys. Rev. B. 1995. V. 51. N 24. P. 17 446.
- [9] *Фларри Р.* Группы симметрии. Теория и химические приложения. М.: Мир, 1983. 400 с.