05.4;11

"Низкотемпературная" (T = 250-400 K) адсорбция кислорода на керамике YBa₂Cu₃O_{6.9}

© В.Н. Кузнецов

НИИ физики С.-Петербургского государственного университета E-mail: kuznets@photonics.phys.spbu.ru

Поступило в Редакцию 30 октября 2000 г.

Методом термодесорбционной (ТД) масс-спектрометрии иссследована адсорбция кислорода на керамике YBa₂Cu₃O_{6.9} при T = 250-400 K. Установлено, что адсорбция O₂ в зависимости от температуры (T_a) приводит к образованию двух (γ 1 и γ 2 при $T_a < 350$ K) или одной (γ 2 при $T_a \ge 350$ K) адсорбционных форм. В ТД спектре форме γ 1 соответствует пик с максимумом при $T_{\rm max} = 330-340$ K. Для формы γ 2 характерны смещение $T_{\rm max}$ от ≈ 380 до 440 K при увеличении T_a от 290 до 400 K с одновременным снижением температурной "границы" появления структурного кислорода, а также способность участвовать в изотопном обмене с кислородом керамики. Для обеих форм наиболее вероятным является ассоциативный механизм десорбции с энергией активации (0.63 ± 0.08) (γ 1) и (1.13 ± 0.02) eV (γ 2). Предложена модель, качественно описывающая сорбцию кислорода в керамику, начальным этапом которой является образование адсорбционной формы γ 2.

Решение проблемы устойчивости свойств высокотемпературных сверхпроводящих материалов на основе $YBa_2Cu_3O_x$ (YBaCuO) определяется степенью понимания механизма процессов, протекающих в кислородной подсистеме. Ряд явлений, связанных уменьшением температуры перехода в сверхпроводящее состояние (T_c) при "низкотемпературных" (≤ 500 K) обработках, до настоящего времени не имеют

1

исчерпывающего объяснения. Так, выдержка эпитаксиальных пленок при 450 К в О₂ при p = 10 Ра [1] или вакуумирование керамики при 473 К [2] приводит к уменьшению T_c на 7–10 К. В [2] этот эффект связывают с уменьшением концентрации кислорода в граничных слоях различных субмикронных структур (гранул, двойников, блоков). Вместе с тем в этой же температурной области наблюдают захват кислорода при первом нагреве свежеприготовленных пленок YBaCuO [3].

Природа и свойства кислорода, расположенного на структурных границах YBaCuO и на границе с газовой фазой, исследованы явно недостаточно [4]. Причину этого следует связывать с тем, что получение данных о состоянии кислорода, адсорбированного на монокристаллах, практически не возможно из-за малой величины поверхности. Для порошков, керамики и пленок акцент делается на исследовании сорбции и выделения структурного кислорода, первый пик которого в термодесорбционных (ТД) спектрах керамики наблюдают при ~ 750 K [5,6]. В связи с дефицитом данных об адсорбции кислорода масс-спектрометрическим методом в интервале 250–400 К исследован адсорбционно-десорбционный процесс в системе O₂-керамика YBaCuO.

Экспериментальная установка включала масс-спектрометр МИ-1201, снабженный вторично-ионным умножителем ВЭУ-1, высоковакуумную систему, систему сбора информации и управления программируемым нагревом образца. Образец керамики диаметром 9.3 и толщиной 2.2 mm размещали в кварцевой кювете с плоскими стенками, добиваясь надежного теплового контакта образца со стенками. Малоинерционный нагревательный элемент обеспечивал нагрев образца с постоянной скоростью $\beta = 0.1-0.25$ deg/s в диапазоне 250–1000 К. Для стабилизации температуры в интервале 250–275 К использовали охлажденный спирт. Кислород природного состава и обогащенный изотопом O¹⁸ очищали диффузией через стенки серебряного капилляра и адсорбировали при давлении 410⁻²–1.6 10² Ра.

Исследована керамика YBa₂Cu₃O_x при $x \approx 6.9$ с удельной поверхностью 220 cm²/g, полученная в НИИ физики СПбГУ спеканием порошков оксидов. С целью удаления следов H₂O, CO, CO₂ и других загрязнений образец вакуумировали при 520 K в течение ≥ 10 h. После такой тренировки в ТД-спектрах, которые измеряли до 530 K, наблюдался только структурный кислород, скорость десорбции которого в интервале 480–530 K монотонно возрастала. Количество структурного кислорода, выделяющегося при записи одного ТД спектра, не превышало 10^{-5} % x,

Puc. 1. ТД-спектры кислорода, адсорбированного на керамике YBaCuO_{6.9} (*I*-6), а также относительная степень обогащения α/α_0 (7) и параметр *y* (8) десорбируемого газа (пояснения в тексте). Температура, давление и время выдержки в газе при адсорбщи: *I* — 290, $4 \cdot 10^{-2}$, 14; *2* — 290, $1.6 \cdot 10^2$, 75; *3* — 250, 13, 10; *4* — 275, 13, 10; *5* — 352, $4 \cdot 10^{-2}$, 22; *6* — 400, $4 \cdot 10^{-2}$, 22; *7*, 8 — 290 K, 13 Pa, 20 min. $\beta = 0.167(3, 4), 0.25$ deg/s (*I*, *2*, *4*, *6*).

поэтому систематические ТД измерения практически не изменяли его содержание в образце.

Типичные ТД спектры кислорода, адсорбированные при 290 К, показаны на рис. 1 (кривые *1*, *2*). Для формы и температуры максимума (T_{max}) спектра характерна зависимость от температуры, при которой проводили адсорбцию (T_a). При $T_a = 250-275$ К в ТД спектре проявляются два пика с полушириной $\Delta T \approx 40$ К, T_{max} которых различаются на ≤ 30 К (рис. 1, кривые *3*, *4*). При увеличении T_a от 250 до ~ 310 К общее покрытие (θ) возрастает не более чем на 25%, а вклад высокотемпературного пика увеличивается в ≥ 2 раза, так что

при $T_a = 290$ К отдельные пики не проявляются (рис. 1, кривые 1, 2). При $T_a = 350 - 400$ К в ТД спектре наблюдается один пик с $\Delta T \approx 35$ К, максимум которого смещен в высокотемпературную область и зависит от T_a (рис. 1, кривые 5, 6). Кроме того, при $T_a = 400$ К наблюдается уменьшение θ и снижение температуры начала ("границы") десорбции структурного кислорода на 10–15 К (рис. 1, кривая 6). Количество газа, поглощенного образцом при 400 К, превышает эту величину при 290 К в ≥ 1.7 раза, а θ оказывается в ~ 2.5 раза меньше (рис. 1, кривые 1 и 6).

Перечисленные результаты дают основание заключить, что адсорбция O₂ при $T_a < 350$ К происходит с образованием двух форм $\gamma 1$ и $\gamma 2$, которым соответствуют ТД пики с $T_{max} = 330 - 340$ и ~ 380 К. Рост вклада пика формы $\gamma 2$ при увеличении T_a от 250 до 310 К позволяет предположить, что форма $\gamma 1$ частично переходит в $\gamma 2$. При $T_a > 350$ К образуется только форма $\gamma 2$, которая в свою очередь частично переходит в состояние, подобное структурному, что проявляется в смещении границы выделения структурного кислорода (O_{st}). Последовательность процессов, сопровождающих низкотемпературную адсорбцию O₂ на YBaCuO, может быть описана схемой: (O₂)_g $\rightarrow \gamma 1 \rightarrow \gamma 2 \rightarrow O_{st}$.

Прямое подтверждение протекания процесса $\gamma 2 \rightarrow O_{st}$ получено с помощью кислорода, обогащенного изотопом O^{18} (α — степень обогащения). Исходно O_2 был равновесным относительно гомомолекулярного обмена — имел параметр y = 0 ($y = (C_{34})^* - (C_{34})_0$, где (C_{34})* и (C_{34})0 — равновесная в гомомолекулярном обмене и начальная концентрации молекул $O^{16}O^{18}$). Как видно из рис. 1 (кривые 7, 8), в области десорбции формы $\gamma 2$ (на высокотемпературном склоне ТД-спектра) относительная степень обогащения α/α_0 оказывается меньше 1, а параметр y > 0. Согласно [7], такое изменение параметров означает, что молекула O_2 обменивается с кислородом поверхности двумя атомами. Этот тип обмена протекает, если после диссоциативной адсорбции обмен атомами происходит много быстрее, чем ассоциативная десорбция.

Для определения энергии активации десорбции (E_d) адсорбированного кислорода ТД данные анализировали по уравнениям 1 и 2-го порядка относительно θ . Для этого ТД спектры представляли в координатах $\ln[(d\theta/dt)/\theta]$ (F1) и $\ln[(d\theta/dt)/\theta^2]$ (F2) от 1/kT и аппроксимировали прямыми на интервале ($1/kT_1 - 1/kT_2$). Установлено, что при $T_a < 350$ К наименьшую погрешность имеет аппроксимация зависимостей F1 и F2 от 1/kT двумя отрезками прямых с различными наклонами. Значения

Энергия активации десорбции E_d , предэкспоненциальный множитель ν и ln ν , определенные на интервале $1/kT_1 - 1/kT_2$, для уравнения десорбции 1-го (F1) и 2-го порядка (F2), а также отнесение параметров адсорбционным формам $\gamma 1$ или $\gamma 2$

	E_d , eV	$\ln \nu$	ν	<i>T</i> ₁ , K	<i>T</i> ₂ , K	Форма
F1	0.57 ± 0.08	13.2 ± 0.07	5.4E5, s^{-1}	311	359	$\gamma 1$
F2	0.63 ± 0.08	$-(15 \pm 1.6)$	3E-7, $cm^2 \cdot s^{-1}$	311	391	$\gamma 1$
F1	0.29 ± 0.02	3.8 ± 0.5	$4.5E1, s^{-1}$	356	423	$\gamma 2$
F2	1.13 ± 0.02	$-(0.9 \pm 0.1)$	4E-1, $cm^2 \cdot s^{-1}$	397	430	$\gamma 2$
				(349)	(435)	

параметров уравнений десорбции приведены в таблице. Из таблицы следует, что для формы $\gamma 1$ для обоих уравнений десорбции значения E_d близки и имеют одинаковую погрешность. Однако, поскольку для уравнения 2-го порядка интервал аппроксимации в 1.7 больше (см. таблицу), значение $(E_d)_{\gamma 1} = (0.63 \pm 0.08)$ eV представляется более достоверным. В области десорбции формы $\gamma 2$ значения E_d для разных кинетических уравнений различаются существенно. Поскольку для мономолекулярной десорбции (F1) значения E_d и предэкспоненциального множителя ν являются крайне низкими, то для формы $\gamma 2$ принято значение $(E_d)_{\gamma 2} = (1.13 \pm 0.02)$ eV. Таким образом, ассоциативный механизм десорбции наиболее вероятен для обеих форм и, следовательно, кислород адсорбируется диссоциативно. Следует отметить, что если в ТД спектре остается один пик формы $\gamma 2$ (рис. 1, кривые 5, 6), то интервал линейной аппроксимации, укзанный в таблице в скобках, близок к ширине пика у основания.

Полученное значение $(E_d)_{\gamma 2}$ сопоставляли с энергией активации десорбции структурного кислорода $(E_d)_{st}$, которую определяли на начальном участке (80–100 deg) его выделения. Содержание O_{st} (и температурную границу его десорбции) изменяли прогревом в вакууме или O_2 при $p = (1.3 - 40) \cdot 10^2$ Ра в течение 1 h при различных температурах. Поскольку для надежной регистрации кинетики десорбции O_{st} достаточно было выделить кислород в количестве, не превышающем 10^{-50} , его расчетного содержания, принималось, что скорость десорбции не зависит от содержания кислорода, и проводилась линейная аппроксимация зависимости $\ln(d\theta/dt)$ от 1/kT. Значения $(E_d)_{st}$ приведены на

Рис. 2. Энергия активации десорбции структурного (1) и адсорбированного кислорода (2–5), определенная по уравнению десорбции 1-го (2, 5) и 2-го порядка (3, 4) для низкотемпературного (4, 5) и высокотемпературного склона (пика) (2, 3) ТД-спектра. Пояснения в тексте.

рис. 2 (черные квадраты), где по оси T отложены значения центра интервала аппроксимации. На рис. 2 приведены также значения E_d адсорбированного кислорода (светлые точки), на основании которых получены табличные данные, а по оси T отложены значения T_{max} . Из рис. 2 следует, что для структурного кислорода, граница десорбции которого лежит в интервале 430–730 K, $(E_d)_{st} = (1.04 \pm 0.05)$ eV, и это значение близко к значению $(E_d)_{\gamma 2}$, полученному в рамках ассоциативного механизма десорбции.

Значения $(E_d)_{\gamma 2}$ и $(E_d)_{st}$ в пределах погрешности совпадают со значениями энергии активации диффузии (E_{dif}) кислорода в пленках YBaCuO (in- и out-) $E_{dif} = 1.09 - 1.15 \text{ eV}$ [8]. Среднее значение E_{dif} , рассчитанное по данным обзора [4], также имеет сопоставимое с полученными значение (1.2 ± 0.07) eV. Согласно [9,10], в области 600–720 К диффузия и изотопный обмен кислорода в керамике YBaCuO

происходят в плоскости CuO_{1- δ}, и $E_{dif} \approx 1.0$ eV. (При T > 730 K энергия активации изотопного обмена возрастает до 1.65 eV (710–790 K) и 2.26 eV (790–850 K) за счет участия в нем кислорода плоскостей BaO и CuO₂ [9]. Качественно эти результаты согласуются с ростом $(E_d)_{st}$ на рис. 2 при этих же температурах.)

Таким образом, высокая чувствительность экспериментальной установки позволила контролировать сорбцию кислорода в керамику УВаСиО, начиная с этапа образования адсорбционных состояний. Установлено, что адсорбция кислорода происходит уже при 250 К и имеет, предположительно, диссоциативный характер, а значения $(E_d)_{\gamma 2}$ и $(E_d)_{st}$ (на интервале 430–730 К) близки к известным значениям E_{dif} кислорода в плоскости CuO₁₋₆. Это позволяет предположить, что форме $\gamma 2$ соответствует атом, занимающий кислородную вакансию на границе плоскости CuO_{1- δ} с вакуумом. Поскольку $(E_d)_{\gamma 2} \approx E_{dif}$, то следует ожидать, что начиная с $\sim 350\,\mathrm{K}$ становится заметным вклад диффузии (-in и -out) этих атомов по плоскости $CuO_{1-\delta}$. В этом случае адсорбция O_2 при $T_a > 350 \,\mathrm{K}$ будет сопровождаться ростом концентрации атомов адсорбционного происхождения в приповерхностной области, что на этапе десорбции проявится в смещении Т_{тах} формы $\gamma 2$ в сторону высоких температур. После адсорбции при $T_a = 400 \, \mathrm{K}$ диффундировавший in-кислород будет частично выделяться вместе со структурным и снижать температурную границу его десорбции.

Предлагаемая модель качественно описывает начальные стадии заполнения кислородом приповерхностного слоя плоскости $CuO_{1-\delta}$. Аналогичные низкотемпературные процессы могут, вероятно, развиваться и на границах этих плоскостей в различных субмикронных структурах.

Список литературы

- Дроздов Ю.Н., Павлов С.А., Парафин А.Е. // Письма в ЖТФ. 1998. Т. 24.
 В. 1. С. 55–58.
- [2] Каланов М.У., Пайзуллаханов М.С., Маминов Р.Х. и др // Письма в ЖТФ. 1997. Т. 23. В. 1. С. 13–18.
- [3] Kitelberger S., Bolz U., Huebener R.P. et al. // Physica C. 1999. V. 312. N 1–2. P. 7–20.
- [4] Байков Ю.М., Шалкова Е.К., Ушакова Т.А. // Сверхпроводимость. Физика. Химия. Технология, 1993. Т. 6. № 3. С. 449–477.
- [5] Григорьян Э.А., Кирьянов Р.В., Мержанов А.Г. // Сверхпроводимость. Физика. Химия. Технология. 1992. Т. 5. № 4. С. 710–718.

- [6] Hegde M.S. // Mat. Res. Bull. 1988. V. 23. N 8. P. 1171-1176.
- [7] Музыкантов В.С., Поповский В.В., Боресков Г.К. // Проблемы кинетики и катализа. 1968. Т. 12. С. 155–169.
- [8] *Kitelberger S., Bolz U., Huebener R.P.* et al. // Physica C. 1998. V. 302. N 2–3. P. 93–101.
- [9] Выходец В.Б., Куренных Т.Е., Трифонов К.В. и др. // ЖЭТФ. 1994. Т. 106. № 2. С. 648-662.
- [10] Выходец В.Б., Куренных Т.Е., Слободин Б.В. // ФТТ. 1997. Т. 39. С. 42-48.