01;04

Влияние отлипания на диффузионный распад электроотрицательной плазмы низких давлений

© Е.А. Богданов, А.А. Кудрявцев, Л.Д. Цендин

C.-Петербургский государственный университет E-mail: akud@ak2138.spb.edu C.-Петербургский государственный технический университет

Поступило в Редакцию 30 января 2001 г.

Показано, что можно выделить два основных сценария диффузионного распада импульсной плазмы электроотрицательных газов низкого давления в присутствии отлипания. При слабом отлипании сначала происходит резкое падение концентрации электронов и образуется ион-ионная плазма. Небольшая примесь электронов, которые возникают при отлипании, продолжает запирать все отрицательные ионы в объеме. Поэтому концентрации всех заряженных компонент плазмы на этой стадии спадают по одинаковому экспоненциальному закону с характерным временем отлипания. В предельном же случае сильного отлипания может реализоваться существенно иной режим распада с переходом на второй стадии распада не к ион-ионной, а к обычной (т. е. без отрицательных ионов) плазме. При этом возможны такие парадоксальные явления, как рост концентрации электронов во времени, увеличение пристеночного скачка потенциала и значительное уменьшение (вплоть до выключения) диффузионного охлаждения электронов, играющего обычно главную роль в балансе энергий электронного газа.

Эволюция неоднородностей концентраций электронов и ионов в многокомпонентной плазме определяется нелинейными уравнениями [1,2]. Поэтому пространственно-временные характеристики диффузионного распада плазмы с отрицательными ионами существенно отличаются от распада простой плазмы. При низких давлениях, когда можно пренебречь всеми плазмохимическими реакциями в объеме, принципиальной особенностью является наличие двух стадий распада [3–5]. На первой стадии отрицательные ионы заперты в объеме и их средняя концентрация в объеме не меняется, $\bar{n}_n(t) = \text{const.}$ Поскольку $\bar{n}_p = \bar{n}_n + \bar{n}_e > \bar{n}_e$, то условие равенства потоков электронов и положительных ионов на

67

стенки требует более быстрой относительной скорости ухода электронов. При этом отношение \bar{n}_p/\bar{n}_e резко возрастает — процесс ухода электронов обостряется (самоускоряется) во времени. В конце первой стадии распада образуется ион-ионная (безэлектронная) плазма [3–5].

Плазмохимические реакции могут сильно изменить сценарий распада. Распад в присутствии прилипания с частотой ν_a не отличается качественно от чисто диффузионного [3-5], но длительность первой стадии, в течение которой исчезают электроны, может уменьшиться до $t_0 \approx 1/\nu_a$ [5]. При наличии же отлипания, влияние которого мы рассмотрим подробнее, ситуация может измениться радикально [9]. Если оно достаточно велико, то в конце первой стадии распада, которая длится характерное время отлипания $t_d \approx 1/\nu_d ~(\nu_d$ — частота отлипания), происходит переход от исходной сильно электроотрицательной плазмы, в которой $\bar{n}_p(0) \sim \bar{n}_n(0) > \bar{n}_e(0)$, к обычной электрон-ионной плазме с малой примесью отрицательных ионов, $\bar{n}_p \sim \bar{n}_e \gg \bar{n}_n$. Поэтому вторая стадия распада ($t > t_d$) практически соответствует обычной электрон-ионной амбиполярной диффузии. При этом возможны такие парадоксальные явления, как рост концентрации электронов во времени [6], увеличение пристеночногоо скачка потенциала и выключение диффузионного охлаждения электронов [7,8].

Как и в [4,5], при анализе послесвечения в плоской геометрии (|x| < L), имеем:

$$\partial n_p / \partial t + \partial \Gamma_p / \partial x = 0, \tag{1}$$

$$\partial n_n / \partial t + \partial \Gamma_n / \partial x = -\nu_d n_n, \tag{2}$$

$$\partial n_e / \partial t + \partial \Gamma_e / \partial x = \nu_d n_n. \tag{3}$$

Здесь потоки $\Gamma_j = D_j(\partial n_j/\partial x) \pm b_j n_j E$; *D* и *b* — коэффициенты диффузии и подвижности; индексы j = e, n, p относятся к электронам, отрицательным и положительным ионам соответственно. Использовались нулевые граничные условия для концентраций на стенках и для их градиентов в центре. Как и в [4,5], в качестве начальных условий задавался параболический профиль $n_n(x, 0)$ и плоский для $n_e(x, 0)$ при $x < x_0$. Во внешней области $x > x_0$, где отрицательные ионы отсутствуют, профили $n_p(x, 0) \sim n_e(x, 0) \sim \sin[\sqrt{z+a}(L-x)]$, где *z* и α — суть частоты ионизации и прилипания в единицах характерного времени диффузии отрицательных ионов $\tau_n = L^2/D_n$ [1,2].

Совместно с условием квазинейтральности

$$n_e + n_n = n_p; \quad \Gamma_e + \Gamma_n = \Gamma_p$$
(4)

эти уравнения определяют концентрации заряженных частиц и поле. Коэффициенты D и b определяются тепловыми электронами, распределение которых будем для простоты считать максвелловским. Поэтому система (1)–(4) должна быть дополнена уравнением для электронной температуры T_e . Из-за быстрой теплопроводности ее можно считать постоянной по сечению [2]. Усредненное по сечению уравнение баланса энергии тепловых электронов имеет вид

$$(3/2)\bar{n}_e dT_e/dt = -3\delta_\varepsilon \nu_\varepsilon \bar{n}_e (T_e - T)/2 - H_{dc} + H_{dt}.$$
(5)

Члены в правой части (4) описывают охлаждение за счет столкновений с нейтралями в объеме ($\nu_{\varepsilon}, \, \delta_{\varepsilon}$ — соответствующие частота и фактор энергообмена), диффузионное остывание (H_{dc}), а также возможный нагрев быстрыми электронами (H_{dt}) . Учет процессов образования и гибели быстрых электронов при отлипании и при ударах второго рода, а также в результате столкновений с большой потерей энергии, в рамках гидродинамической модели (5) может привести к большим ошибкам и требует, вообще говоря, кинетического анализа [2,8]. Например, в реакциях отлипания $O^- + O \rightarrow O_2 + \mathbf{e}$ и $O^- + O_2(a) \rightarrow O_3 + \mathbf{e}$ при образовании молекул О2, О3 в основном состоянии рождаются быстрые электроны с энергиями $\varepsilon_d = 3.6$ и 0.6 eV, значительно превышающими температуру газа Т. Если же в подобных реакциях образуются колебательно возбужденные молекулы, то энергия ε_d отлипающих электронов оказывается значительно меньше. Поэтому на практике могут реализоваться случаи как больших, так и малых ε_d . Ситуация зависит также от величины $e\varphi_w$ — самосогласованного потенциала стенки относительно центра, который находится из условия равенства потоков заряженных частиц разного знака (см. (4)). При $\varepsilon_d < e \varphi_w$ для максвелловской функции распределения электронов, е φ_w составляет величину порядка нескольких T_e $(e\varphi_w = C_1T_e)$, где $C_1 \approx \ln(\sqrt{M/m})$ [2], и $H_{dc} = e\varphi_w\Gamma_e(L,t)$. Возникающие при отлипании электроны оказываются заперты в объеме и передают тепловым энергию $\varepsilon_{d1} \approx \nu_e \varepsilon_d / (\nu_e + \delta_{\varepsilon} \nu_{\varepsilon}) (\nu_e$ — частота межэлектронных столкновений) [7,8]. Поэтому подогрев тепловых электронов за счет отлипания в этом случае можно приближенно учесть, введя в правую часть (5) дополнительный источник $H_{dt} = \varepsilon_{d1} K_d \bar{n}_n$.

При более высоких энергиях рождающихся электронов ($\varepsilon_d > C_1 T_e$) могут реализоваться две резко различные ситуации, и значения H_{dc} и H_{dt} должны находиться самосогласованным образом. До тех пор пока интегральный поток возникающих быстрых электронов меньше амбиполярного потока положительных ионов $(L\nu_d \bar{n}_n < \Gamma_p(L,t))$, быстрые электроны уходят на стенки в режиме свободной диффузии $(\Gamma_{ed}(L,t) = L\nu_d \bar{n}_n)$ и их можно рассматривать независимо от медленных плазменных электронов. В этом случае быстрый электрон с энергией *є* успевает передать плазменным лишь малую часть своей энергии $\varepsilon_{d2} pprox \varepsilon_d
u_e / (
u_e + \delta_{\varepsilon}
u_{\varepsilon} + 1/ au_d f) pprox \varepsilon_d
u_e au_d f \ll \varepsilon_d \ (au_{df} pprox 4L^2 / (\pi^2 D_e) - L^2 + L^2$ характерное время свободной диффузии электронов), и нагрев тепловых электронов $H_{dt} = \varepsilon_{d2} \nu_d \bar{n}_n$ оказывается мал [7,8]. Потенциал стенки при этом увеличивается, $e\varphi_w = C_1 T_e - T_e \ln[1 - L\nu_d \bar{n}_a / \Gamma_p(L, t)]$, тогда как диффузионное остывание $H_{dc} = -e\varphi_w[\Gamma_p(L,t) - L\nu_d\bar{n}_n]$ уменьшается по сравнению с рассчитанным без учета быстрых электронов. Поскольку в рассмотренных выше случаях нагрев плазменных электронов мал, то после выключения разряда Т_е быстро падает до температуры газа.

Принципиально иная ситуация возникает, когда в процессе уменьшения T_e поток $\Gamma_p(L, t)$ падает до такой величины, что может стать меньше $L\nu_d\bar{n}_n$. Чтобы запереть "избыточную" часть $L\nu_d\bar{n}_n - \Gamma_p(L, t)$ потока рождающихся быстрых электронов, потенциал стенки становится близок к их энергии, $\varepsilon_d \approx e\varphi_w$, и диффузионное остывание тепловых запертых электронов в этом случае полностью выключается, $H_{dc} = 0$. В отличие от пролетных запертые быстрые электроны более эффективно нагревают плазменные, передавая им энергию $\varepsilon_{d1}(\varepsilon_{d1} \gg \varepsilon_{d2})$, так что нагрев в (4) есть $H_{dt1} = \varepsilon_{d1}[L\nu_d\bar{n}_n - \Gamma_p(L, t)]$. Другая часть потока быстрых электронов, равная $\Gamma_p(L, t)$, уходит на стенку с энергией $\approx \varepsilon_d$, и нагрев ими тепловых мал, $H_{dt2} = \varepsilon_{d2}\Gamma_p(L, t)$ (подробнее см. [7,8]). В этом режиме следует ожидать, что пока $\nu_d\bar{n}_n > \delta_{\varepsilon}\nu_{\varepsilon}\bar{n}_e$, температура электронов не спадает быстро до значений порядка комнатной, а будет сохраняться на значительно более высоком квазистационарном уровне T_{es}

$$T_{es} = T + 2\varepsilon_{d1}\nu_d \bar{n}_n / 3\delta_\varepsilon \nu_\varepsilon \bar{n}_e.$$
(6)

Таким образом, если скорость рождения быстрых электронов $\nu_d \bar{n}_n$ мала с самого начала (или они рождаются с малой энергией ε_d), то T_e быстро упадет до температуры газа T (или даже ниже, при учете диффузионного остывания). Если же их рождается много, то T_e упадет до $\sim T$ лишь тогда, когда из-за отлипания начнет выполняться $\nu_d \bar{n}_n < \delta_{\varepsilon} \nu_{\varepsilon} \bar{n}_e$, и нагрев максвелловских электронов выключится.

Рис. 1. Изменение $\bar{n}_e(t)$, $\bar{n}_n(t)$, $\bar{n}_p(t)$ в режиме самозапирания отрицательных ионов. Здесь и далее $(b_e/b_n = 1\sqrt{2}, b_e/b_n = 250)$.

В зависимости от соотношения между временами ν_d^{-1} , $(\delta_{\varepsilon}\nu_{\varepsilon})^{-1}$ и $\tau_{ap} = 4L^2/(\pi^2 D_p(k+1))$ — характерным временем электрон-ионной амбиполярной диффузии $(k = T_e/T)$, можно выделить два основных сценария распада в присутствии отлипания. Во всех этих режимах отрицательные ионы заперты в объеме, и их средняя концентрация спадает с характерным временем отлипания $t_d = 1/\nu_d$

$$\bar{n}_n(t) = \bar{n}_n(0) \exp(-\nu_d t). \tag{7}$$

При слабой роли отлипания ($\nu_d \bar{n}_n(0) \ll \bar{n}_e(0)/\tau_{ap}$) картина аналогична первой стадии распада в отсутствие плазмохимических процессов, что рассмотрено в [3–5] (рис. 1). При построении рисунков здесь и далее использовались безразмерная координата в единицах L и безразмерное время в единицах $\tau_n = L^2/D_n$. Из-за быстрого диффузионного остывания $T_e(t)$ мгновенно падает, после чего распад плазмы происходит в две стадии. Сперва электроны быстро уходят из объема в соответствии с моделью [3–5] (пунктир на рис. 1). Небольшая примесь образующихся при отлипании электронов продолжает запирать все отрицательные ионы в объеме. Поэтому распад ион-ионной плазмы на второй стадии не определяется ион-ионной амбиполярной диффузией (ср. [3–5]).

Концентрации всех заряженных компонент плазмы спадают по одинаковому экспоненциальному закону $\bar{n}_e(t) \sim \bar{n}_n(t) \sim \bar{n}_p(t) \sim \exp(-\nu_d t)$, аналогичному (7). По нашему мнению, это явление, в котором запирание отрицательных ионов на второй (ион-ионной) стадии распада обеспечивается именно теми электронами, которые возникают из самих отрицательных ионов в результате отлипания, целесообразно назвать "самозапиранием" отрицательных ионов (ср. [9]). Для осуществления такого режима необходимо, чтобы, с одной стороны, сначала произошло резкое падение (обострение) концентрации электронов и образовалась ион-ионная плазма с низким содержанием электронов $(\bar{n}_p(t_0) \approx \bar{n}_n(t_0) \gg \bar{n}_e(t_0))$, а с другой стороны, чтобы даже небольшая примесь образующихся при отлипании электронов могла запереть все отрицательные ионы в объеме. Критерием перехода к "самозапиранию" отрицательных ионов и обращению их потока от стенки в глубь плазмы является не предложенное в [9] условие $\nu_d \tau_n = 2$, а $\Gamma_p(L, t_1) = L \nu_d \bar{n}_n(t_1)$.

В предельном случае сильного отлипания $\nu_d \bar{n}_n \ge \bar{n}_e / \tau_{ap}$ может реализоваться существенно иной режим распада, в котором на второй стадии возникает не ион-ионная, а обычная (не содержащая отрицательных ионов) плазма. Так как значение $T_e(t)$ сильно зависит от энергии ε_d электронов, возникающих при отлипании, рассмотрим два значения $\varepsilon_d = 20T$; 2*T*. В обоих случаях на первой, отлипательной, стадии

Рис. 2. Зависимости $k(t) = T_e(t)/T$ и $\bar{n}_n(t)/\bar{n}_n(0)$ при $\varepsilon_d = \varepsilon_{d2} = 2T$ и различных $\nu_d = 7, 10, 25, 50.$

Письма в ЖТФ, 2001, том 27, вып. 15

Рис. 3. Зависимости $\bar{n}_e(t)/\bar{n}_e(0)$ при $\varepsilon_d = \varepsilon_{d2} = 2T$ и различных $\nu_d = 7$, 10, 25, 50. Пунктир — $\bar{n}_p(t)/\bar{n}_e(0)$ для $\nu_d = 50$.

Рис. 4. Зависимости $k(t) = T_e(t)/T$ при $\varepsilon_d = \varepsilon_{d1} = 20T$ и различных $\nu_d = 7$, 10, 25, 50, 100.

Рис. 5. Зависимости $\bar{n}_e(t)/\bar{n}_e(0)$ при $\varepsilon_d = \varepsilon_{d1} = 20T$ и различных $\nu_d = 7$, 10, 25, 50, 100. Пунктир — $\bar{n}_p(t)/\bar{n}_e(0)$ для $\nu_d = 100$.

 $(t < t_d)$ происходит монотонное уменьшение концентраций $\bar{n}_p(t)$ и $\bar{n}_n(t)$ за счет дффузии и отлипания соответственно. Релаксации же электронной концентрации и температуры происходят по-разному в зависимости от величин ε_d и $e\varphi_w$. На рис. 2–5 представлены результаты расчетов при разных значениях частоты отлипания ν_d .

При малой энергии $\varepsilon_d = \varepsilon_{d2} = 2T$ нагрев максвелловских электронов мал, и происходит быстрое уменьшение $T_e(t)$ за счет диффузионного остывания (рис. 2). Все кривые $T_e(t)$ для различных ν_d практически совпадают друг с другом, причем в соответствии с [5] на начальном участке $t < t_1$ выполняется $T_e(t) \sim n_e(t)^{C_1/2}$. Из-за быстрого падения $T_e(t)$ происходит уменьшение потока положительных ионов на стенки. Когда он достигает $\Gamma_p(L, t_1) \approx L\nu_d \bar{n}_n(t_1)$, начинается рост концентрации электронов (рис. 3). Это происходит тем раньше, чем больше частота отлипания. При больших ν_d он может начинаться практически сразу после выключения разряда (кривая 4 на рис. 3). За характерное время отлипания $t_d = 1/\nu_d$ отрицательные ионы исчезают, и распад

электронной плазмы с $\bar{n}_p \sim \bar{n}_e \gg \bar{n}_n$ на второй стадии $t > t_d$ определяется обычной электрон-ионной амбиполярной диффузией.

При большой энергии $\varepsilon_d = \varepsilon_{d1} = 20T$, зависимости $T_e(t)$ лишь при малых ν_d спадают так же быстро, как при малом ε_d (ср. рис. 2 и 4). В этом случае при $\varepsilon_d > C_1 T_e$ возникающие быстрые электроны уходят на стенки в режиме свободной диффузии и обеспечивают часть $L\nu_d \bar{n}_n$ полного потока электронов на стенки. Как уже отмечалось выше, при этом поток плазменных максвелловских электронов составляет лишь оставшуюся часть $\Gamma_p(L,t) - L\nu_d \bar{n}_n$. Соответственно эффективность их диффузионного остывания значительно уменьшается $(H_{dc} = -e\varphi_w[\Gamma_p(L,t) - L\nu_d \bar{n}_n])$. Поскольку при низких давлениях диффузионное остывание является главным источником охлаждения электронного газа [2], это приводит к резкому замедлению спада $T_{e}(t)$. Возникает своеобразная обратная связь между скоростями падения температуры и концентрации электронов: замедление спада $T_e(t)$ вследствие уменьшения диффузионного остывания и приближение ее к квазистационарному значению (6) препятствует достижению условия $\Gamma_p(L, t_1) \approx L\nu_d \bar{n}_n(t_1)$, при котором начинается рост $n_e(t)$. Заметим, что это может приводить к возникновению неустойчивости и колебательному режиму распада, в котором существенны колебания пристеночного скачка потенциала $e\varphi_n(t)$ [8]. Таким образом, когда при отлипании образуются быстрые электроны, тесная взаимосвязь балансов концентрации и энергии электронного газа приводит к монотонному уменьшению концентрации плазменных электронов (рис. 5). Лишь при большом отлипании, когда уже начальные концентрации удовлетворяют условию $\nu_d \bar{n}_n(0) \ge \bar{n}_e(0)/\tau_{ap}$, происходит рост $n_e(t)$ на начальном коротком интервале $t_d \sim 1/\nu_d$ (кривая 5 на рис. 5).

Список литературы

- [1] Цендин Л.Д. // ЖТФ. 1985. Т. 55. В. 12. С. 2318–2322; 1989. Т. 59. В. 1. С. 21–28.
- [2] Рожанский А.В., Цендин Л.Д. Столкновительный перенос в частичноионизованной плазме. М.: Энергоатомиздат, 1988. 248 с. Rozhansky A., Tsendin L. Transport Processes in Partially Ionized Plasmas. Gordon&Breach, 2001.
- [3] Гуцев С.А., Кудрявцев А.А., Романенко В.А. // ЖТФ. 1995. Т. 65. В. 11. С. 77–85.
- [4] Богданов Е.А., Кудрявцев А.А., Цендин Л.Д. // ЖТФ. 2001. В. 4. С. 40-46.

- [5] Богданов Е.А., Кудрявцев А.А., Цендин Л.Д. // Письма в ЖТФ. 2001. В. 9. С. 47–56.
- [6] Кудрявцев А.А., Куранов А.Л., Мишаков В.Г. и др. // ЖТФ. 2001. Т. 71. В. 3. С. 29–36.
- [7] Колоколов Н.Б., Кудрявцев А.А., Торонов О.Г. // ЖТФ. 1985. Т. 55. В. 10. С. 1920–1927.
- [8] Blagoev A.B., Kolokolov N.B., Kudrjavtsev A.A. // Physica Scripta. 1994. V. 50. P. 371–402.
- [9] Kaganovich I.D., Ramaputhri B.N., Economou D.J. // Appl. Phys. Lett. 2000.
 V. 76. N 20. P. 2844–2846.