03;04 Генерация тока при взаимодействии сверхзвукового потока плазмы ксенона с магнитным полем

© С.В. Бобашев, Ю.П. Головачов, Ю.А. Куракин, В.Г. Масленников, В.А. Сахаров, К.Ю. Трескинский, А.А. Шмидт, Д.М. Ван Ви

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: V. Sakharov@pop.ioffe.rssi.ru Джонс Гопкинс Университет, Лаурел, Мериленд, США

Поступило в Редакцию 24 мая 2001 г.

Проведены экспериментальные исследования взаимодействия импульсного сверхзвукового потока плазмы чистого ксенона $M \sim 4.0$ с магнитным полем $B \sim 1$ Т. Выполнены измерения интегрального тока через плазму в зависимости от начальной ионизации. Приведено сравнение результатов эксперимента и численного моделирования.

Проблема управления сверхзвуковым потоком низкотемпературной плазмы активно обсуждается в связи с перспективой создания летательных аппаратов нового поколения. В частности, обсуждается возможность управления течением воздуха во входном устройстве такого аппарата — воздухозаборнике. Несколько лет назад было предложено использовать для этой цели явление магнитогазодинамического (МГД) взаимодействия слабоионизованного воздуха с магнитным полем [1,2]. Очевидно, что решение этой задачи требует комплексного подхода: проведения фундаментальных исследований во многих областях науки и поиска новых технических решений.

В Лаборатории физической газодинамики ФТИ на базе Большой ударной трубы [3] создан экспериментальный комплекс для исследований взаимодействия сверхзвуковых потоков ионизованных газов с внешним магнитным полем. Плазма создается в канале ударной трубы (рис. 1) в результате нагрева газа отраженной ударной волной (1). Ударная труба работает в режиме с промежуточной камерой, благодаря чему появляется возможность удержать плазму с температурой $T \sim 10^4$ К и давлением до $P \sim 5$ MPa в течение 1–1.5 ms. Затем

85

Рис. 1. Эскиз рабочей камеры и схема измерительной цепи.

ионизованный газ, ускоряясь в сверхзвуковом сопле (2), направляется в рабочую камеру (3), в которой реализуется МГД-взаимодействие. Рабочая камера находится в промежутке между двумя катушками (4), расположенными горизонтально на расстоянии 210 mm друг от друга. Катушки являются частью системы генерации импульсного магнитного поля, включающей в себя, кроме этого, батарею конденсаторов общей емкостью 30 mF, зарядное устройство до 5 kV, устройство коммутации тока и средства контроля. Полупериод разряда батареи конденсаторов составляет 4 ms. Максимальное значение индукции магнитного поля в центре между катушками достигает 1.5 T.

На боковых стенках рабочей камеры расположена пара оптических окон (5) диаметром 140 mm, через которые визуализируется газодинамическая картина течения в области взаимодействия при помощи оптического прибора.

В данной работе в качестве исследуемой среды использовалась плазма ксенона, ускоряющаяся в плоском сверхзвуковом сопле до значения числа Маха M = 4.0. Сопло шириной 75 mm имеет угол раствора 22°, высоту критического и выходного сечений соответственно 10 и 60 mm. Длина сверхзвуковой части сопла 130 mm. МГД-канал представляет собой диэлектрическую камеру прямоугольного сече-

ния шириной 75 mm с системой электродов (6), расположенных на внутренней поверхности боковых стенок перпендикулярно плоскости симметрии сопла (7). Вблизи выходной кромки сопла находится двойной клин (δ), две поверхности которого расположены относительно образующей сопла под углом 10 и 20°.

В проведенных ранее аналогичных экспериментальных исследованиях [4] не удалось получить ток в плазме при использовании только магнитного поля. Причина этого состоит в том, что величина приэлектродного падения потенциала в этом случае оказалась больше магнитоиндуцированной э.д.с. Для компенсации приэлектродного падения потенциала и создания достаточного для МГД взаимодействия тока к электродам был подключен внешний источник напряжения. Магнитоиндуцированная э.д.с. ε равна произведению *BVL*, где *B* абсолютное значение индукции магнитного поля, *V* — скорость плазмы, *L* — расстояние между электродами. Отсюда видно, что ее значение зависит, в частности, от расстояния между электродами *L*. В настоящем исследовании применялся МГД канал с *L* = 70 mm, что примерно в 2.5 раза больше, чем в работе [4].

Индуцированный ток определялся по измеренному в эксперименте напряжению на сопротивлении $R = 0.1 \Omega$ (9), включенном между электродами ближайшей к соплу пары. Расстояние от входа в сопло до измерительного сечения составляет 180 mm. Взаимное расположение векторов индукции *B*, скорости потока *V* и индуцированного тока *I* показано на рисунке.

Изменение параметров плазмы осуществлялось варьированием интенсивности ударной волны, что достигалось изменением начального давления ксенона P_1 в канале ударной трубы. Начальные условия экспериментов, результаты измерений и расчета параметров течения приведены в таблице. Значение индукции магнитного поля при этом оставалось равным $B \sim 1$ T.

Режим	P_1 , Torr	M_{s1}	U_m, V	ε, V
1	40	7.7	1	131
2	25	8.2	2	132
3	12	9.5	6	135

Здесь P_1 — начальное давление ксенона в канале низкого давления ударной трубы, M_{s1} — число Маха падающей ударной волны, U_m — амплитуда напряжения на сопротивлении.

Рис. 2. Зависимость амплитуды тока в измерительной цепи от степени ионизации плазмы на входе в сопло.

Из таблицы видно, что с изменением режима течения, т.е. числа Маха M_{s1} значение магнитоиндуцированной э.д.с. ε в промежутке между электродами практически не изменяется. Поэтому можно предположить, что в условиях проведения эксперимента именно степень ионизации газа α определяет величину тока в рабочем сечении. На рис. 2 точками показана полученная в эксперименте зависимость амплитуды тока I_m в измерительной цепи от степени ионизации α газа на входе в сопло, которая определялась из расчета равновесной ионизации ксенона за ударными волнами.

В рамках МГД приближения с использованием модели невязкого газа выполнено численное моделирование приведенных в таблице режимов течений. В расчете магнитное поле считалось постоянным, а электрическое поле определялось через коэффициент нагрузки по формуле для фарадеевского генератора с идеально секционированными электродами. Система уравнений записывалась для двухтемпературной плазмы с учетом столкновительных процессов и ионизации. Уравнения газовой динамики с дополнительными членами электромагнитного происхождения решались с помощью конечно-объемной схемы высокого разрешения типа Годунова в сочетании с двухслойной неявной схемой для учета неравновесных процессов. Стационарные решения находились методом установления. Описание методики численного моделирования представлено в [5].

Сплошная линия на графике соединяет три точки, соответствующие результатам расчета значений интегрального тока в рабочем сечении для трех указанных выше режимов. Эти значения тока отвечают стационарным течениям, при которых не происходит изменения тока. Однако анализ сигнала, регистрируемого в эксперименте на сопротивлении R, показывает, что за время истечения ($\sim 500 \, \mu s$) установление стационарного значения тока в измерительной цепи не достигается. Иными словами, измеряемая в эксперименте амплитуда тока не соответствует тем условиям стационарного течения, при которых получены расчетные значения. Это, по-видимому, одна из возможных причин расхождения результатов расчета и эксперимента. Другая может быть связана с тем, что в расчетах не учитываются процессы, происходящие в приэлектродном слое, а используемая модель фарадеевского генератора с идеально секционированными электродами не вполне соответствует реальной электродной системе экспериментальной установки.

Авторы выражают искреннюю благодарность Т.А. Лапушкиной за помощь в подготовке к работе.

Список литературы

- Gurijanov E.P., Harada P.T. // AIAA Paper 96–4609. 7th Aerospace Planes and Hipersonic Technology Conference. Norfolk, VA, 1996.
- [2] Brichkin D.I., Kuranov A.L., Sheikin E.G. // AIAA-98-1642, 8th International Space Planes and Hypersonic Systems and Technologies Conference. April 27– 30, 1998. Norfolk, VA, 1998.
- [3] Масленников В.Г., Сахаров В.А. // ЖТФ. 1997. Т. 42. С. 1322–1328.
- [4] Бобашев С.В., Дьяконова Е.А., Ерофеев А.В. и др. // Письма в ЖТФ. 2001. Т. 27. В. 2. С. 63–69.
- [5] Golovachov Yu.P., Kurakin Yu.A., Schmidt A.A. et al. // AIAA Paper. P. 2001– 2883.