03;07

Дистанционное лазерное зондирование углеводородов в атмосфере

© В.Е. Привалов, В.Г. Шеманин

Балтийский государственный технический университет, С.-Петербург

Поступило в Редакцию 18 мая 2001 г.

Выполнено численное решение лидарного уравнения для обратного комбинированного рассеяния молекулами некоторых углеводородов и определены оптимальные значения лазера на парах меди на расстояниях от 40 m до 4 km.

Лазерное зондирование молекул углеводородов в газовой фазе представляет интерес для мониторинга загрязнения атмосферы, контроля технологических газов и исследований в области атмосферной оптики [1]. Выполненные ранее в [2–4] оценки потенциальных возможностей лидара комбинационного рассения (КР) света для зондирования молекул водорода и иода в атмосфере с импульсными лазерами подтверждают вывод о перспективности лидаров КР для дистанционного измерения концентраций молекул в газовых смесях.

Целью настоящей работы является численное решение лидарного уравнения колебательного КР молекул этана, этилена и этилмеркаптана в направлении назад в условиях дневного зондирования. На основании такого моделирования сделан выбор длины волны лазерного излучения для получения максимальной мощности КР на фотоприемнике лидара. Сравнение результатов расчетов регистрируемой лидаром мощности КР и мощности солнечного фона позволили оценить минимально обнаружимые концентрации исследуемых молекул в условиях дневного зондирования.

Рассмотрен вариант использования лазера на парах меди на длинах волн 578.2, 510.6, 298.1, 255.3 nm и суммарной частоты 271.2 nm с пиковыми мощностями до 100 kW [5]. Выбор молекул углеводородов определялся как строением молекул — у всех 2 атома углерода, так и данными об их предельно допустимых концентрациях (ПДК) для контроля загрязнения атмосферы. В [6] приведены следующие значения ПДК:

71

R, km

Рис. 1. Графики зависимости логарифма мощности КР для молекулы этилена с концентрацией 10^{19} cm⁻³ от расстояния зондирования для выбранных длин волн медного лазера. Для сравнения приведен уровень минимально детектируемый лидаром мощности P_b для нашей экспериментальной ситуации.

для этана $50\,mg/m^3-1.0\cdot10^{15}\,cm^{-3},$ этилена $3.0\,mg/m^3-6.5\cdot10^{13}\,cm^{-3}$ и этилмеркаптана $1.5\cdot10^{-3}\,mg/m^3-3.5\cdot10^{13}\,cm^{-3}.$

Частоты собственных валентных СН колебаний исследуемых молекул взяты для C₂H₆ из [7], C₂H₄ из [1] и C₂H₄SH из [8] и приведены в таблице. Для молекулы метилмеркаптана рассмотрено валентное СН колебание группы CH₃ 2917 сm⁻¹ и валентное SH колебание 2751 сm⁻¹, интенсивность которого в пять раз меньше по данным [8]. По этим значениям были рассчитаны длины волн полос КР исследуемых молекул $\lambda_{\rm KP}$ для выбранных длин волн лазеров λ_0 , и их значения также приведены в таблице.

Дифференциальные сечения колебательного КР исследуемых молекул в направлении назад $(d\sigma/d\Omega)$ для длин волн выбранных лазеров были определены, как и в [3], по экспериментально измеренным значениям сечений для длины волны излучения азотного лазера $\lambda_0 = 337.1$ nm

Письма в ЖТФ, 2001, том 27, вып. 21

Рис. 2. График зависимости логарифма мощности КР для всех исследуемых молекул с концентрацией 10^{19} cm⁻³ для длин волн 255 nm от расстояния зондирования. Для сравнения приведен уровень минимально детектируемой лидаром мощности P_b для нашей экспериментальной ситуации на этой длине волны.

из [1] и представлены в таблице. Значение для этана оценено нами по известным сечениям для метана и бутана из [1], а сечение для этилмеркаптана оценено по значениям интенсивностей КР, приведенным в [8] с учетом данных [1].

Лидарное уравнение для КР рассмотрим в виде [2] с теми же значениями параметров из [2,3]. Численные расчеты мощности КР были выполнены для значений концентрации исследуемых молекул 10^{19} сm⁻³ и расстояний зондирования R = 0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0 и 6.0 km.

Как и в [3], для условий дневного зондирования были получены значения фоновой мощности на фотоприемнике $P_b(\lambda, R)$ и минимально детектируемой лидаром мощности P_m по значениям спектральной яркости солнечного излучения для длин волн полос КР исследуемых молекул $S_b(\lambda)$, приведенным в таблице.

Результаты расчетов для молекулы $\mathrm{C}_2\mathrm{H}_4$ приведены на рис. 1 в качестве примера. На этом же рисунке представлен уровень минимально

Письма в ЖТФ, 2001, том 27, вып. 21

Значения частот собственных валентных СН колебаний исследуемых молекул, длин волн излучения медного лазера, длин волн полос КР и дифференциальных сечений КР исследуемых молекул, относительных величин спектральной чувствительности фотокатодов ФЭУ, коэффициента ослабления и спектральной яркости солнечного излучения для всех длин волн

Ethane-C ₂ H ₆			$ u = 3070 { m cm}^{-1} $			
λ_0 , nm	λ_R , nm	$(d\sigma/d\Omega) \times 10^{30}, \text{ cm}^2/\text{str}$	$k, \text{ km}^{-1}$	$\xi_p(\lambda)$	$S_b, 10^6,$ W/(m ² · str · nm)	k_0, km^{-1}
578.2	697.3	5.4	0.15	0.16	5.2	0.16
510.6	601.3	8.9	0.16	0.53	15.3	0.17
289.1	316.1	86.8	0.38	0.35	7.23	0.53
271.2	294.8	112.1	0.53	0.29	0.05	0.70
255.3	276.1	142.7	0.58	0.15	0.03	1.91
337.1	374.3	47.0				
Ethylene-C ₂ H ₄			$\nu = 3020 \mathrm{cm}^{-1}$			
λ_0 , nm	λ_R , nm	$(d\sigma/d\Omega) \times$ $\times 10^{30}$, cm ² /str	$k, \text{ km}^{-1}$	$\xi_p(\lambda)$	$S_b, 10^6, W/(m^2 \cdot \text{str} \cdot nm)$	
578.2	694.0	9.4	0.15	0.18	5.56	
510.6	598.8	15.5	0.16	0.53	15.48	
289.1	315.4	151.0	0.39	0.35	7.17	
271.2	294.2	195.0	0.54	0.29	0.05	
255.3	275.6	248.4	0.59	0.15	0.03	
337.1	373.3	81.8				
Ethylmercaptane-C ₂ H ₄ SH			$\nu \text{ CH} = 2931 \text{ cm}^{-1}$			
	که nm	$(d\sigma/d\Omega) \times$	$k, \text{ km}^{-1}$	$\xi_n(\lambda)$	$S_b, 10^6,$ W/(m ² · str · nm)	
λ_0 , nm	Λ_R , IIII	$\times 10^{-1}$, cm /str		$J_P(\cdot)$	$w/(m \cdot su \cdot$	nm)
λ_0 , nm 578.2	694.2	10.8 × 10 ⁻⁷ , cm /str	0.15	0.18	5.56	nm)
$\lambda_0, \text{ nm}$ 578.2 510.6	694.2 599.0	10.8 17.7	0.15 0.16	0.18 0.53	5.56 5.46	<u>nm)</u>
λ_0 , nm 578.2 510.6 289.1	694.2 599.0 315.5	10.8 17.7 172.6	0.15 0.16 0.39	0.18 0.53 0.35	5.56 5.46 7.18	<u>nm)</u>
λ_0 , nm 578.2 510.6 289.1 271.2	694.2 599.0 315.5 294.3	× 10 ⁻⁹ , cm /str 10.8 17.7 172.6 222.9	0.15 0.16 0.39 0.54	0.18 0.53 0.35 0.29	5.56 5.46 7.18 0.05	<u>nm)</u>
λ_0 , nm 578.2 510.6 289.1 271.2 255.3	694.2 599.0 315.5 294.3 275.6	10.8 17.7 172.6 222.9 283.9	0.15 0.16 0.39 0.54 0.59	0.18 0.53 0.35 0.29 0.15	5.56 15.46 7.18 0.05 0.03	<u>nm)</u>
λ_0 , nm 578.2 510.6 289.1 271.2 255.3 337.1	694.2 599.0 315.5 294.3 275.6 373.4	10.8 17.7 172.6 222.9 283.9 93.5	0.15 0.16 0.39 0.54 0.59	0.18 0.53 0.35 0.29 0.15	5.56 15.46 7.18 0.05 0.03	<u>nm)</u>
λ ₀ , nm 578.2 510.6 289.1 271.2 255.3 337.1 Ethylme	694.2 599.0 315.5 294.3 275.6 373.4 ercaptane-	× 10 ⁻ , cm /str 10.8 17.7 172.6 222.9 283.9 93.5 -C ₂ H ₄ SH	$\begin{array}{c} 0.15 \\ 0.16 \\ 0.39 \\ 0.54 \\ 0.59 \end{array}$ $\nu \text{ SH} = 2$	0.18 0.53 0.35 0.29 0.15 2570 cm	-1 w/(m · su · 5.56 15.46 7.18 0.05 0.03	<u>nm)</u>
λ_0 , nm 578.2 510.6 289.1 271.2 255.3 337.1 Ethylme λ_0 , nm	λ_R , nm 694.2 599.0 315.5 294.3 275.6 373.4 ercaptane- λ_R , nm	$\begin{array}{c} \times 10^{-9}, \ \mathrm{cm} \ /\mathrm{str} \\ \hline 10.8 \\ 17.7 \\ 172.6 \\ 222.9 \\ 283.9 \\ 93.5 \\ \hline -C_2 H_4 \mathrm{SH} \\ \hline (d\sigma / d\Omega) \times \\ \times 10^{30}, \ \mathrm{cm}^2 /\mathrm{str} \end{array}$	$\begin{array}{c} 0.15 \\ 0.16 \\ 0.39 \\ 0.54 \\ 0.59 \end{array}$ $\nu \text{ SH} = 2 \\ k, \text{ km}^{-1}$	$\frac{0.18}{0.53}$ 0.35 0.29 0.15 2570 cm $\xi_p(\lambda)$	$\frac{W/(M^{-1} \cdot str^{-1})}{5.56}$ 15.46 7.18 0.05 0.03 -1 $S_{b}, 10^{6},$ $W/(m^{2} \cdot str^{-1})$	nm)
$\begin{array}{c} \lambda_{0}, \text{ nm} \\ \hline 578.2 \\ 510.6 \\ 289.1 \\ 271.2 \\ 255.3 \\ 337.1 \\ \hline \text{Ethylme} \\ \lambda_{0}, \text{ nm} \\ \hline 578.2 \end{array}$	$\frac{694.2}{599.0}$ 315.5 294.3 275.6 373.4 ercaptane- λ_R , nm 694.0	$\begin{array}{c} \times 10^{-9}, \ \mathrm{cm} \ /\mathrm{str} \\ \hline 10.8 \\ 17.7 \\ 172.6 \\ 222.9 \\ 283.9 \\ 93.5 \\ \hline C_2 \mathrm{H}_4 \mathrm{SH} \\ \hline (d\sigma / d\Omega) \times \\ \times 10^{30}, \ \mathrm{cm}^2 /\mathrm{str} \\ 14.3 \end{array}$	$\begin{array}{c} 0.15 \\ 0.16 \\ 0.39 \\ 0.54 \\ 0.59 \end{array}$ $\nu \text{ SH} = 2 \\ k, \text{ km}^{-1} \\ 0.15 \end{array}$	$\frac{0.18}{0.53}$ 0.35 0.29 0.15 2570 cm $\xi_p(\lambda)$ 0.18	$\frac{W/(M^{2} + SH^{2})}{5.56}$ 15.46 7.18 0.05 0.03 -1 $\frac{S_{b}, 10^{6}}{W/(m^{2} + SH^{2})}$	nm)
$\begin{array}{c} \lambda_0, \text{ nm} \\ \hline 578.2 \\ 510.6 \\ 289.1 \\ 271.2 \\ 255.3 \\ 337.1 \\ \hline \text{Ethylme} \\ \lambda_0, \text{ nm} \\ \hline 578.2 \\ 510.6 \\ \end{array}$	$\frac{694.2}{599.0}$ 315.5 294.3 275.6 373.4 ercaptane- λ_R , nm 694.0 598.8	$\begin{array}{r} \times 10^{-9}, \ \mathrm{cm} \ /\mathrm{str} \\ \hline 10.8 \\ 17.7 \\ 172.6 \\ 222.9 \\ 283.9 \\ 93.5 \\ \hline C_2 \mathrm{H_4SH} \\ \hline (d\sigma / d\Omega) \times \\ \times 10^{30}, \ \mathrm{cm}^2 / \mathrm{str} \\ 14.3 \\ 23.5 \\ \end{array}$	$\begin{array}{c} 0.15 \\ 0.16 \\ 0.39 \\ 0.54 \\ 0.59 \end{array}$ $\nu \text{ SH} = 2 \\ k, \text{ km}^{-1} \\ 0.15 \\ 0.16 \end{array}$	$\begin{array}{c} 0.18\\ 0.53\\ 0.35\\ 0.29\\ 0.15\\ \end{array}$	$\frac{W/(M^{2} + SH^{2})}{5.56}$ 15.46 7.18 0.05 0.03 -1 $\frac{S_{b}, 10^{6}}{W/(m^{2} + SH^{2})}$ 5.56 15.48	nm)
$\begin{array}{c} \lambda_0, \text{ nm} \\ \hline 578.2 \\ 510.6 \\ 289.1 \\ 271.2 \\ 255.3 \\ 337.1 \\ \hline \text{Ethylmee} \\ \lambda_0, \text{ nm} \\ \hline 578.2 \\ 510.6 \\ 289.1 \\ \end{array}$	$\frac{694.2}{599.0}$ 315.5 294.3 275.6 373.4 ercaptane- λ_R , nm 694.0 598.8 315.4	$\begin{array}{r} \times 10^{-9}, \ \mathrm{cm} \ /\mathrm{str} \\ \hline 10.8 \\ 17.7 \\ 172.6 \\ 222.9 \\ 283.9 \\ 93.5 \\ \hline C_2 \mathrm{H_4SH} \\ \hline (d\sigma / d\Omega) \times \\ \times 10^{30}, \ \mathrm{cm}^2 / \mathrm{str} \\ 14.3 \\ 23.5 \\ 229.0 \\ \end{array}$	$\begin{array}{c} 0.15 \\ 0.16 \\ 0.39 \\ 0.54 \\ 0.59 \end{array}$ $\nu \text{ SH} = 2 \\ k, \text{ km}^{-1} \\ \begin{array}{c} 0.15 \\ 0.16 \\ 0.39 \end{array}$	$\begin{array}{c} 0.18\\ 0.53\\ 0.35\\ 0.29\\ 0.15\\ \hline \xi_p(\lambda)\\ 0.18\\ 0.53\\ 0.35\\ \end{array}$	$\frac{W/(M^{2} + SH^{2})}{5.56}$ 15.46 7.18 0.05 0.03 -1 $\frac{S_{b}, 10^{6}}{W/(m^{2} + SH^{2})}$ 5.56 15.48 7.17	nm)
$\begin{array}{r} \lambda_0, \text{ nm} \\ \hline 578.2 \\ 510.6 \\ 289.1 \\ 271.2 \\ 255.3 \\ 337.1 \\ \hline \text{Ethylmee} \\ \lambda_0, \text{ nm} \\ \hline 578.2 \\ 510.6 \\ 289.1 \\ 271.2 \end{array}$	$\frac{694.2}{599.0}$ 315.5 294.3 275.6 373.4 ercaptane- λ_R , nm 694.0 598.8 315.4 294.2	$\begin{array}{r} \times 10^{-9}, \ \mathrm{cm} \ /\mathrm{str} \\ \hline 10.8 \\ 17.7 \\ 172.6 \\ 222.9 \\ 283.9 \\ 93.5 \\ \hline C_2 \mathrm{H}_4 \mathrm{SH} \\ \hline (d\sigma / d\Omega) \times \\ \times 10^{30}, \ \mathrm{cm}^2 / \mathrm{str} \\ 14.3 \\ 23.5 \\ 229.0 \\ 295.7 \\ \end{array}$	$\begin{array}{c} 0.15 \\ 0.16 \\ 0.39 \\ 0.54 \\ 0.59 \end{array}$ $\nu \text{ SH} = 2 \\ k, \text{ km}^{-1} \\ \begin{array}{c} 0.15 \\ 0.16 \\ 0.39 \\ 0.54 \end{array}$	$\begin{array}{c} 0.18\\ 0.53\\ 0.35\\ 0.29\\ 0.15\\ \hline \\ \xi_p(\lambda)\\ 0.18\\ 0.53\\ 0.35\\ 0.29\\ \end{array}$	$\frac{W/(M^{2} + SH^{2})}{5.56}$ 15.46 7.18 0.05 0.03 -1 $\frac{S_{b}, 10^{6},}{W/(m^{2} + SH^{2})}$ 5.56 15.48 7.17 0.05	nm)
$\begin{array}{r} \lambda_0, \text{ nm} \\ \hline 578.2 \\ 510.6 \\ 289.1 \\ 271.2 \\ 255.3 \\ 337.1 \\ \hline \text{Ethylmee} \\ \lambda_0, \text{ nm} \\ \hline 578.2 \\ 510.6 \\ 289.1 \\ 271.2 \\ 255.3 \\ \end{array}$	$\frac{694.2}{599.0}$ 315.5 294.3 275.6 373.4 ercaptane- λ_R , nm 694.0 598.8 315.4 294.2 275.6	$\begin{array}{r} \times 10^{-0}, \ \mathrm{cm} \ /\mathrm{str} \\ \hline 10.8 \\ 17.7 \\ 172.6 \\ 222.9 \\ 283.9 \\ 93.5 \\ \hline C_2 \mathrm{H}_4 \mathrm{SH} \\ \hline (d\sigma / d\Omega) \times \\ \times 10^{30}, \ \mathrm{cm}^2 / \mathrm{str} \\ 14.3 \\ 23.5 \\ 229.0 \\ 295.7 \\ 376.5 \\ \end{array}$	$\begin{array}{c} 0.15 \\ 0.16 \\ 0.39 \\ 0.54 \\ 0.59 \end{array}$ $\begin{array}{c} \nu \text{ SH} = 2 \\ k, \text{ km}^{-1} \\ \hline 0.15 \\ 0.16 \\ 0.39 \\ 0.54 \\ 0.59 \end{array}$	$\begin{array}{c} 0.18\\ 0.53\\ 0.35\\ 0.29\\ 0.15\\ \hline \\ \xi_p(\lambda)\\ 0.18\\ 0.53\\ 0.35\\ 0.29\\ 0.15\\ \end{array}$	$\frac{W/(M^{2} + SH^{2})}{5.56}$ 15.46 7.18 0.05 0.03 -1 $\frac{S_{b}, 10^{6}}{W/(m^{2} + SH^{2})}$ 5.56 15.48 7.17 0.05 0.03	<u>nm)</u> nm)

Письма в ЖТФ, 2001, том 27, вып. 21

75

детектируемой лидаром мощности P_b для нашей экспериментальной ситуации, рассчитанный для каждой длины волны [4]. Причем превышение мощности КР над фоновой получено лишь для длины волны 255 nm для всего диапазона расстояний и концентрации 10^{19} cm⁻³.

На рис. 2 приведены результаты расчетов для всех в исследуемых молекул с концентрацией 10^{19} cm⁻³ и длины волны 255 nm и тех же расстояний зондирования. Анализ этих результатов показывает, что на всех расстояниях максимальную мощность можно получить на длине волны 255 nm для полосы CH этилмеркаптана, несколько ниже для полосы SH и этана и еще ниже для этилена. Причем для всех молекул получено превышение над фоном, который на этой длине выше для полосы CH этилмеркаптана и этана. Используя данные о ПДК, можно оценить максимальные расстояния, на который можно обнаружить исследуемые молекулы с концентрациями на уровне ПДК. Наилучший результат для этана и этилена дают длины волн 289 и 271 nm — 4 и 1.5 km соответственно, а для этилмеркаптана на длине волны 271 nm 40 m для полосы CH и 30 m — для SH.

Таким образом, оптимальным является использование в такой лидарной системе излучения медного лазера с длиной волны 271.2 nm для обнаружения исследуемых молекул с концентрациями на уровне ПДК.

Список литературы

- [1] Межерис Р. Лазерное дистанционное зондирование. М.: Мир, 1987. 550 с.
- [2] *Привалов В.Е., Шеманин В.Г.* // Оптика и спектроскопия. 1997. Т. 82. № 4. С. 700–702.
- [3] Privalov V.E., Shemanin V.G. // Proceedings of SPIE. 1998. N 3345. P. 6-10.
- [4] Привалов В.Е., Шеманин В.Г. // Оптика атмосферы и океана. 1998. Т. 11. № 2-3. С. 237-239.
- [5] Вицинский С.А., Дивин В.Д., Келлер А.В. и др. // Оптический журнал. 1996. № 5. С. 83–88.
- [6] Перечень и коды веществ, загрязняющих атмосферный воздух. С.-Петербург: НИИ Охраны атмосферного воздуха, 1992. 130 с.
- [7] Murphy W.F., Holzer W., Bernstein H.J. // Appl. Spectroscopy. 1969. V. 23. N 3. P. 211–218.
- [8] Свердлов Л.М., Ковнер М.А., Крайнов Е.П. Колебательные спектры многоатомных молекул. М.: Наука, 1970. 560 с.

Письма в ЖТФ, 2001, том 27, вып. 21