Эволюция структуры и свойств сверхпроводника MgB₂ при изотермическом отжиге

© А.А. Блинкин, В.В. Деревянко, В.Н. Головин, Т.В. Сухарева, В.А. Финкель

Национальный научный центр "Харьковский физико-технический институт" Национальной академии наук Украины, 61108 Харьков, Украина E-mail: finkel@kipt.kharkov.ua

·_____

(Поступила в Редакцию 6 октября 2004 г.)

Изучено влияние относительно слабых воздействий на структуру двузонного BCS-сверхпроводника MgB₂. Объектами исследования служили образцы MgB₂ отличающиеся временем отжига при температуре 900°С. Обнаружено, что величины параметров решетки, остаточного сопротивления и критической температуры очень слабо зависят от времени отжига, величина же удельного сопротивления уменьшается в несколько раз при увеличении времени отжига от 2 до 10 h. Высказано предположение о том, что наблюдаемые эффекты могут быть обусловлены влиянием процесса упорядочения атомов Mg и B в кристаллической решетке MgB₂ на перенос заряда по двумерным σ -связям B–B.

1. Введение

Сверхпроводимость диборида магния MgB₂ со структурой C32 (пространственная группа $D_{6h}^1 - P \frac{6}{mmm}$) и критической температурой $T_c \sim 39$ К была открыта в начале 2001 г. [1]. С этого времени исследования природы сверхпроводимости MgB₂, технологии синтеза поликристаллических образцов, тонких пленок и монокристаллов и процессов получения сверхпроводящих материалов на его основе, особенностей кристаллической структуры и свойств нового сверхпроводника в нормальном и сверхпроводящем состояниях интенсивно ведутся во многих лабораториях мира (см., например, [2–9]).

Особенностью кристаллической структуры MgB₂ является то, что в ней плотноупакованные гексагональные слои атомов магния чередуются с *honeycomb* ("графитоподобными") слоями атомов бора. К настоящему времени надежно установлено, что сверхпроводимость диборида магния обусловлена известным с 1957 г. механизмом электрон-фононного взаимодействия Бардина– Купера–Шриффера (теория BCS) [10]. В рамках модели BCS критическая температура сверхпроводника зависит от трех фундаментальных параметров: дебаевской частоты ω_D ($\hbar \varpi_D = k \Theta_D$, где Θ_D — температура Дебая, \hbar — постоянная Планка, k — постоянная Больцмана), величины электрон-фононного взаимодействия Vи плотности электронных состояний на уровне Ферми $N(E_F)$

$$kT_c = 1.13\hbar\varpi_D \cdot \exp\left[-\frac{1}{VN(E_F)}\right].$$
 (1)

Действительно, частота фононных колебаний ω_D и как следствие температура Дебая $\Theta_D \sim 900-1200 \,\mathrm{K} \,[11-13]$ нового сверхпроводника очень высоки, но плотность электронных состояний на уровне Ферми $N(E_F)$ в случае диборида магния не может быть высокой — атомы Mg не имеют *d*-электронов. Единственным источником вы-

сокой критической температуры соединения MgB₂ может служить величина электрон-фононного взаимодействия V [2]. Существенное понижение критической температуры при повышении гидростатического давления $(dT_c/dP \sim 1.6 \text{ K/GPa} [14])$, величина которого хорошо согласуется с расчетами зонной структуры MgB₂ [15], а также наличие достаточно сильного изотопического эффекта [16,17] свидетельствуют в пользу представлений о сильном электрон-фононном взаимодействии и высоких фононных частотах легких атомов бора в кристаллической решетке. Основную роль в электрон-фононном взаимодействии играют ангармонические E_{2g} -фононные моды [18].

Известно, что в случае MgB₂ реализуется давно предсказанная теоретически [19], но никогда, по-видимому, ранее не наблюдавшаяся экспериментально двущелевая сверхпроводимость. В рамках "двузонной модели" (см., например, [18]) постулируется существование двух различных *s*-волновых сверхпроводящих щелей — большой Δ_{σ} и малой Δ_{π} — на различных участках поверхности Ферми. Величины этих энергетических щелей оказались существенно различными: для трехмерных (3D) π -связей между слоями атомов В и Мg малая щель $\Delta_{\pi}(0) \sim 2.4 \pm 0.1$ meV, для двумерных (2D) σ -связей В–В большая щель $\Delta_{\sigma}(0) \sim 7.1 \pm 0.4$ meV (см., например, [20–22]).

В связи с реализацией модели двущелевой сверхпроводимости в случае MgB₂ большой интерес представляет изучение влияния различных нарушений структуры — примесей, отклонений от стехиометрического состава, появления "антиструктурных дефектов" (т. е. разупорядочения) [23], дислокаций и т. п. — на сверхпроводимость диборида магния и свойства этого сверхпровоника в нормальном состоянии. В ранее проводившихся многочисленных исследованиях в этом направлении, как правило, рассматривались эффекты, связанные с достаточно сильными воздействиями на кристаллическую решетку — замена элементов (главным образом по схемам: Mg \rightarrow Al, B \rightarrow C) в кристаллической решетке сверхпроводника MgB₂ в достаточно широких пределах (см., например, [7,24–26]), введение большого количества примесей [27], облучение высокими дозами нейтронов и др. частиц [28], термообработка в экстремальных условиях [29], горячее изостатическое прессование [30] и т.д. Казалось бы, результаты подобных исследований дают основание утверждать, что с ростом деформации кристаллической решетки MgB₂ критическая температура сверхпроводящего перехода понижается, а величина остаточного электросопротивления $\rho_{273 \text{ K}}/\rho_{T \rightarrow T_c}$ возрастает [31,32]. Необходимо, однако, иметь в виду следующие два обстоятельства.

1) Поскольку одним из фундаментальных свойств многощелевых сверхпроводников является то, что наличие в них немагнитных примесей должно приводить к разрушению куперовских пар, подобно тому как магнитные примеси разрушают сверхпроводимость обычных (однозонных) сверхпроводников [6,33], изменение химического состава MgB₂ должно приводить к сильным изменениям температуры сверхпроводящего перехода.

2) В условиях "сильных" воздействий на структуру могут одновременно воздействовать несколько механизмов, приводящих к эволюции свойств MgB₂ в сверхпроводящем и нормальном состоянии. Это обстоятельство признает большинство авторов цитированных выше работ.

В настоящей работе предпринята попытка изучить влияние относительно слабых воздействий, не приводящих к заметным изменениям химического состава и дефектности кристаллической решетки, на структурные характеристики (фазовый состав, параметры и деформации решетки), критическую температуру T_c и температурную зависимость электросопротивления R(T) при $T > T_c$ этого сверхпроводника. Конкретно речь идет об изучении структуры и свойств образцов MgB₂, отличающихся лишь временем отжига при умеренно высокой температуре.

2. Образцы и методы исследования

Синтез образцов MgB₂ производился по следующей схеме [34]. Порошки магния и бора чистотой ~ 99% смешивались в стехиометрическом соотношении, полученная смесь измельчалась и дополнительно перемешивалась при помощи мельницы-ступки "Pulverizette". Из смеси компонентов прессовались таблетки диаметром ~ 8 mm, которые затем загружались в кварцевый контейнер. Контейнер помещался в камеру высокого давления, ранее разработанную для синтеза ВТСП со структурой 124 (YBa₂Cu₄O_{8± δ} и др.) [35], камера откачивалась на вакуум и заполнялась аргоном под давлением ~ 10⁶ Ра во избежание испарения легколетучего магния при синтезе MgB₂. Синтез производился при температуре 900°С в течение двух часов.

Полученные таблетки измельчались в порошок. На рентгенограмме порошка (дифрактометр ДРОН-УМ1, Cu_{Ka} -излучение) наблюдается характерная система дифракционных линий диборида магния, соответствующих пространственной группе $D_{6h}^1 - P \frac{6}{mmm}$ с параметрами кристаллической решетки $a = 3.0833 \pm 0.0001$ Å, $c = 3.5233 \pm 0.0001$ Å. Полученные значения параметров решетки близки к данным других авторов (см., например, [4,36]). Линии посторонних фаз практически отсутствуют.

Из одной партии порошка MgB_2 в строго идентичных условиях прессовались образцы для исследований электрофизических свойств размером ~ $3 \times 3 \times 20$ mm. Полученные образцы спекались в атмосфере аргона при 950°С в течение нескольких минут, а затем подвергались отжигу при температуре 900°С, несколько меньшей температуры спекания, в той же среде в течение 2, 4, 6, 8 или 10 часов. При помощи проводящего клея на образцы наносились низкоомные Ag контакты. Для проведения структурных (рентгенографических) исследований образцы MgB₂, прошедшие различную термическую обработку, повторно измельчались в порошок.

Электросопротивление образцов MgB₂ в диапазоне температур ~ 30–275 К измерялись с помощью приборно-программного измерительного комплекса (ППИК), созданного на основе криогенератора RGD-210 (Leybold) [37]. Датчиком температуры служил платиновый термометр сопротивления. Каждая серия измерений содержала ~ 500–1000 экспериментальных точек.

3. Результаты исследований

3.1. Структурные исследования. На рис. 1 и в таблице представлены результаты измерений параметров кристаллической решетки образцов MgB₂, прошедших различную термическую обработку при 900°С (подчеркнем еще раз, что все структурные исследования

Рис. 1. Зависимость изменений параметров кристаллической решетки образцов сверхпроводника MgB₂ от времени изотермического отжига при 900°С.

Время отжига при 900°С, h	Параметры решетки					Электрофизические свойства				
	<i>a</i> , Å	<i>c</i> , Å	c/a	<i>T</i> _c , K	ΔT_c , K	$\rho_{273\mathrm{K}},\mathrm{m}\Omega\cdot\mathrm{cm}$	$RRR = \frac{\rho_{273 \mathrm{K}}}{\rho_{50 \mathrm{K}}}$	Коэффициенты уравнения $\frac{ ho(T)}{ ho_{273 \mathrm{K}}} = a + b \cdot T^n$		
								а	b, K^{-n}	п
0	3.0833	3.5233	1.1427		_	-	_	—	_	_
2	3.0810	3.5228	1.1434	37.25	0.278	7.346	1.408	0.69641	$2.2832 \cdot 10^{-6}$	2.105 ± 0.009
4	3.0787	3.5226	1.1442	37.28	0.316	3.476	1.497	0.65576	$1.0409 \cdot 10^{-6}$	2.263 ± 0.006
6	3.0787	3.5227	1.1442	37.08	0.362	1.765	1.576	0.62471	$0.7821 \cdot 10^{-6}$	2.336 ± 0.008
8	3.0787	3.5227	1.1442	37.53	0.307	0.860	1.619	0.60093	$3.3870 \cdot 10^{-6}$	2.085 ± 0.006
10	3.0786	3.5227	1.1443	36.78	0.337	0.773	1.603	0.60370	$3.8748 \cdot 10^{-6}$	2.060 ± 0.006

Образцы MgB₂

проведены на порошках, полученных путем измельчения соответствующих образцов). В ходе зависимостей $a/a_0(\tau)$, $c/c_0(\tau)$ и $c/a(\tau)$ наблюдаются следующие тенденции: при увеличении времени отжига образцов MgB₂ при 900°С параметры кристаллической решетки уменьшаются, причем относительные изменения параметра a в несколько раз превосходят изменения параметра c; при увеличении времени отжига отношение осей c/a растет.

Кроме того, в результате отжига имеет место небольшое, но явно выраженное изменение профиля дифракционных линий. На рис. 2 представлены зависимости полной ширины (FWHM) $\Delta(2\vartheta)$ дифракционных линий (100) и (110) от времени отжига при 900°С. Для отражений от призматических плоскостей первого рода (100) наблюдается слабо выраженная тенденция к сужению линии при увеличении времени отжига, для отражений от призм второго рода (110) — к уширению дифракционной линии.

Рис. 2. Зависимость FWHM (ширины дифракционных линий) (100) и (110) образцов сверхпроводника MgB₂ от времени изотермического отжига при 900°С.

3.2. Изучение электрофизических свойств. Результаты измерения температурных зависимостей удельного электросопротивления $\rho(T)$ образцов MgB₂,

прошедших различную термическую обработку, представлены на рис. 3. На врезках показаны зависимости величины удельного электросопротивления при $T = 0^{\circ}$ C ($\rho_{273 \text{ K}}$) и "остаточного сопротивления" $RRR = \rho_{273 \text{ K}}/\rho_{50 \text{ K}}$ от времени изотермического отжига.

Обращают на себя внимание следующие обстоятельства: изменения критической температуры T_c , определяемой по середине скачка электросопротивления, и ширины перехода ΔT_c невелики (см. таблицу); об-

Рис. 3. Температурная зависимость удельного электросопротивления образцов сверхпроводника MgB₂, отожженных в течение 2–8 часов при 900°С. На врезках: зависимости $\rho_{273 \text{ K}}$ и $RRR = \frac{\rho_{273 \text{ K}}}{\rho_{50 \text{ K}}}$ от времени изотермического отжига при 900°С.

щий уровень электросопротивления исследуемых образцов достаточно высок;¹ во всем диапазоне температур $T_c \leq T \leq 273$ К ход зависимостей $\rho(T)$ существенно зависит от времени отжига при 900°С, при этом величина "остаточного сопротивления" *RRR* меняется весьма незначительно (нижняя врезка на рис. 3); температурная зависимость электросопротивления всех исследуемых образцов при температурах 50–273 К хорошо описывается степенной функцией

$$R(T) = R_0 + R_1 \cdot T^n \tag{2}$$

с показателем степени $n = 2.17 \pm 0.05$ (см. таблицу).

4. Обсуждение результатов

Отметим сразу, что одновременное уменьшение параметров кристаллической решетки а и с, сопровождающееся ростом осевого отношения c/a, не наблюдается ни при изменении степени дефицита магния х в решетке Mg_{1-x}B₂ [7], ни при изменении состава сплавов $Mg_{1-x}Al_{y}B_{2}$ или $Mg(B_{1-z}C_{z})_{2}$ [43]. Повышение плотности упаковки атомов в кристаллической решетке, о котором свидетельствуют данные, приведенные на рис. 1, дает основание полагать, что при высокотемпературном отжиге образцов MgB₂ протекают процессы, не связанные с изменением концентрации вакансий или состава сверхпроводника. Как известно, к числу подобных процессов относится атомное (конфигурационное) упорядочение, играющее важную роль в формировании свойств сверхпроводников с различными кристаллическими решетками [44].²

Косвенно о возможности протекания процесса упорядочения при отжиге образцов MgB₂, очевидно, свидетельствует и различный характер зависимости величины FWHM для дифракционных линий (100) и (110) от времени отжига (рис. 2). Уместно напомнить, что ранее при изучении концентрационного беспорядка, связанного с дефицитом Mg в решетке MgB₂, наблюдался лишь явно выраженный эффект уменьшения критической температуры T_c при росте FWHM; рост же величины FWHM связывали с увеличением плотности дислокаций в базисной плоскости (001) MgB₂ [30–32,36]. Судя по полученным в работе данным по влиянию слабых внешних воздействий на структуру и сверхпроводимость MgB₂, корреляция между величинами FWHM и T_c носит более сложный характер (рис. 4).

Принципиально важен вопрос о характере температурной зависимости электросопротивления MgB_2 при $T > T_c$, поскольку транспортные свойства двузонного сверхпроводника в нормальном состоянии должны быть

Рис. 4. Зависимости критической температуры образцов сверхпроводника MgB_2 от FWHM дифракционных линий (100) и (110). "Усы" по оси *у* (T_c) соответствуют ширине сверхпроводящего перехода.

отличными от свойств обычного (однозонного) сверхпроводника (см., например, [6,33,47]). При температурах $T \ll \Theta_D$ ($T_c < T \lesssim 300 \,\mathrm{K}$) температурная зависимость электросопротивления MgB₂ — суммы вкладов, обусловленных рассеянием электронов на примесях и дефектах (R_0) и на фононах (R_{ph}) — должна описываться законом Блоха–Грюнейзена

$$R(T) = R_0 + R_1 \cdot z^n \int_0^z \frac{z^n dz}{(1 - e^{-z})(e^z - 1)},$$
 (3)

где $z = \frac{T}{\Theta_{\rm P}}, R_1$ — коэффициент пропорциональности.

Поскольку, как уже упоминалось выше, дебаевская температура Θ_D двузонного BCS-сверхпроводника MgB₂ весьма высока, уравнение (3) преобразуется к виду (2). Величина показателя степени *n* в уравнении (2), по данным различных авторов, колеблется в достаточно широких пределах — от 1 [4] до 2.5–3 [48]. В рамках существующих представлений величина показателя $n \rightarrow 3$ характерна для сверхпроводника в "чистом пределе" [49] $(\varepsilon_0 \gg \lambda, \text{ где } \xi_0$ — длина когерентности, λ — глубина проникновения магнитного поля); в "грязном пределе" $(l \ll \xi_0, \text{ где } l - \text{длина свободного пробега носителей заряда) <math>n \rightarrow 2$.

Таким образом, высокие значения $\rho_{273 \text{ K}}$, малые значения *RRR* и величина показателя степени $n \sim 2$ в уравнении (2) для исследуемых образцов соответствуют случаю "грязного предела".

Как известно, для двузонного сверхпроводника MgB₂ межзонное $\sigma\pi$ -рассеяние носителей заряда не играет заметной роли в транспортных свойствах в нормальном состоянии; перенос заряда при $T > T_c$ происходит по двум различным каналам: по 3D π -связям B–Mg и 2D σ -связям B–B. В "чистом пределе" превалирует π -канал, а в "грязном пределе" — σ -канал [6,47,50]. Есть

¹ Известно, что для монокристаллов и тонких пленок получены значения $\rho_{273 \text{ K}}$ на два-три порядка меньше (см., например, [37,38]), в то время как для поликристаллических образцов в литературе приводятся сходные значения ρ (см., например, [4,39–42]).

² Возможность протекания процессов упорядочения ⇔ разупорядочения в кристаллической решетке MgB₂ и влияние этих процессов на сверхпроводимость рассматривались, в частности, в работах [6,45,46].

основания полагать, что вся совокупность наблюдаемых в работе эффектов — очень слабое изменение T_c , практически постоянные значения *RRR* и *n* и достаточно сильное изменение абсолютных значений $\rho(T)$ при $T > T_c$ с изменением времени отжига при 900°С — может быть обусловлена влиянием процесса упорядочения атомов Mg и B в кристаллической решетке MgB₂ на перенос заряда по двумерным σ -связям B–B.

Подчеркнем, что наблюдаемые эффекты носят объемный характер и не могут быть связаны с изменением состояния границ зерен [51], как это имеет место в оксидных высокотемпературных сверхпроводниках, поскольку уменьшение $\rho_{273 \text{ K}}$ при повышении времени отжига хорошо согласуется с уменьшением параметров кристаллической решетки MgB₂ (рис. 1, 3). Косвенным аргументом в пользу представлений о связи атомного упорядочения и сверхпроводимости MgB₂ является наличие обнаруженного в работе эффекта анизотропии зависимости $T_c[\Delta(2\vartheta)]$ (рис. 4).

5. Заключение

Основным итогом настоящей работы следует считать обнаружение и интерпретацию эффектов изменения структурных и электрофизических свойств двузонного сверхпроводника MgB₂, вызыванных относительно слабыми воздействиями на его кристаллическую решетку — длительными отжигами при температуре ниже температуры синтеза. При таких воздействиях практически исключалась возможность изменения химического и фазового составов объектов исследования, с которыми, как правило, связывалось изменение структуры и свойств MgB₂ в нормальном и сверхпроводящем состояниях.

В настоящей работе на фоне довольно слабых изменений параметров решетки, температуры и ширины сверхпроводящего перехода, остаточного сопротивления и т.п. наблюдался лишь один сильный эффект — уменьшение в несколько раз удельного электросопротивления MgB₂ при увеличении времени отжига. Поскольку объекты исследования заведомо находятся в "грязном состоянии", это означает, что слабое воздействие относительно низкотемпературная термообработка оказывает существенное влияние на основной канал переноса заряда в нормальном состоянии по двумерным σ -связям В–В. Высказано предположение о том, что наблюдаемый эффект обусловлен протеканием процесса упорядочения атомов в подрешетках магния и бора. Совершенно очевидно, что в подобном процессе может участвовать небольшое количество атомов Mg и B, значительно меньшее, чем в процессах, связанных с диффузией посторонних атомов (при замене элементов) или вакансий. В этой связи, очевидно, невелики и эффекты изменения Т_с и параметров кристаллической решетки. Наличие своеобразной корреляции между величиной Т_с и анизотропной деформацией решетки MgB2 косвенным образом свидетельствует о повышении критической температуры при росте совершенства кристаллической решетки.³

Список литературы

- J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu. Nature 410, 63 (2001).
- [2] P.C. Canfield, G.W. Crabtree. Physics Today 56, 3, 34 (2003).
- [3] C. Buzea, T. Yamashita. Supercond. Sci. Technol. 14, R115 (2001).
- [4] В.М. Дмитриев, Н.Н. Пренцлау, В.Н. Баумер, Н.Н. Гальцов, Л.А. Ищенко, А.И. Прохватилов, М.А. Стржемечный, А.В. Терехов, А.И. Быков, В.И. Ляшенко, Ю.Б. Падерно, В.Н. Падерно. ФНТ **30**, *4*, 385 (2004).
- [5] P. Ravindran, P. Vajeeston, R. Vidya, A. Kjekshus, H. Fjellvåg. Phys. Rev. B 64, 224 509 (2001).
- [6] I.I. Mazin, O.K. Andersen, O. Jepsen, O.V. Dolgov, J. Kortus, A.A. Golubov, A.B. Kuz'menko, D. van der Marel. Phys. Rev. Lett. 89, 107 002 (2002).
- [7] А.Л. Ивановский. ФТТ 45, 10, 1742 (2003).
- [8] J.D. Jorgensen, D.G. Hinks, S. Short. Phys. Rev. B 63, 224 522 (2001).
- [9] X.H. Chen, Y.S. Wang, Y.Y. Xue, R.L.Y.Q. Wang, C.W. Chu. Phys. Rev. B 65, 024 502 (2002).
- [10] J. Bardeen, L.N. Cooper, J.R. Schrieffer. Phys. Rev. 108, 1175 (1957).
- [11] Z.F. Wei, G.C. Che, F.M. Wang, W.C. Wang, M. He, X.L. Chen. Modern Phys. Lett. B 15, 25, 1109 (2001).
- [12] C. Walti, E. Felder, C. Degen, G. Wigger, R. Monnier, B. Delley, H.R. Ott. Phys. Rev. B 64, 172 515 (2001).
- [13] R. Bouquet, R.A. Fisher, N.E. Phillips, D.G. Hinks, J.D. Jorgensen. Phys. Rev. Lett. 87, 047 001 (2001).
- [14] B. Lorenz, R.L. Meng, C.W. Chu. Phys. Rev. B 64, 012 507 (2001).
- [15] J. Kortus, I.I. Mazin, K.D. Belashcenko, V.P. Antopov, L.L. Boyer. Phys. Rev. Lett. 86, 4656 (2001).
- [16] S.L. Bud'ko, G. Lepertot, C. Petrovic, C.E. Cunningham, N. Anderson, P.C. Canfield. Phys. Rev. Lett. 86, 1877 (2001).
- [17] D.G. Hinks, H. Claus, J.D. Jorgensen. Nature 411, 457 (2001).
- [18] A.Y. Liu, I.I. Mazin, J. Kortus. Phys. Rev. Lett. 87, 087 005 (2001).
- [19] H. Suhl, B.T. Matthias, L.R. Walker. Phys. Rev. Lett. 3, 552 (1959).
- [20] I.M. Iavarone, G. Karapetov, A.E. Koshelev, W.K. Kwok, G.W. Crabtree, D.G. Hinks, W.N. Kang, Eun-Mi Choi, Hyun Jung Kim, Hyeong-Jin Kim, S.I. Lee. Phys. Rev. Lett. 89, 187 002 (2002).
- [21] K. Yanson, Yu.G. Naidyuk. ΦΗΤ 30, 4, 355 (2004).
- [22] A.M. Cucolo, F. Bobba, F. Giubileo, D. Roditchev. Physica A 339, 1–2, 112 (2004).
- [23] A.R. Sweedler, D.E. Cox. Phys. Rev. 12, 147 (1975).
- [24] Y.Y. Xue, R.L. Meng, B. Lorenz, J.K. Meen, Y.Y. Sun, C.W. Chu. Physica C 377, 7 (2002).
- [25] R.A. Ribeiro, S.L. Bud'ko, C. Petrovic, P.C. Canfield. Physica C 385, 1–2, 16 (2002).

³ С прикладной точки зрения результаты настоящей работы указывают на наличие простого и достаточно эффективного пути повышения критической температуры и понижения электросопротивления MgB₂ в нормальном состоянии — проведение длительных отжигов при умеренно высоких температурах.

- [26] M. Paranthaman, J.R. Thomson, D.K. Christen. Physica C 355, 1 (2001).
- [27] B. Lorenz, R.L. Meng, Y.Y. Xue, C.W. Chu. Phys. Rev. B 64, 052 513 (2001).
- [28] E. Mezzetti, D. Botta, R. Cherubini, A. Chiodani, R. Gerbaldo, G. Chigo, G. Giunchi, L. Gozzelino, B. Minetti. Physica C 372–376, 1277 (2002).
- [29] M.H. Badr, K.-W. Ng. Supercond. Sci. Technol. 16, 668 (2003).
- [30] A. Serquis, X.Z. Liao, Y.T. Zhu, J.Y. Coulter, J.Y. Huang, J.O. Willis, D.E. Peterson, F.M. Mueller, N.O. Moreno, J.D. Thompson, V.F. Nesterenko, S.S. Indrakanti. J. Appl. Phys. 92, 1, 351 (2002).
- [31] Y. Zhu, L. Wu, V. Volkov, Q. Li, G. Gu, A.R. Moodenbaugh, M. Malac, M. Suenaga, J. Tranquada. Physica C 356, 239 (2001).
- [32] X.Z. Liao, A. Serquis, Y.T. Zhu, D.E. Peterson, F.M. Mueller, H.F. Xu, Supercond. Sci. Technol. 17, 1026 (2004).
- [33] A. Gurevich. Brazillian Journal of Physics 33, 4, 700 (2003).
- [34] A.A. Blinkin, V.N. Golovin, V.V. Derevyanko, T.V. Sukhareva, V.A. Finkel. Functional Materials 9, 2, 239 (2002).
- [35] В.М. Аржавитин, Ю.Ю. Раздовский, В.А. Финкель. СФХТ 6, 1291 (1993).
- [36] S. Lee, T. Masui, H. Mori, Yu. Eltsev, A. Yamamoto, S. Tajima. Supercond. Sci. Technol. 16, 213 (2003).
- [37] В.В. Торяник, В.А. Финкель, В.В. Деревянко. Физика и химия обработки материалов 5, 55 (1995).
- [38] Yu. Eltsev, K. Nakao, S. Lee, T. Masui, N. Chikumoto, S. Tajima, N. Koshizuka, M. Murakami. Phys. Rev. B 66, 180 504 (2002).
- [39] D.K. Fennimore, J.E. Ostenson, S.L. Bud'ko, G. Lapertot, P.C. Cornfield. Phys. Rev. Lett. 86, 2420 (2001).
- [40] J.M. Rowell. Supercond. Sci. Technol. 16, 6, R17 (2003).
- [41] N. Rogado, M.A. Hayward, K.A. Regan, Y. Wang, N.P. Ong, H.W. Zanbergen, J.M. Rowell, R.J. Cava. J. Appl. Phys. 91, 974 (2002).
- [42] P.A. Sharma, N. Hur, Y. Horibe, C.H. Chen, B.G. Kim, S. Guha, M.Z. Cieplak, S.-W. Cheong. Phys. Rev. Lett. 89, 167 003 (2002).
- [43] R.J. Cava, H.W. Zandbergen, K. Inumaru. Physica C 385, 1–2, 8 (2002).
- [44] В.А. Финкель. Структура сверхпроводящих соединений. Металлургия, М. (1983).
- [45] Y. Wang, F. Bouquet, I. Shekin, P. Toulmonde, B. Revaz, M. Eisterer, H.W.W. Weber, J. Hinderer, A. Junod. J. of Physics: Condens. Matter 15, 6, 883 (2003).
- [46] K.A. Yates, G. Burnell, N.A. Stelmashenko, F.-J. Kang, H.N. Lee, B. Oh, M.G. Blamire. Phys. Rev. B 68, 220512 (2003).
- [47] I.I. Mazin, V.P. Antropov. Physica C 385, 49 (2003).
- [48] V.A. Drozd, A.M. Gabovich, P. Gierowski, M. Pikala, H. Szymczak. Physica C 402, 4, 325 (2004).
- [49] A.B. Pippard. Proc. Roy. Soc. 203, 98 (1950).
- [50] M. Putti, V. Braccini, E. Galleani d'Agliano, F. Napoli, I. Pallechi, A.S. Siri, P. Manfrietti, A. Palenzona. Supercond. Sci. Technol. 16, 188 (2003); Phys. Rev. B 67, 064 505 (2003).
- [51] M. Putti, E. Galleani d'Agliano, D. Marré, F. Napoli, M. Tassisto, P. Manfrietti, A. Palenzona. Studies of High Temperature Superconductors 38, 303 (2001).