Тепловые колебания и структура квазидвумерных кристаллов R_2CuO_4 (R = La, Pr, Nd, Sm, Eu и Gd)

© Е.И. Головенчиц, В.А. Санина, А.А. Левин*,**, Ю.Ф. Шепелев*, Ю.И. Смолин*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия *Институт химии силикатов им. И.В. Гребенщикова Российской академии наук, 199155 Санкт-Петербург, Россия **Институт кристаллографии и физики твердого тела, Технический университет, D-1062 Дрезден, Германия E-mail: E.Golovenchits@pop.ioffe.rssi.ru

(Поступила в Редакцию 18 января 2002 г.)

Методом рентгеновской дифрактометрии изучены тепловые колебания ионов в кристаллах R_2CuO_4 (R = La, Pr, Nd, Sm, Eu, Gd). Сравнительный анализ пространственного распределения тепловых смещений ионов меди и редкоземельных ионов позволил сделать заключение об основных взаимодействиях, ответственных за структурное состояние слоев CuO_2 и кристаллов в целом. Была выявлена корреляция структурных свойств с величиной ионного радиуса и основным состоянием редкоземельных ионов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 02-02-16140а) и частичной поддержке Фонда "Фундаментальные исследования" Президиума РАН (проект "Квантовая макрофизика") и гранта Российского фонда фундаментальных исследований "Научные школы" (№ 00-15-96757).

Тепловые колебания ионов в кристалле определяются симметрией и величиной локального потенциала кристаллического поля. Это позволяет получать информацию о локальном потенциале, изучая пространственное распределение тепловых смещений ионов рентгеновскими дифракционными методами. В наших предыдущих работах [1,2] изучались тепловые колебания ионов Cu²⁺ и редкоземельных ионов (РЗИ) в кристаллах R₂CuO₄ (R = La, Eu, Pr, Gd). Основное внимание уделялось температурным зависимостям функции плотности вероятности (ФПВ), характеризующей пространственное распределение равновероятных смещений ионов относительно их равновесных позиций. При этом удавалось проследить за локальными структурными искажениями и структурными фазовыми переходами в изучаемых кристаллах при изменении температуры.

В данной работе ставится задача сравнить ФПВ ионов Cu²⁺ и РЗИ при фиксированной температуре в более широком ряде кристаллов R_2CuO_4 (R = La, Pr, Nd, Sm, Eu, Gd) и проследить влияние РЗИ на свойства СиО2-слоев и на структуру кристаллов в целом. С этой целью в дополнение к ранее полученным данным были изучены тепловые колебания в кристаллах Nd₂CuO₄ и Sm₂CuO₄ (при температурах 296 и 373 К). Анализ ФПВ ионов Cu²⁺ и РЗИ проведен для всего класса кристаллов R_2CuO_4 (R = La, Pr, Nd, Sm, Eu, Gd) при комнатной температуре с учетом данных, полученных ранее в [1,2]. Структура кристаллов La₂CuO₄ и R₂CuO₄ с РЗИ (R = Pr, Nd, Sm, Eu, Gd) представлена на рис. 1. Кристаллы R_2CuO_4 (R = Pr, Nd, Sm, Eu) обладают при всех температурах структурой Т'-типа (пространственная группа *I4/mmm*). В La₂CuO₄ и Gd₂CuO₄ имеются фазовые переходы из высокотемпературной тетрагональной фазы в низкотемпературную орторомбическую (см. [3] и [4] соответственно). Общая отличительная особенность структуры кристаллов La₂CuO₄ и R₂CuO₄ с РЗИ — ее квази-2*D* характер. Ионы расположены в слоях, перпендикулярных оси *c*. Между плоскостями CuO₂ находятся слои из ионов R³⁺ и O²⁻. При этом расстояния между слоями CuO₂ и между слоями, со-держащими ионы меди и РЗИ, значительно превышают расстояния между ионами внутри слоев. Нас главным образом интересуют свойства слоев CuO₂, удаленных друг от друга на расстояние c/2. Ближайшее окружение ионов Cu²⁺ в кристаллах La₂CuO₄ и R₂CuO₄ с РЗИ

Рис. 1. Структура кристаллов La₂CuO₄ (a) и R₂CuO₄ (R = Pr, Nd, Sm, Eu, Gd) (b).

отличается. В La₂CuO₄ — это октаэдры из ионов O^{2–} (координационное число Z = 6), а в R₂CuO₄ с P3И — квадраты из ионов кислорода (Z = 4). Структурные свойства изучаемых кристаллов определяются взаимодействиями внутри слоев CuO₂ и слоев, содержащих P3И, а также межслоевыми взаимодействиями (в основном взаимодействиями ионов Cu²⁺ и R³⁺). В настоящей работе исследуются основные взаимодействия, определяющие структурные свойства кристаллов, и их зависимость от свойств P3И.

Потенциал кубического кристаллического поля обычно имеет величину ~ 1 eV. Тетрагональные искажения кубической решетки связаны с изменением этого потенциала на величину порядка ~ 0.1 eV. Практически такую же величину в изучаемых кристаллах имеют аномально сильное 2D гейзенберговское обменное взаимодействие между спинами ионов Cu^{2+} (обменная константа $J \sim 0.13-0.15$ eV [5]) и спин-орбитальное (SO) взаимодействие ионов Cu^{2+} с константой $\lambda \sim 0.06-0.08$ eV [6]. В результате в кристаллах R_2CuO_4 с РЗИ для ионов Cu^{2+} имеется ряд близких по величине взаимодействий, которые определяют свойства кристаллов, в том числе и структурные.

В [1,2] показано, что вид ФПВ, а значит, и симметрия локальных потенциалов кристаллического поля ионов Cu^{2+} и РЗИ в кристаллах R_2CuO_4 (R = La, Pr, Eu, Gd) различаются. Однако во всех этих кристаллах в интервале температур 140–400 К преобладающими являлись локальные искажения в слоях CuO₂. Как следует из данной работы, и в Nd₂CuO₄ также преобладают искажения в этих слоях. И только в Sm₂CuO₄ при комнатной температуре основными являются ян-теллеровские искажения для ионов Sm³⁺ и вид ФПВ ионов меди определяется в основном взаимодействием Sm³⁺–Cu²⁺.

В работе [7] тепловые колебания в Pr_2CuO_4 при комнатной температуре изучались методом рассеяния нейтронов. Сравнивая ситуации в кристаллах Pr_2CuO_4 и CuO, авторы пришли к выводу, что в Pr_2CuO_4 динамическое поведение атомов меди формируется в основном взаимодействием с ближайшими атомами кислорода. В то же время из результатов исследования рамановского рассеяния света в ряде кристаллов R_2CuO_4 (R = Pr, Nd, Sm и Gd), выполненного также при комнатной температуре, делается вывод о существенном влиянии РЗИ на фононные спектры. При этом отмечается, что роль взаимодействия Cu–R увеличивается по мере уменьшения ионного радиуса РЗИ [8].

Особая ситуация в ряду кристаллов R_2CuO_4 с РЗИ возникает в Gd₂CuO₄. В работе [4] отмечалось, что в этом кристалле имеется структурный фазовый переход в низкотемпературную (T < 650 K) ромбическую фазу. При этом ромбические искажения в слоях CuO₂ обусловлены разворотами ионов кислорода OI вокруг ионов меди [4].

В работе [9] при изучении спиновой и решеточной динамики в миллиметровом диапазоне электромагнитных волн в кристаллах R_2CuO_4 (Pr, Sm, Eu) в области низких температур были обнаружены скачки поглощения СВЧ мощности, которые связывались со структурными фазовыми переходами. Структурный фазовый переход в Eu₂CuO₄ при температуре $T \approx 150$ K наблюдался также другими методами [10–12]. Свойства низкотемпературных фаз и значения температур переходов в кристаллах R₂CuO₄ (Pr, Sm, Eu) были различны и, скорее всего, определялись РЗИ.

Результаты данной работы указывают на то, что в R_2CuO_4 с РЗИ структурные свойства слоев CuO_2 и кристалла в целом оказались различными в кристаллах с разными РЗИ.

1. Экспериментальные результаты

Проведено полное рентгенографическое исследование кристаллов Sm₂CuO₄ и Nd₂CuO₄ при температурах 296 и 373 К. Измерения проводились на монокристаллах выращенных методом спонтанной кристаллизации, описанным в [2]. Кристаллы были стехиометричными по составу и диэлектрическими.

Для рентгеновских дифрактометрических исследований использовались образцы в виде прямоугольных призм размерами $0.17 \times 0.18 \times 0.11 \text{ mm} (\text{Sm}_2\text{CuO}_4)$ и $0.12 \times 0.11 \times 0.11 \text{ mm} (\text{Nd}_2\text{CuO}_4)$. Все измерения выполнены на одних и тех же образцах в одной и той же установке.

Предварительное исследование, проведенное на дифрактометре, показало, что кристаллы Sm₂CuO₄ и Nd₂CuO₄ относятся к тетрагональной сингонии (пространственная группа *I*4/*mmm*). Измерения интенсивностей рентгеновских отражений вплоть до значения sin $\Theta/\lambda = 1.075 \text{ Å}^{-1}$ проводились на автоматическом монокристальном трехкружном дифрактометре методом ω -сканирования по схеме перпендикулярного пучка при послойной регистрации рефлексов путем вращения кристалла вокруг оси *а*. Использовалось Мо*K*_{*a*}-излучение ($\lambda = 0.71069 \text{ Å}$), монохроматизированное графитовым монохроматором.

Структуры кристаллов уточнялись методом наименьших квадратов (МНК) в блочно-матричном приближении в основном по той же схеме, которая применялась в работах [1,2]. Параметры температурных факторов катионов уточнялись в ангармоническом приближении четвертого порядка. Полученные данные использовались для построения функций плотности вероятности ионов, являющихся Фурье-образами соответствующих температурных факторов. С целью уменьшения отрицательных областей ФПВ, получаемых при уточнении ангармонических параметров методом наименьших квадратов, использовалась модель температурного фактора Грамма– Шарлье [13]

$$T(\mathbf{h}) = T_{\text{harm}}(\mathbf{h}) [1 + (2\pi i)^3 / 3! c_{\text{pqr}} \mathbf{h}_p \mathbf{h}_q \mathbf{h}_r + (2\pi i)^4 / 4! d_{\text{pqrs}} \mathbf{h}_p \mathbf{h}_q \mathbf{h}_r \mathbf{h}_s].$$
(1)

Здесь $T_{\text{harm}}(\mathbf{h}) = \exp(-\beta_{\text{pq}}\mathbf{h}_p\mathbf{h}_q), \beta_{\text{pq}}$ — анизотропные гармонические температурные параметры, c_{pqr} и d_{pars} —

Параметр	La ₂ CuO ₄	Pr ₂ CuO ₄	Nd ₂ CuO ₄	Sm ₂ CuO ₄	Eu ₂ CuO ₄	Gd ₂ CuO ₄
Пространственная	Abma	I4/mmm	I4/mmm	I4/mmm	I4/mmm	I4/mmm
a, Å	5.397(3)	3.953(2)	3.944(1)	3.921(1)	3.897(3)	3.895(1)
b,Å	5.365(3)	a	a	a	a	a
c,Å	13.165(2)	12.232(3)	12.147(2)	11.994(2)	11.905(2)	11.8952(6)
$N_{\text{refl}} (I > 3\sigma(I))$	640	250	198	170	285	250
<i>R</i> ,%	3.23	2.79	1.79	2.09	4.00	2.79
$R_W, \%$	3.34	2.24	2.37	2.27	4.19	2.95
μ , cm ⁻¹	275.3(3)	304.3(1)	324.9(3)	370.6(3)	400.8(4)	423.3(1)
$r_{\rm ext}, {\rm \AA}$	1835(14)	3288(15)	2082(17)	5564(44)	7868(49)	2897(35)

Таблица 1. Детали эксперимента и структурные параметры монокристаллов R₂CuO₄ при комнатной температуре

Примечание. Кристалл La₂CuO₄ двойникован по псевдомероэдрическому типу с плоскостями двойникования (110). Погасания рефлексов от двойниковак компонент удовлетворяют пространственным группам *Abma* и *Bmab*. Согласно результатам уточнения MHK, коэффициент двойникования $K_{tw} = 0.68(2)$, что соответствует соотношению 2:1 для компонент, описываемых *A*- и *B*-решетками. N_{refl} — количество независимых ненулевых рефлексов. *R* — структурный фактор расходимости. R_W — весовой фактор расходимости по схеме Крукшенка [14]. μ — коэффициент поглощения (для Мо κ_{α}). Поглощение учитывалось методом численного интегрирования по объему кристалла. r_{ext} — параметр экстинкции по результатам MHK. Экстинция учитывалась по методу Беккера–Коппенса [15] в изотропном приближении для кристаллов с $r_{ext} \ll \lambda g$ и лоренцевским распределением блоков мозаики.

Таблица 2. Результаты уточнения параметров для ионов Cu^{2+} (0, 0, 0) при комнатной температуре в кристаллах R_2CuO_4 (R = La, Pr, Nd, Sm, Eu, Gd)

Параметр	La	Pr	Nd	Sm	Eu	Gd
$B_{\rm eq}, {\rm \AA}^2$	0.67(1)	0.439(6)	0.43(2)	0.48(1)	0.42(1)	0.45(1)
$U_{11}, { m \AA}$	0.085(1)	0.0861(3)	0.055(1)	0.075(1)	0.072(2)	0.072(1)
$U_{22}, \mathrm{\AA}$	0.088(2)	U_{11}	U_{11}	U_{11}	U_{11}	U_{11}
$U_{33}, \mathrm{\AA}$	0.101(1)	0.079(1)	0.100(4)	0.084(4)	0.075(2)	0.075(2)
$U_{13}, \mathrm{\AA}$	0.006(30)	0	0	0	0	0
$d_{1111} * 10^9$	154(49)	130(148)	-172(141)	1065(794)	-19(305)	305(262)
$d_{2222} * 10^9$	-686(69)	d_{1111}	d_{1111}	d_{1111}	d_{1111}	d_{1111}
$d_{3333} * 10^9$	-0.4(7)	0.3(10)	39(14)	-5(2)	-5(2)	-7(21)
$d_{1113} * 10^9$	2(8)	0	0	0	0	0
$d_{1333} * 10^9$	1(1)	0	0	0	0	0
$d_{1122} * 10^9$	73(18)	325(71)	82(63)	-424(129)	-321(163)	649(132)
$d_{1133} * 10^9$	13(3)	-8(8)	-41(17)	-17(19)	69(16)	58(16)
$d_{2233} * 10^9$	-23(4)	d_{1133}	d_{1133}	d_{1133}	d_{1133}	d_{1133}
$d_{1223} * 10^9$	-1(7)	0	0	0	0	0

Примечание. U_{ii} — среднеквадратичные температурные отклонения атомов (гармоническая часть температурного фактора); $U_{ij} = \text{sign}(\beta_{ij}) \text{sqrt} \left(\beta_{ij}/(2\pi)^2 \mathbf{a}_i \mathbf{a}_j\right); d_{\text{pqrs}}$ — ангармонические температурные параметры четвертого порядка; B_{eq} — эквивалентный изотропный температурный фактор; $B_{\text{eq}} = 4/3\Sigma\beta_{ij}\mathbf{a}_i\mathbf{a}_j$, где β_{ij} — анизотропные температурные факторы.

ангармонические температурные параметры третьего и четвертого порядков соответственно, \mathbf{h} — вектор рассеяния с компонентами $(h_1, h_2, h_3) = (h, k, l)$.

-

С использованием той же методики перерасчитаны структурные параметры кристаллов La_2CuO_4 и Eu_2CuO_4 при комнатной температуре, которые были использованы нами ранее [1] с использованием ангармонического приближения температурных факторов катионов в приближении Эджворта [13]. Полученные ФПВ катионов в обеих моделях ангармонического температурного фактора имеют качественно подобный вид.

Экспериментальные и основные структурные параметры для изученных кристаллов приведены в табл. 1–5. На рис. 2 и 3 представлены ФПВ ионов Cu²⁺ для

кристаллов R₂CuO₄ (R = La, Pr, Nd, Sm, Eu, Gd) при комнатной температуре. На рис. 4 и 5 приведены ФПВ ионов R³⁺ при комнатной температуре для тех же кристаллов. На рис. 6 и 7 — ФПВ ионов Cu²⁺ и R³⁺ при T = 373 K для кристаллов Nd₂CuO₄ и Sm₂CuO₄ соответственно. Следует отметить, что для кристаллов R₂CuO₄ (R = Pr, Nd, Sm, Eu, Gd), симметрия структуры которых описывается пространственной группой *I*4/*mmm*, ФПВ ионов в плоскостях (100) и (010) эквивалентны. В то же время для La₂CuO₄ (пространственная группа *Abma*) ФПВ в плоскостях (100) и (010) различаются. Поскольку в этом случае сечение ФПВ плоскостью (100) более информативно, именно оно приводится на рисунках.

Параметр	La	Pr	Nd	Sm	Eu	Gd
x/a	0.00227(4)	0	0	0	0	0
z/c	0.36136(1)	0.35132(2)	0.35149(4)	0.35057(3)	0.35009(3)	0.34922(3)
$B_{\rm eq}, {\rm \AA}^2$	0.718(4)	0.522(2)	0.556(7)	0.494(3)	0.389(4)	0.478(3)
U_{11} , Å	0.0938(5)	0.0861(3)	0.0578(4)	0.0850(4)	0.0758(6)	0.0832(4)
$U_{22}, \mathrm{\AA}$	0.1126(6)	U_{11}	U_{11}	U_{11}	U_{11}	U_{11}
$U_{33}, \mathrm{\AA}$	0.0761(6)	0.0707(4)	0.1201(13)	0.0658(7)	0.0575(10)	0.0655(7)
U_{13} , Å	0.057(13)	0	0	0	0	0
$c_{111} * 10^8$	14(13)	0	0	0	0	0
$c_{333} * 10^8$	-2(5)	-0.7(8)	-20(6)	-2.4(15)	-2(1)	-1.4(14)
$c_{122} * 10^8$	-5(10)	0	0	0	0	0
$c_{113} * 10^8$	8(4)	-19(10)	6(12)	-1(160)	-19(16)	-25(16)
$c_{133} * 10^8$	1(1)	0	0	0	0	0
$c_{223} * 10^8$	1(5)	c ₁₁₃	c ₁₁₃	c ₁₁₃	c_{113}	c ₁₁₃
$d_{1111} * 10^9$	-309(17)	786(49)	-139(47)	887(242)	491(95)	765(78)
$d_{2222} * 10^9$	-1410(26)	d_{1111}	d_{1111}	d_{1111}	d_{1111}	d_{1111}
$d_{3333} * 10^9$	-0.2(2)	1.5(3)	135(7)	-3.6(5)	1.6(6)	-3.4(5)
$d_{1113} * 10^9$	-2(3)	0	0	0	0	0
$d_{1333} * 10^9$	0.5(5)	0	0	0	0	0
$d_{1122} * 10^9$	363(6)	-513(24)	67(22)	-363(62)	-632(47)	-673(36)
$d_{1133} * 10^9$	16(1)	-12(2)	-47(7)	-14(5)	13(5)	36(4)
$d_{2233} * 10^9$	-15(1)	<i>d</i> ₁₁₃₃				
$d_{1223} * 10^9$	1(3)	0	0	0	0	0

Таблица 3. Результаты уточнения параметров для ионов $R^{3+}(x/a, 0, z/c)$ при комнатной температуре в кристаллах R_2CuO_4 (R = La, Pr, Nd, Sm, Eu, Gd)

Примечание. Обозначения величин B_{eq}, U_{ij}, d_{pqrs} см. в табл. 2, с_{pqr} — ангармонические температурные параметры третьего порядка.

Как видно из рис. 2–7, ФПВ для кристаллов R₂CuO₄ с разными РЗИ существенно различаются, но прослеживается определенная закономерность в изменении

Таблица 4. Результаты уточнения параметров катионов для кристаллов Nd₂CuO₄ (пр. гр. *I4/mmm*, a = 3.950 (1) Å, c = 12.153 (1) Å, $N_{\text{refl}} = 178$, R = 1.87%, $R_W = 2.82\%$) и Sm₂CuO₄ (пр. гр. *I4/mmm*, a = 3.926 (1) Å, c = 12.014 (1) Å, $N_{\text{refl}} = 168$, R = 2.37%, $R_W = 2.44\%$) при 373 K

Параметр	Nd ₂ C	uO4	Sm_2CuO_4		
TupunoTp	Nd	Cu	Sm	Cu	
z/c	0.35079(7)	0	0.35055(2)	0	
$B_{eq}, Å^2$	2.33(2)	2.31(5)	0.666(3)	0.65(1)	
$U_{11}, { m \AA}$	0.0588(6)	0.047(2)	0.0969(4)	0.087(1)	
$U_{22}, \mathrm{\AA}$	U_{11}	U_{11}	U_{11}	U_{11}	
$U_{33}, \mathrm{\AA}$	0.2854(12)	0.289(3)	0.0807(6)	0.097(2)	
$c_{333} * 10^8$	-25(19)	0	38(14)	79(359)	
$c_{113} * 10^8$	31(25)	0	-124(166)	-1(160)	
$c_{223} * 10^8$	C 113	0	C ₁₁₃	0	
$d_{1111} * 10^9$	-132(79)	-86(210)	564(105)	79(359)	
$d_{2222} * 10^9$	d_{1111}	d_{1111}	d_{1111}	d_{1111}	
$d_{3333} * 10^9$	49(17)	-34(48)	-0.6(5)	-10(2)	
$d_{1122} * 10^9$	69(33)	44(97)	-74(28)	-49(97)	
$d_{1133} * 10^9$	-43(15)	-22(47)	-12(4)	19(16)	
$d_{2233} * 10^9$	d_{1133}	d_{1133}	d_{1133}	d_{1133}	

Примечание. Обозначения величин B_{eq} , U_{ii} , U_{ij} , c_{pqr} , d_{pqrs} см. в табл. 2.

ФПВ, коррелирующая с ростом атомного номера и уменьшением ионного радиуса РЗИ.

В качестве примера двух предельных случаев можно рассмотреть ФПВ ионов Cu^{2+} для кристаллов La₂CuO₄ и Eu₂CuO₄. В La₂CuO₄ наблюдается двухъямный потенциал с расщеплением вдоль осей *а* и *b* в слое CuO₂ и минимальным значением ФПВ в частной позиции иона. Полагаем, что в этом случае преобладает янтеллеровское вибронное взаимодействие, приводящее к кооперативному эффекту Яна–Теллера (КЭЯТ) ионов меди [1]. В Eu₂CuO₄ имеется односвязная ФПВ с максимальным значением в частной позиции. В этом случае преобладает орбиталь-орбитальное взаимодействие через 2D спиновые флуктуации [1].

Сформулируем основные критерии, положенные в основу анализа приведенных данных для всех кристаллов R_2CuO_4 .

Прежде всего, важен тип ФПВ — ее многосвязность или односвязность. Полагаем, что многосвязные ФПВ, соответствующие двух- или многоямным потенциалам кристаллического поля, возникают в результате вибронного КЭЯТ для соответствующих ионов. В случае односвязной ФПВ, с максимальным значением (принятым за 100%) в равновесной позиции иона, вибронный КЭЯТ отсутствует. Равновесная позиция иона в решетке соответствует центру квадратов (рамок) на рис. 2–7.

Плотность пространственного распределения линий ФПВ относительно максимального значения характеризует крутизну локального потенциала. Для многосвяз-

Рис. 2. $\Phi\Pi B$ ионов Cu²⁺ для кристаллов La₂CuO₄ (La), Pr₂CuO₄ (Pr) и Nd₂CuO₄ (Nd) при комнатной температуре в плоскостях (001) и (010). Размер рамки 0.48×0.48 (Å)². ФПВ построены изолиниями с шагом 10% от максимального значения. Положение ФПВ = 100% показано точкой. Штрих-пунктирная линия соответствует значению ФПВ = 0. Штриховые линии — отрицательные значения ФПВ. Центры рамок соответствуют положениям равновесных позиций ионов в решетке.

ных ФПВ значение ФПВ в центре ячейки характеризует глубину ям, возникающих при КЭЯТ соответствующих ионов. Угловая симметрия распределения ФПВ дает информацию о направлениях экстремальных смещений ионов при тепловых колебаниях.

При построении ФПВ учитываются как гармонический, так и ангармонические вклады в тепловые колебания ионов (табл. 2-4). О большом ангармоническом вкладе свидетельствуют плоские участки ФПВ [13]. Для выяснения влияния свойств РЗИ, а также взаимодействий между ионами меди и РЗИ на структурные состояния кристаллов проводится сравнительный анализ вида ФПВ ионов меди и РЗИ.

Рассмотрим основные особенности ФПВ ионов Cu²⁺ при комнатной температуре в ряду изученных нами кристаллов.

В кристаллах Eu₂CuO₄ и Gd₂CuO₄ наблюдаютя односвязные ФПВ с максимальным значением в центре ячейки, что указывает на отсутствие вибронного КЭЯТ. В случае же кристаллов R_2CuO_4 (R = La, Nd, Pr и Sm) имеются многосвязные ФПВ, свидетельствующие о наличии вибронных КЭЯТ для ионов Cu²⁺.

Рис. 3. $\Phi\Pi B$ ионов Cu^{2+} для кристаллов Sm_2CuO_4 (Sm), Eu_2CuO_4 (Eu) и Gd_2CuO_4 (Gd) при комнатной температуре. Остальные пояснения — в подписи к рис. 2.

В кристаллах La₂CuO₄, Pr₂CuO₄ и Nd₂CuO₄ расщепление потенциала кристаллического поля при вибронном КЭЯТ имеет место в плоскости (001) вдоль направлений [100], [010] и [110] соответственно. В Sm₂CuO₄ такое расщепление наблюдается вдоль оси c (направление [001]).

Для кристаллов с многосвязными ФПВ наиболее глубокие ямы при близких к нулевым значениях ФПВ в центрах ячеек наблюдаются в кристаллах La_2CuO_4 и Nd_2CuO_4 . В кристаллах Pr_2CuO_4 и Sm_2CuO_4 глубины ям значительно меньше. В последнем вблизи центра ячейки имеется практически плоский потенциал кристаллического поля (рис. 2 и 3).

Из рис. 2–7 видно также, что симметрия ФПВ в плоскостях (001), соответствующих слоям CuO₂, и в плоскостях (100) или (010), характеризующих выход ионов меди из слоев CuO₂, существенно различается.

В кристаллах R_2CuO_4 (R = Sm, Eu и Gd) в плоскостях (001) при малых амплитудах тепловых колебаний ионов ($\Phi\Pi B > 50\%$) функция плотности вероятности имеет практически изотропный вид, что свидетельствует о гармоническом характере тепловых колебаний. Для значений $\Phi\Pi B > 50\%$ (большие амплитуды тепловых колебаний) появляются плоские участки $\Phi\Pi B$, характерные для ангармонической составляющей тепловых колебаний, и наблюдается квадратная анизотропия рас-

Рис. 4. $\Phi\Pi B$ ионов R^{3+} для кристаллов La₂CuO₄ (La), Pr₂CuO₄ (Pr) и Nd₂CuO₄ (Nd) при комнатной температуре. Остальные пояснения — в подписи к рис. 2.

пределения ФПВ. В кристаллах Nd₂CuO₄ и Pr₂CuO₄ в плоскости (001) видны проявления вибронного КЭЯТ, но при этом также сохраняется квадратная анизотропия распределения ФПВ. В плоскостях (100) и (010) вид ФПВ в кристаллах R₂CuO₄ с разными РЗИ отличается сильнее, чем в плоскости (001). Наибольшая величина тепловых смещений вдоль оси *с* наблюдается у ионов меди в кристаллах La₂CuO₄, Nd₂CuO₄ и Sm₂CuO₄. В Sm₂CuO₄ значение ФПВ = 100% смещено вдоль оси *с* из равновесного положения иона. В Nd₂CuO₄ видны лишь остаточные проявления вибронного КЭЯТ вдоль

оси c, который, возможно, имеет место при более низкой температуре, как в Pr_2CuO_4 (см. [2]).

Практически во всех изученных кристаллах наблюдаются плоские участки ФПВ, свидетельствующие о большой ангармонической составляющей тепловых колебаний ионов меди (см. также табл. 2). Отметим, что ангармонический вклад в тепловые колебания ионов меди наиболее заметен в кристаллах, в которых слабее проявления вибронных КЭЯТ. К тому же проявления ангармонических вкладов сильнее в плоскостях (100) и (010) по сравнению с плоскостью (001).

Рис. 5. $\Phi\Pi B$ ионов R^{3+} для кристаллов Sm₂CuO₄ (Sm), Eu₂CuO₄ (Eu) и Gd₂CuO₄ (Gd) при комнатной температуре. Остальные пояснения — в подписи к рис. 2.

Из вида углового распределения ФПВ следует, что во всех кристаллах R_2CuO_4 с РЗИ нерасщепленная, центрированная часть локального потенциала имеет симметрию куба (Z = 8).

Обратимся теперь к экспериментальным особенностям распределения ФПВ редкоземельных ионов. Из рис. 4,5 видно, что при комнатной температуре в кристаллах с ионами Pr^{3+} , Eu^{3+} и Gd^{3+} имеются односвязные, а в случае ионов La^{3+} , Nd^{3+} и Sm^{3+} многосвязные ФПВ. При этом для РЗИ в отличие от ионов меди возникает также ситуация односвязной, но несимметрично распределенной относительно направления [001] ФПВ (табл. 5). Такая несимметричность, скорее всего, также является проявлением КЭЯТ. При сравнении вида ФПВ ионов меди и РЗИ видно, что подобие картин распределения ФПВ для этих ионов имеется практически для всех кристаллов за исключением Pr₂CuO₄.

Из рис. 4 видно, что для ионов Nd^{3+} характерны плоские потенциалы в плоскости (001) со слегка проявляющимися неглубокими ямами, смещенными вдоль диагоналей [110]. Из сравнения ФПВ ионов меди и Nd^{3+} в Nd_2CuO_4 можно заключить, что искажение локального потенциала кристаллического поля, вызванное КЭЯТ, для ионов меди значительно больше, чем для Nd^{3+} .

Для ионов Sm^{3+} в Sm_2CuO_4 в плоскости (100) (а также в эквивалентной плоскости (010)) наблюдается вибронный КЭЯТ с несимметричными по глубине яма-

Рис. 6. $\Phi\Pi B$ ионов Cu^{2+} и Nd³⁺ для Nd₂CuO₄ при температуре 373 К. Остальные пояснения — в подписи к рис. 2.

Рис. 7. ФПВ ионов Cu²⁺ и Sm³⁺ для Sm₂CuO₄ при температуре 373 К. Остальные пояснения — в подписи к рис. 2.

Таблица 5. Расстояния (Å) между ионами в кристаллах R_2CuO_4 (R = La, Nd, Sm, Eu) при комнатной температуре

Параметр	La ₂ CuO ₄	Nd ₂ CuO ₄	Sm ₂ CuO ₄	Eu ₂ CuO ₄
R-O2	2.323(4)	2.3256(5)*4	2.3019(5)*4	2.284(1)*4
R-O1	2.620(3)*2	2.6726(5)*4	2.6563(8)*4	2.642(1)*4
R-O1'	2.654(3)*2	—	—	—
R-O2'	2.684(6)	_	_	_
R-O2''	2.752(2)*2	—	—	—
R-O2'''	2.850(6)	—	—	—
Cu-O1	1.9028(8)*4	1.9720(5)*4	1.9605(5)*4	1.948(1)*4
Cu-O2	2.437(4)*2	—	—	—

ми, смещенными относительно равновесных положений ионов вдоль направления [001]. Ближайшая к равновесному положению изолиния, огибающая обе ямы, соответствует значению $\Phi\Pi B = 40\%$. Таким образом, в отличие от Nd₂CuO₄ в Sm₂CuO₄ степень искажения локального кристаллического поля ионов Sm³⁺ больше, чем для ионов меди. Заметим, что только в Sm₂CuO₄ как для ионов меди, так и для РЗИ имеется двухьямный потенциал с расщеплением вдоль оси *c* кристалла.

В кристаллах, в которых вибронное ян-теллеровское искажение ионов Cu^{2+} является преобладающим, оно наблюдается в плоскостях (001). В то же время в Sm₂CuO₄ преобладающее вибронное искажение ионов Sm³⁺ возникает вдоль направления [001], а вибронный КЭЯТ для ионов Cu²⁺ в плоскости (001) отсутствует.

В Gd₂CuO₄ для ионов Gd³⁺ КЭЯТ отсутствует и имеется подобие в распределении ФПВ ионов меди и РЗИ. В Eu₂CuO₄ для ионов Eu³⁺ наблюдается односвязная, но несимметричная относительно направления [001] ФПВ, что является следствием КЭЯТ. При этом для ионов меди следов КЭЯТ не видно.

Так же как и для ионов Cu²⁺, для РЗИ имеются большие ангармонические вклады — плоские участки ФПВ и большие величины параметров ангармонизма третьего и четвертого порядков (табл. 3).

2. Анализ экспериментальных данных

Из предыдущего раздела можно заключить, что структурные свойства слоев CuO₂ в кристаллах R₂CuO₄ с РЗИ существенно отличаются в зависимости от типа РЗИ — его ионного радиуса и характера основного состояния.

Отсутствие апикальных ионов кислорода в ближайшем окружении ионов меди в кристаллах R_2CuO_4 с РЗИ должно приводить к более сильному влиянию РЗИ на свойства слоев CuO_2 и структуру кристаллов в целом по сравнению с La_2CuO_4 (в котором апикальные ионы кислорода в слоях Cu-O экранируют влияние на них РЗИ). В результате в La_2CuO_4 локальный потенциал кристаллического поля ионов меди определяется ближайшими соседями в 2D-слое CuO_2 , в то время как в кристаллах R_2CuO_4 с РЗИ эффективный локальный потенциал ионов Cu^{2+} формируется не только ими. При этом к 2*D*-плоской квадратной решетке в слое CuO_2 (первая координационная сфера) подмешивается кристаллическое поле следующих координационных сфер и, прежде всего, от РЗИ, поскольку ионы R^{3+} являются ближайшими к ионам Cu^{2+} в направлении оси *c* (рис. 1).

Обратимся к анализу внутрислойных взаимодействий, определяющих структурные свойства кристаллов. Это прежде всего ян-теллеровские взаимодействия в слоях СиО₂ и в слоях с РЗИ. Кристаллы R₂CuO₄ с РЗИ содержат два типа ян-теллеровских ионов: Cu²⁺ и R³⁺ [16,17]. Как следует из результатов данной работы, в изучаемых кристаллах реализуются ситуации, когда преобладающими и фактически определяющими структуру кристалла в целом являются искажения решетки, вызванные эффектом Яна-Теллера либо ионов меди, либо РЗИ. В Sm₂CuO₄ преобладающими являются янтеллеровские взаимодействия РЗИ. В то время как для кристаллов Nd₂CuO₄ и Pr₂CuO₄ преобладают янтеллеровские взаимодействия ионов меди. В этом случае при формировании структуры кристаллов в целом важную роль играет межслоевое взаимодействие $Cu^{2+}-R^{3+}$

Обращает на себя внимание тот факт, что вибронные КЭЯТ для ионов Cu²⁺ наблюдаются в кристаллах R_2CuO_4 с максимальными ионными радиусами РЗИ (R = Pr, Nd). В кристаллах же с меньшими ионными радиусами (R = Sm, Gd и Eu) вибронный КЭЯТ для ионов Cu²⁺ значительно ослаблен или не наблюдается вообще.

Рассмотрим более детально ситуацию в слоях CuO₂. Как известно, характер основного орбитального состояния иона Cu²⁺ и соответственно характер эффекта Яна-Теллера определяется типом ближайшего окружения в приближении кубической решетки [6,16]. Для кристаллов R₂CuO₄ с P3И ближайшее окружение ионов меди формируется вкладом двух компонент кристаллического поля, имеющих различную симметрию: квадратов из ионов кислорода в слое CuO₂ (Cu — 4 OI) и кубического окружения из P3И (Cu — 8 R). Как известно, основное орбитальное состояние ионов Cu²⁺ в квадрате из ионов кислорода — синглет $d_{(x^2-y^2)}$. Случай кубического окружения иона Cu²⁺ ионами R³⁺ соответствует основному орбитальному состоянию в виде e_g -дублета [18].

В тетрагональной решетке при расщеплении e_g -дублета возникает вибронный КЭЯТ для ионов меди [6,16]. Однако мы полагаем, что структурные состояния слоев CuO₂ и кристаллов в целом определяются также и возбужденными орбитальными состояниями триплета t_{2g} . Как отмечалось ранее, в кристаллах R₂CuO₄ имеется ряд взаимодействий, величины которых соизмеримы с расщеплением $\Delta = (e_g - t_{2g}) \sim 0.1 \text{ eV}$ в кубической решетке, что обеспечивает возможность подмешивания возбужденных состояний к основному состоянию. Триплет t_{2g} в тетрагональной решетке расцепляется на

синглет d_{xy} и тетрагональный дублет $d_{xz,yz}$. Характер этого расщепления зависит от соотношения величин вибронного и SO-взаимодействий. При преобладании первого взаимодействия нижним является синглет d_{xy} , при преобладании второго — тетрагональный дублет $d_{xz,yz}$ [6,16].

В случае сильного SO-взаимодействия в кристаллах R₂CuO₄ с РЗИ для ионов меди к основному орбитальному синглету $d_{(x^2-y^2)}$ подмешивается тетрагональный дублет. В такой ситуации возможен КЭЯТ спиновой природы за счет орбиталь-орбитального взаимодействия через 2D-спиновые флуктуации. Такого типа КЭЯТ рассмотрен в работе [11] для объяснения состояния 2D орбитального стекла, обнаруженного в кристалле Eu₂CuO₄ при $T > 150 \, \text{K}$. При этом сильного искажения решетки не происходило, а возникали коррелированные спиновые и орбитальные состояния. Полагаем, что наличие односвязной ФПВ в Eu_2CuO_4 при $T > 150 \, \text{K}$ обусловлено ян-теллеровской стабилизацией за счет КЭЯТ спиновой природы. Односвязная ФПВ наблюдается в Gd₂CuO₄, а также имеется подмешивание центрированной ФПВ к расщепленной ФПВ, обусловленной вибронным КЭЯТ, в кристаллах Pr₂CuO₄ и Nd₂CuO₄. Наличие нерасщепленных, центрированных ФПВ ионов меди во всех случаях естественно связать с вкладом орбиталь-орбитального взаимодействия через спиновые флуктуации.

Многосвязные ФПВ ионов меди, наблюдаемые в кристаллах R_2CuO_4 (R = Nd и Pr), свидетельствуют о преобладающем вкладе вибронных ян-теллеровских взаимодействий для ионов Cu^{2+} в слоях CuO_2 .

Таким образом, для кристаллов R_2CuO_4 с РЗИ в слоях CuO_2 имеются два различных взаимодействия, приводящие к ян-теллеровской стабилизации решетки: вибронное (орбиталь-орбитальное через фононы) и орбитальорбитальное взаимодействие через 2D-спиновые флуктуации. Как уже отмечалось, характер ян-теллеровской стабилизации для этих двух взаимодействий различен. Сосуществование их может приводить к неоднородным структурным состояниям, а изменение с температурой соотношений величин взаимодействий — к структурным фазовым переходам.

В тех случаях, когда в кристаллах R_2CuO_4 преобладает ян-теллеровское взаимодействие для РЗИ, первичным оказывается искажение кубической симметрии в окружении РЗИ. Взаимодействие между ионами меди и РЗИ при этом должно менять и структурное состояние ионов Cu^{2+} . Видимо, такая ситуация реализуется в Sm₂CuO₄.

Обсудим более детально некоторые характерные особенности структурных состояний конкретных кристаллов R_2CuO_4 с P3И.

1) La₂CuO₄. (Атомный номер Z(La) = 57, ионный радиус (La³⁺) = 1.032 Å [19]).

Ион La³⁺ является немагнитным. Как уже отмечалось выше, в La₂CuO₄ при температурах T < 650 К имеется ромбически искаженная структура T-типа с ближайшим окружением ионов Cu²⁺ в виде октаэдров из ионов кислорода в слоях CuO₂.

Как видно из рис. 2, ФПВ для ионов меди имеют характерный вид для кристаллов с вибронным КЭЯТ. При этом имеется двухъямный потенциал кристаллического поля с расщеплением в плоскости (001) (в слое CuO₂) и значением ФПВ в центре ячейки, близким к нулю. Максимальное смещение ионов меди при тепловых колебаниях наблюдается вдоль оси c, что соответствует ближайшему окружению иона в виде вытянутого вдоль оси c октаэдра.

2) Pr_2CuO_4 . (*Z*(Pr) = 59, *r*(Pr³⁺) = 0.99 Å [19]).

Основное состояние иона $Pr^{3+} - {}^{3}H_4$ (S = 1, L = 5 и J = 4). Основной орбитальный и спиновый синглет отделен от возбужденного орбитального дублета по энергии ~ 18 meV [20].

Для ионов меди при комнатной температуре преобладают вибронные ян-теллеровские искажения в слоях CuO_2 . Такого типа искажения не наблюдаются для ионов Pr^{3+} . Как уже отмечалось, Pr_2CuO_4 является единственным среди кристаллов R_2CuO_4 с P3И, в котором не видно корреляций между видом ФПВ ионов меди и P3И.

В ряду кристаллов R₂CuO₄, имеющих тетрагональную структуру **T**'-типа, ион Pr³⁺ имеет максимальный ионный радиус. Для несколько большего иона La³⁺ формируется решетка со структурой **T**-типа. По-видимому, смещения ионов Pr³⁺ в решетке с симметрией **T**'-типа ограничены. В результате кулоновское отталкивание ионов Pr³⁺–Cu²⁺ приводит к относительно большему смещению ионов меди в слое CuO₂, т.е. эффективно приводит к усилению вибронного ян-теллеровского взаимодействия ионов меди. Тем не менее в плоскости (001) вблизи центра ячейки видна также центрированная часть ФПВ ионов меди, которую мы связываем с вкладом в ян-теллеровскую стабилизацию орбиталь-орбитального взаимодействия через спиновые флуктуации.

Таким образом, несмотря на то, что преобладающим взаимодействием в Pr_2CuO_4 является вибронное взаимодействие ионов меди в слоях CuO_2 , свойства иона Pr^{3+} (в данном случае его ионный радиус) и взаимодействие $R^{3+}-Cu^{2+}$ существенно влияют на структуру кристалла.

3) Nd₂CuO₄. (Z(Nd) = 60, r(Nd) = 0.93 Å [19]).

Основное состояние $Nd^{3+} - {}^4I_{9/2}$ (S = 3/2, L = 2). Основной орбитальный дублет расщеплен в кристаллическом поле на величину 0.5 meV. Первый возбужденный орбитальный дублет отделен по энергии от основного состояния на 16 meV [20].

В кристалле Nd₂CuO₄ при комнатной температуре видны динамические вибронные КЭЯТ как для ионов меди, так и для неодима, но при этом степень искажения локального кристаллического поля ионов меди больше, чем для Nd³⁺. Иными словами, для Nd₂CuO₄ преобладающими являются вибронные взаимодействия для ионов Cu²⁺. Видна корреляция между состояниями ионов меди и Nd³⁺. Полагаем, что такая корреляция возникает за счет взаимодействия Cu²⁺–Nd³⁺, которое приводит к согласованным смещениям ионов. Ионный радиус Nd³⁺ меньше чем у Pr³⁺, что обеспечивает его большую подвижность в решетке. В плоскости (001) вблизи равновесного положения видна центрированная часть ФПВ ионов меди, которую мы связываем с вкладом в ян-теллеровскую стабилизацию орбиталь-орбитального взаимодействия через спиновые флуктуации. Отметим, что относительный вклад центрированного нерасщепленного потенциала в Nd₂CuO₄ больше, чем для Pr₂CuO₄.

Таким образом, в Nd₂CuO₄ при формировании структуры кристалла вносят вклад все три типа возможных взаимодействий: внутрислоевые вибронное янтеллеровское и SO-взаимодействия ионов меди и межслоевое взаимодействие Cu^{2+} –Nd³⁺. При комнатной температуре преобладающим является ян-теллеровское вибронное взаимодействие для ионов меди.

Из рис. 2 и 6 видно, что с ростом температуры для ионов меди усиливаются смещения вдоль направлений [001] и уменьшается вклад односвязных ФПВ в плоскости (001), т.е. усиливается роль вибронного ян-теллеровского взаимодействия в слое. При этом симметрия эффективного ближайшего окружения ионов меди в Nd₂CuO₄ все более приближается к симметрии вытянутого вдоль направления [001] октаэдра и картина распределения ФПВ становится похожей на картину в La₂CuO₄.

4) Sm₂CuO₄. (Z(Sm) = 62, $r(Sm^{3+}) = 0.958$ Å [19]).

Как уже отмечалось, структура Sm₂CuO₄ задается в основном влиянием КЭЯТ для РЗИ и взаимодействием между ионами меди и РЗИ. Ионный радиус Sm³⁺ несколько меньший, чем для Nd³⁺, но превышает размеры ионов европия и гадолиния.

Основной мультиплет иона Sm³⁺ — ${}^{6}H_{5/2}$ (S = 5/2, L = 5, J = 5/2). При расщеплении в кристаллическом поле основными являются орбитальный синглет и крамерсов дублет. Расстояние до ближайшего возбужденного орбитального дублета ~ 18 meV [21].

При комнатной температуре видно равновесное смещение иона Sm³⁺ вдоль направления [001] из центра рамки (рис. 5), что является следствием статического КЭЯТ для ионов Sm³⁺. Локальные ян-теллеровские искажения ионов Sm³⁺ больше, чем для ионов меди. Имеется подобие ФПВ для ионов меди и самария. Скорее всего, выход ионов Cu^{2+} из слоев CuO_2 вдоль оси *с* обусловлен взаимодействием Sm³⁺-Cu²⁺. Отметим, что характер смещений ионов Cu^{2+} вдоль оси c соответствует случаю динамического КЭЯТ (смещения ионов Cu²⁺ вверх и вниз от слоя равновероятны). В плоскости (001) для ионов меди при комнатной температуре не видно проявлений вибронного КЭЯТ. Однако видны вытянутые вдоль осей *а* и *b* ФПВ, которые могут при низкой температуре обеспечить переключение преобладающего типа взаимодействий — от вибронного для РЗИ к вибронному для ионов меди в слое CuO₂ — и привести к структурному фазовому переходу.

Как видно из рис. 7, картина распределения ФПВ ионов меди и самария в Sm₂CuO₄ при T = 373 K качественным образом изменяется по сравнению с комнатной температурой. При T = 373 K вибронные КЭЯТ ни

для ионов Sm³⁺, ни для ионов Cu²⁺ не наблюдаются. В температурном интервале 300-373 K в Sm₂CuO₄, по-видимому, происходит структурный фазовый переход, который проявляется в трансформации вида ФПВ от двухсвязной к односвязной (ср. рис. 3, 4 и 7). При этом ситуация становится подобной той, которая наблюдается в Eu₂CuO₄ при *T* > 150 K (в тетрагональной фазе) [1]. Можно допустить, что в Sm₂CuO₄ при *T* > 296 K преобладающими становятся орбиталь-орбитальные взаимодействия через 2*D*-спиновые флуктуации в слоях CuO₂.

Отметим, что во всех кристаллах R₂CuO₄ с РЗИ при температурах ниже температуры Нееля $(T_N \sim 250-290 \, \text{K})$ имеется дальний 3D-антиферромагнитный порядок. Если при *T* < *T_N* имеется однородное 3D-антиферромагнитное состояние, то 2D-спиновые флуктуации с большими корреляционными радиусами в слоях CuO₂ возникают при температурах $T > T_N$. В случае же неоднородного 3D-антиферромагнитного состояния 2D-спиновые флуктуации имеются и при T < T_N. Существование развитых 2D-спиновых флуктуаций с большими корреляционными радиусами может приводить к усилению роли КЭЯТ спиновой природы. Видимо, в Sm₂CuO₄ в отличие от Eu₂CuO₄ при температурах $T < T_N$ имеется однородное магнитное и структурное состояния. В кристаллах же Pr₂CuO₄ и Nd₂CuO₄, в которых вблизи температуры Нееля не происходит заметных изменений в структурных свойствах (в виде $\Phi\Pi B$), при $T < T_N$, скорее всего, имеется неоднородное 3D-антиферромагнитное состояние. Возможность существования развитых 2D-спиновых флуктуаций в Pr_2CuO_4 при $T < T_N$ подтверждается также работами по спиновой динамике [22,23] и наличием центрированных нерасщепленных ФПВ ионов меди в слоях CuO₂ при $T < T_N$ [2].

5) Gd_2CuO_4 . (Z(Gd) = 60, $r(Gd^{3+}) = 0.938 \text{ Å} [19]$).

В отличие от других РЗИ ионы Gd³⁺ не являются янтеллеровскими — их основное состояние ${}^8S_{7/2}$. Отличный от нуля орбитальный момент возникает в следующем терме, отделенном от основного на ~ 2 eV. Ионы Gd³⁺ имеют минимальный ионный радиус в ряду РЗИ в кристаллах R₂CuO₄. Для РЗИ с менышими ионными радиусами уже не формируется такая решетка типа T'. При температурах T < 600 K в Gd₂CuO₄ наблюдаются ромбические искажения в слоях CuO₂, обусловленные разворотами ионов O²⁻ (OI) относительно несмещенных ионов Cu²⁺ [4,8].

Из вида ФПВ ионов меди следует, что вибронное ян-теллеровское взаимодействие мало и не определяет структурное состояние кристалла. Имеется подобие в пространственном распределении ФПВ ионов меди и гадолиния. В плоскостях (100) и (010) симметрия ФПВ соответствует координации ближайшего окружения ионов с Z = 8, что для ионов Gd³⁺ согласуется с реальным ближайшим окружением из ионов OI и OII, а для ионов Cu²⁺ свидетельствует об определяющей роли взаимодействия Gd³⁺–Cu²⁺ при формировании потенциала кристаллического поля. В этих же плоскостях имеется большой ангармонический вклад в ФПВ и соответственно в потенциал кристаллического поля, что обычно характеризует структурную неустойчивость решетки — близость к структурному фазовому переходу типа смещения [24].

В плоскости (001) наблюдается квадратная симметрия ФПВ, что указывает на преобладающий вклад взаимодействий Cu–OI при формировании потенциала в слое CuO₂. Как отмечалось, в этом слое наблюдаются ромбические искажения, обусловленные разворотами ионов OI относительно несмещенных ионов меди.

В результате можно допустить, что в Gd₂CuO₄ кулоновское отталкивание Gd³⁺–Cu²⁺ и взаимодействие Cu–OI в слое CuO₂ одного порядка. При этом взаимодействие Gd³⁺–Cu²⁺ в плоскостях (100) и (010) на фоне сильного ангармонизма приводит к корреляциям тепловых смещений РЗИ и ионов меди, которые, возможно, стабилизируют близкую к неустойчивости решетку.

Как отмечалось выше, наличие нерасщепленных центрированных ФПВ ян-теллеровских ионов Cu²⁺ мы связываем с КЭЯТ спиновой природы. Однако в Gd₂CuO₄ наличие ромбических искажений в слоях CuO2 должно приводить к расщеплению тетрагонального дублета d_{x_7, y_7} и преобладанию вибронного ян-теллеровского взаимодействия для ионов меди. Если бы структурное состояние кристаллов было однородным и имело ромбическую симметрию, то ФПВ должны были быть расщепленными, отражая преимущественный вибронный характер ян-теллеровской стабилизации решетки, что не соответствует наблюдаемой картине распределения ФПВ. По-видимому, в Gd₂CuO₄ имеется неоднородное структурное состояние с сильно развитым ангармонизмом и наблюдаются эффекты, характерные как для тетрагональной симметрии [23], так и для ромбической симметрии [4,8,22]. Возможное сосуществование тетрагональной и ромбической фаз также наблюдалось в только что появившейся работе по исследованию слабого ферромагнетизма и спектров рамановского рассеяния света [25].

6) $\dot{Eu}_2\dot{C}uO_4$. (Z(Eu) = 63, $r(Eu^{3+}) = 0.947 \text{ Å} [19]$).

Основное состояние иона $Eu^{3+} - {}^7F_0$ (S = 3, L = 3, J = 0) — синглетное и немагнитное. Однако первый возбужденный мультиплет иона Eu^{3+} (7F_1), являющийся магнитным и вырожденным (триплетным), расположен низко по энергии — на расстоянии 0.03 eV от основного мультиплета [1]. Структурные исследования Eu_2CuO_4 показали, что статический КЭЯТ ионов Eu^{3+} (7F_1) возникает при температурах T > 350 K, когда имеется заметное термическое заселение возбужденного триплетного состояния 7F_1 [1].

Согласно данным работ [9–11], в Eu₂CuO₄ при температуре $T \approx 150$ К имеется структурный фазовый переход. При T < 150 К возникают ромбические искажения в слоях CuO₂, подобные тем, которые наблюдаются в Gd₂CuO₄. При T > 150 К эти искажения исчезают и восстанавливается квадратная симметрия в слое и тетрагональная — во всем кристалле в целом [9]. Однако, структурное состояние при этом неоднородно и наблюдается состояние орбитального стекла [11].

2047

Полагаем, что фазовый переход при температуре $T \approx 150 \,\mathrm{K}$ может быть обусловлен изменением характера взаимодействия $Cu^{2+}-Eu^{3+}$ (⁷ F_1) по сравнению с $Cu^{2+}-Eu^{3+}$ (⁷*F*₀). Можно допустить, что при *T* > 150 K смещение ян-теллеровских ионов Eu^{3+} (⁷ F_1) из центральных позиций становится более вероятным, чем разворот ионов кислорода OI в слоях CuO₂. В результате в Eu_2CuO_4 при температурах $T < 150 \,\mathrm{K}$ реализуется структурное состояние, подобное тому, которое имеется в Gd₂CuO₄. Отличие заключается в том, что в Eu₂CuO₄ во всем кристалле в целом сохраняется тетрагональная симметрия, но имеются локальные области с ромбическими искажениями. При температурах 150 < T < 350 К в тетрагональной фазе реализуется состояние с односвязной центрированной ФПВ для ионов меди; мы полагаем, что при этом основным взаимодействием в слое CuO₂ является орбиталь-орбитальное взаимодействие через 2D-антиферромагнитные спиновые флуктуации с большими корреляционными радиусами [11]. Неоднородное магнитное и структурное состояния, допускающие существование 2D-антиферромагнитных флуктуаций, возникают в Eu₂CuO₄ при $T > 150 \,\mathrm{K}$ в результате структурного и одновременно магнитного фазового перехода (т.е. значительно ниже $T_N \approx 250 \,\mathrm{K}$) [9,12]. При этом роль взаимодействия Cu²⁺-Eu³⁺ (⁷F₁) может быть усилена дальнодействующим его характером, если оно реализуется через 2*D*-спиновые корреляции в слое CuO₂.

Таким образом, проведенный анализ экспериментальных данных показывает, что при комнатной температуре в кристаллах R_2CuO_4 с РЗИ характер структурных искажений в слоях CuO_2 и тип преобладающего в них взаимодействия определяются свойствами РЗИ (ионным радиусом и основным состоянием). Во всех кристаллах R_2CuO_4 с РЗИ важна роль взаимодействия $Cu^{2+}-R^{3+}$ и основным фактором, определяющим структурные особенности, является отсутствие экранировки РЗИ по отношению к ионам меди.

Чем больше ионный радиус РЗИ, тем большую роль при формировании структуры кристаллов играют вибронные ян-теллеровские взаимодействия ионов меди. Возникающие при КЭЯТ смещения ионов меди в слое CuO_2 эффективно увеличивают расстояние до ближайших положительно заряженных ионов РЗИ. Согласованное смещение ионов $Cu^{2+}-R^{3+}$ приводит к стабилизации тетрагональной структуры T'-типа. В случае, когда РЗИ не являются ян-теллеровскими (Eu^{3+} (7F_1) и Gd³⁺) и одновременно обладают минимальными ионными радиусами, взаимодействие $Cu^{2+}-R^{3+}$ приводит к развитию сильного ангармонизма, характерного для состояний решетки, близких к ее неустойчивости.

Список литературы

- Е.И. Головенчиц, В.А. Санина, А.А. Левин, Ю.И. Смолин, Ю.Ф. Шепелев. ФТТ **39**, *9*, 1600 (1997).
- [2] А.А. Левин, Ю.И. Смолин, Ю.Ф. Шепелев, Е.И. Головенчиц, В.А. Санина. ФТТ 42, *1*, 147 (2000).
- [3] Л.А. Мурадян, Р.А. Тамазян, А.М. Кеворков, Х.С. Багдасаров, В.И. Симонов. Кристаллография 35, 861 (1990).
- [4] M. Braden, W. Paulus, A. Cousson, P. Vigouroux, G. Heger, A. Goukassov, P. Bourges, D. Petitgrand. Europhys. Lett. 25, 625 (1994).
- [5] S. Chakravarty, B. Halperin, D. Nelson. Phys. Rev. B39, 2344 (1989).
- [6] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Т. 2. Мир, М. (1972). 349 с.
- [7] П.П. Паршин, М.Г. Землянов, А.С. Иванов, Л.Д. Шустов, Г. Шобер. ФТТ 41, 7, 1149 (1999).
- [8] M. Udagawa, Y. Nagaoka, N. Ogita, M. Masada, J. Akimitsu, K. Ohbayashi. Phys. Rev. B40, 585 (1994).
- [9] Е.И. Головенчиц, В.А. Санина. Письма в ЖЭТФ 74, 1, 20 (2001).
- [10] V.P. Plakhty, A.B. Stratilatov, S. Beloglazov. Sol. Stat. Commun. 103, 12, 683 (1997).
- [11] А.В. Бабинский, С.Л. Гинзбург, Е.И. Головенчиц, В.А. Санина. Письма в ЖЭТФ 57, 5, 289 (1993).
- [12] Е.И. Головенчиц, С.Л. Гинзбург, В.А. Санина, А.В. Бабинский. ЖЭТФ 107, 1641 (1995).
- [13] В.Г. Цирельсон. Итоги науки и техники. Кристаллохимия. Т. 27 (1993). 268 с.
- [14] D.W.J. Cruckshank. Computing methods in crystallography / Ed. J.S. Rollet. Pergamon Press (1965). C. 112.
- [15] P.J.C. Becker, P. Coppens. Acta Cryst. A30, 129 (1974).
- [16] К.И. Кугель, Д.И. Хомский. УФН 136, 4, 621 (1982).
- [17] G.A. Gehring, K.A. Gehring. Report Progr. Phys. **38**, 1 (1975).
- [18] И.Б. Берсукер. Электронное строение и свойства координационных соединений. Химия, Л. (1986). 287 с.
- [19] R.D. Shannon. Acta Cryst. A32, 751 (1976).
- [20] A.T. Boothroyd, S.M. Doyle, D.M.K. Paul, R. Osborn. Phys. Rev. B45, 17, 10075 (1992).
- [21] R. Sachidanandam, T. Yidirim, A.B. Harris, A. Aharony, O. Entin–Wohlman. Phys. Rev. B56, 1, 260 (1997).
- [22] Е.И. Головенчиц, В.А. Санина. ФТТ 41, 1437 (1999).
- [23] E.I. Golovenchits, V.A. Sanina. Phys. B284–288, 1369 (2000).
- [24] Б.А. Струков, А.П. Леванюк. Физические основы сегнетоэлектрических явлений в кристаллах. Наука, М. (1995). 301 с.
- [25] Z. Fisk, P.G. Pagliuso, J.A. Sanjurjo, C. Rettori, S.B. Oseroff, J.L. Sarrao, A.A. Martin, N.O. Moreno, H. Martinho. Phys. B305, 1, 48 (2001).