Энергия внутренней ионизации в соединениях А^{II}В^{VI}

© А.В. Комащенко, В.Н. Комащенко[¶], К.В. Колежук, Г.И. Шереметова, В.Д. Фурсенко, Ю.Н. Бобренко

Институт физики полупроводников Национальной академии наук Украины, 03028 Киев, Украина

(Получена 25 июня 2001 г. Принята к печати 11 июля 2001 г.)

Исследованы зависимости чувствительности поверхностно-барьерных гетероструктур типа *p*-Cu_{1.8}S/*n*-A^{II}B^{VI} от энергии возбуждающих квантов света или ускоренных моноэнергетических потоков электронов. Предложена методика определения и найдены экспериментально значения средней энергии внутренней ионизации ε для прямозонных соединений A^{II}B^{VI}. Показано, что связь ε с шириной запрещенной зоны полупроводника выражается зависимостью $\varepsilon = 2.5E_g$.

Энергия внутренней ионизации ε , затрачиваемая на образование пары неравновесных носителей заряда — электрона и дырки, является одним из важных параметров материала, определяющих эффективность преобразования ионизирующей радиации [1]. Однако для многих полупроводников величина ε экспериментально не определялась, либо имеющиеся в литературе ее значения неоднозначны, как, например, в случае широкозонных соединений $A^{II}B^{VI}$, перспективных для разработки сенсоров ультрафиолетовой и бета-радиации [1,2].

Цель настоящей работы — нахождение энергии образования пары электрон-дырка в соединениях А^{II}В^{VI} путем сопоставления результатов, полученных при световом и электронном возбуждении гетероструктур на их основе.

Методика эксперимента

Образцы для исследований представляли собой поверхностно-барьерные гетероструктуры типа *p*-Cu_{1.8}S/*n*-A^{II}B^{VI} [3,4]. Толщина базовых поликристаллических пленок А^{ПВVI} была около 3 мкм; толщина сульфида меди — около 350 Å. Для измерения оптических и электрофизических параметров сульфида меди при изготовлении гетероструктур пленки Cu_{1.8}S напыляли на кварцевые стекла-"свидетели". одновременно Концентрация основных носителей тока составляла $p = 5 \cdot 10^{21} \text{ см}^{-3}$ для $\text{Сu}_{1.8}\text{S}$ и $n < 10^{15} \text{ см}^{-3}$ для $\text{A}^{\text{II}}\text{B}^{\text{VI}}$. Площадь образцов — 25 мм². Облучение проводилось со стороны сульфида меди. Источником моноэнергетических потоков ускоренных электронов с энергией $E_{\beta} = 3 - 30$ кэВ служил модернизированный электронограф типа ЭМ-4. Плотность тока в электронном пучке измерялась цилиндром Фарадея и изменялась в диапазоне $i_{\beta} = 10^{-11} - 10^{-8} \text{ А/см}^2$. При световом возбуждении спектры фототока измерялись с помощью спектрофотометра СФ-26. Образцы исследовались в вентильном режиме включения при 300 К. Регистрировались токи короткого замыкания I и I_{β} соответственно при световом и электронном возбуждении.

Характерной особенностью структур рассматриваемого типа является то, что p-n-переход резко асимметричен, область пространственного заряда (ОПЗ) полностью сосредоточена в базовом слое (соединение $A^{II}B^{VI}$), а сульфид меди не вносит заметного вклада в фотоэффект (исключение представляет ситуация, рассмотренная в [5]). Естественно полагать, что и при электронном облучении роль сульфида меди также будет пассивной. Протяженность фоточувствительной области $d = W + L_p$, где W — ширина ОПЗ, L_p — длина диффузии дырок в $A^{II}B^{VI}$. Значение d, полученное из вольт-фарадных и спектральных исследований, было 0.8–1.0 мкм, причем величина L_p составляла доли микрона.

Глубина проникновения электронов и их поглощение в Cu_{1.8}S и A^{II}B^{VI} рассчитывались по методике [6,7] с использованием уравнения Бете. Оказалось, что глубины проникновения электронов в базовую область гетероструктур составляют примерно 0.1, 1.0 и 4.5 мкм соответственно для $E_{\beta} = 3$, 12 и 30 кэВ. Таким образом, электроны с энергией $E_{\beta} < 15$ кэВ поглощаются в соединениях A^{II}B^{VI} на глубине, соответствующей примерно величине *d*. Коэффициент поглощения K_{β} электронов с энергией $E_{\beta} > 6$ кэВ в тонкой пленке сульфида меди незначителен ($K_{\beta} < 0.05$). Влияние сульфида меди существенно, когда глубина проникновения электронов в структуру становится соизмеримой с толщиной Cu_{1.8}S, т. е. при $E_{\beta} < 6$ кэВ.

Зависимость I_{β} от энергии электронов исследовалась в условиях, когда плотность генерируемых электроннодырочных пар была близкой по величине к случаю светового возбуждения и оставалась постоянной. Последнее достигалось путем поддержания постоянной полной мощности возбуждающего электронного пучка $P_{\beta} = i_{\beta}E_{\beta}/q$, где q — заряд электрона.

Предмет исследования

Известно, что свет с энергией фотонов, большей ширины запрещенной зоны $hv \gtrsim E_g$, поглощается в полупроводнике с образованием электронно-дырочных пар. При этом квантовый выход внутреннего фотоэффекта равен

[¶] E-mail: komas@isp.kiev.ua

Fax: (044) 2658342

единице, т.е. один поглощенный фотон создает одну электронно-дырочную пару, а фототок записывается [8]

$$I = qF_{\rm opt}\eta = qP_{\rm opt}\eta/h\nu, \qquad (1)$$

где F_{opt} — плотность потока фотонов, падающих на поверхность образца в единицу времени; η — квантовая эффективность, представляющая собой отношение числа фотогенерированных пар к числу падающих фотонов, P_{opt} — мощность падающего излучения.

Для исследуемых гетероструктур справедливо соотношение

$$\eta = T_{\rm opt} \eta_1 \eta_2, \tag{2}$$

где множитель T_{opt} учитывает потери фотонов за счет отражения от поверхности структуры и нефотоактивного поглощения в Cu_{1.8}S, он равен коэффициенту пропускания пленки сульфида меди. Множитель η_1 характеризует эффективность разделения термализованных неравновесных носителей p-n-гетеропереходом; множитель η_2 описывает потери, связанные с поверхностной и объемной рекомбинацией в квазинейтральной области, на границе раздела гетероструктуры и др.

В случае электронного возбуждения количество электронно-дырочных пар, образованных в полупроводнике при поглощении одного электрона с энергией E_{β} , определяется коэффициентом размножения α_p :

$$\alpha_p = E_\beta / \varepsilon. \tag{3}$$

При этом ток, генерируемый исследуемыми структурами, можно записать в виде

$$I_{\beta} = qF_{\beta}\alpha_p\eta_{\beta} = i_{\beta}\alpha_p\eta_{\beta}, \qquad (4)$$

где F_{β} — плотность потока электронов, падающих на поверхность образца в единицу времени. Параметр η_{β} по сути аналогичен квантовой эффективности фотопреобразования η и отражает вероятность того, что моноэнергетические электроны поглощаются в полупроводнике с рождением $F_{\beta}\alpha_{p}$ пар, которые потом разделяются барьерным электрическим полем и дают вклад в генерируемый ток.

Эффективность преобразования моноэнергетических потоков электронов выразим следующим образом:

$$\eta_{\beta} = (1 - R_{\beta})(1 - K_{\beta})\eta_1\eta_2.$$
 (5)

Здесь сомножитель $(1 - R_{\beta})(1 - K_{\beta})$ характеризует вероятность проникновения возбуждающих электронов в фоточувствительный слой преобразователя, где R_{β} коэффициент отражения электронов от поверхности структуры. Заметим, что, поскольку в работе применялись пленки сульфида меди нанометровых толщин, при обработке экспериментальных результатов мы сочли возможным использовать значения R_{β} , соответствующие массивному базовому материалу гетероструктур *p*-Cu_{1.8}S/*n*-A^{II}B^{VI}. При одинаковых условиях генерации неравновесных носителей допустимо предположить, что в обоих процессах коэффициенты η_1 и η_2 в выражениях (2) и (5) соответственно одинаковы. Основанием для этого является следующее.

Термализованные неравновесные носители, генерированные светом или ускоренными электронами, неразличимы. Кроме того, в нашем случае их концентрации поддерживались примерно равными. Отметим также, что для прямозонных полупроводников $A^{II}B^{VI}$ эффективные глубины проникновения как света из фундаментальной полосы, так и электронов с энергией $E_{\beta} < 15$ кэВ близки и соизмеримы с протяженностью фоточувствительной области.

С учетом вышесказанного из (2) и (5) легко получить

$$\eta_{\beta} = \eta (1 - R_{\beta}) (1 - K_{\beta}) / T_{\text{opt}}.$$
 (6)

Зависимости чувствительности гетероструктур от энергии возбуждающих квантов света или электронов, соответственно S и S_{β} , при световом и электронном воздействии будут:

$$S = I/P_{\rm opt} = q\eta/h\nu, \tag{7}$$

$$S_{\beta} = I_{\beta}/P_{\beta} = q\alpha_{p}\eta_{\beta}/E_{\beta}.$$
 (8)

По форме записи выражения (7) и (8) близки друг другу. Поскольку зависимость (8) измеряют при постоянной плотности генерируемых электронно-дырочных пар ($P_{\beta} = \text{const}$), амплитуда сигнала является функцией глубины образования пар. Поэтому такую характеристику можно считать аналогом спектральной характеристики фотоэффекта. Однако в отличие от последней, когда с ростом энергии фотонов наблюдается спад чувствительности в глубине полосы поглощения (см. (7)), величина S_{β} с ростом E_{β} в определенном энергетическом диапазоне будет оставаться постоянной. Действительно, подставив (3) в (8), получим выражение, в котором зависимость S_{β} от E_{β} отсутствует:

$$S_{\beta} = q\eta_{\beta}/\varepsilon. \tag{9}$$

Из (9), с использованием (6), получим окончательное выражение для энергии внутренней ионизации:

$$\varepsilon = q\eta (1 - R_{\beta})(1 - K_{\beta})/S_{\beta}T_{\text{opt}}.$$
 (10)

Поскольку значения η , S_{β} , T_{opt} могут быть измерены, K_{β} — рассчитаны, а R_{β} взяты из литературы, выражение (10) может быть использовано для нахождения ε .

Результаты эксперимента

Для исследований были отобраны образцы, которые в достаточно широкой области изменения hv и E_{β} имели участки, где $\eta = \text{const}$ и $\eta_{\beta} = \text{const}$, соответственно при световом и электронном возбуждении.

Типичные зависимости $S_{\beta} = f(E_{\beta})$ — так называемые энергетические характеристики — для гетероструктур на основе разных соединенией $A^{II}B^{VI}$ приведены на

рис. 1. Можно видеть, что в определенном диапазоне энергий электронов при $E_{\beta} < 15$ кэВ чувствительность преобразователей остается неизменной. С ростом E_{β} увеличивается глубина проникновения электронов в базовую область структур. При этом часть генерированных пар уже не разделяется полем p-n-перехода и наблюдается спад чувствительности. Наличие нечувствительного слоя сульфида меди обусловливает уменьшение S_{β} при низких энергиях электронов. Сказанное свидетельствует о том, что при значениях E_{β} , соответствующих полному поглощению электронов в фоточувствительной области, эффективность преобразования η_{β} = const.

Рис. 1. Энергетические характеристики гетероструктур: *p*-Cu_{1.8}S/*n*-ZnS (1), *p*-Cu_{1.8}S/*n*-ZnSe (2), *p*-Cu_{1.8}S/*n*-CdS (3), *p*-Cu_{1.8}S/*n*-CdSe (4), *p*-Cu_{1.8}S/*n*-CdTe (5).

Рис. 2. Спектральные характеристики квантового выхода гетероструктур: *p*-Cu_{1.8}S/*n*-ZnS (1), *p*-Cu_{1.8}S/*n*-ZnSe (2), *p*-Cu_{1.8}S/*n*-CdS (3), *p*-Cu_{1.8}S/*n*-CdSe (4), *p*-Cu_{1.8}S/*n*-CdTe (5).

4* Физика и техника полупроводников, 2002, том 36, вып. 3

Параметры соединений $A^{II}B^{VI}$

Параметр	Соединение А ^{II} В ^{VI}				
	CdS	CdSe	CdTe	ZnS	ZnSe
$E_{g}, \Im B$ $R_{\beta} [10]$ T_{opt} $\varepsilon, \Im B$	2.4 [9] 0.29 0.74 5.8	1.7 [8] 0.30 0.85 4.4	1.5 [9] 0.33 0.74 3.5	3.6 [9] 0.20 0.57 8.9	2.7 [9] 0.29 0.73 6.4

На рис. 2 представлены спектральные характеристики квантового выхода фотоэффекта гетероструктур. Из рисунка следует, что образцы всех типов содержат участки, где η = const. Заметим, что, как показывает расчет, доля дрейфовой компоненты в фототоке является преобладающей (> 90%), т.е. неравновесные носители генерируются в основном в ОПЗ преобразователей.

Анализ полученных результатов подтверждает, что рекомбинационные потери неравновесных носителей, выраженные в (2) и (5) как коэффициенты η_1 и η_2 при световом и электронном возбуждении в интересующем нас энергетическом диапазоне одинаковы. Об этом свидетельствует постоянство η и η_{β} при энергиях квантов света и электронных потоков, которые соответствуют их полному поглощению в фоточувствительной области гетероструктур. Приведенные аргументы позволяют с использованием выражения (10) рассчитать ε .

Значения энергии внутренней ионизации ε для соединений A^{II}B^{VI}, усредненные по результатам измерений 5 образцов каждого типа, приведены в таблице. Здесь также указаны значения E_g и R_β для A^{II}B^{VI} (взяты из литературы) и величины T_{opt} для Cu_{1.8}S, соответствующие энергиям квантов hv, при которых $\eta = \text{const}$ (определены экспериментально). Отметим удовлетворительное согласие полученных результатов с описанными в литературе значениями ε для CdS и CdSe [11,12] (значения ε для других материалов A^{II}B^{VI} нам не известны).

Средняя энергия ионизации не зависит от вида ионизирующего излучения, связана с шириной запрещенной зоны и превосходит ее в 2.5–3 раза [1,2]. Аналитическое выражение этой взаимосвязи приведено в работах [13–15]: $\varepsilon = (2.67E_g \pm 0.87)$ эВ.

На рис. 3 показана зависимость $\varepsilon = f(E_g)$, построенная по результатам вышеприведенной таблицы. Как видно, экспериментальные точки удовлетворительно укладываются на прямую с угловым коэффициентом 2.5. Это позволяет отобразить связь средней внутренней энергии ионизации с шириной запрещенной зоны соединений $A^{II}B^{VI}$ в виде

$$\varepsilon = 2.5E_g. \tag{11}$$

Следует сказать, что полученные нами величины ε могут быть несколько заниженными. Это связано с тем, что реальные значения коэффициента отражения ускоренных электронов от поверхности поликристаллических объектов, очевидно, меньше, чем приведенные в [10] для

308

Рис. 3. Зависимость величины энергии внутренней ионизации от ширины запрещенной зоны соединений $A^{II}B^{VI}$.

монокристаллов. Заметим также, что если при расчете ε использовать значение $R_{\beta} = 0.2$ [10] для сульфида меди (вместо базового материала $A^{II}B^{VI}$), то зависимость (11) примет вид $\varepsilon = 2.7E_g$. Основное отличие выражения (11) от опубликованных в [13–15] состоит в том, что зависимость средней энергии внутренней ионизации от ширины запрещенной зоны полупроводников не содержит дополнительного слагаемого и прямая $\varepsilon = f(E_g)$ проходит (при экстраполяции) через начало координат. Указанное различие — принципиально и отражает тот факт, что для материалов с $E_g = 0$, например для металлов, $\varepsilon = 0$.

Таким образом, в настоящей работе предложена методика определения и экспериментально получены значения энергии внутренней ионизации ε для прямозонных соединений A^{II}B^{VI} при их облучении ускоренными электронами. Показано, что для CdS, CdSe, CdTe, ZnS, ZnSe средние величины ε равны соответственно 5.8, 4.4, 3.5, 8.9, 6.4 эВ. Экспериментальные данные удовлетворительно описываются эмпирическим выражением $\varepsilon = 2.5E_g$.

Список литературы

- [1] В.С. Вавилов. УФН, 164(3), 287 (1994).
- [2] А.Н. Георгобиани. УФН, 113(1), 129 (1974).
- [3] С.Ю. Павелец, А.В. Комащенко, В.Д. Фурсенко, П.П. Горбик. Оптоэлектрон. и полупроводн. техн., 34, 36 (1999).
- [4] А.В. Комащенко, К.В. Колежук, П.П. Горбик, Н.О. Май, Г.И. Шереметова. Письма ЖТФ, 26(5), 1(2000).
- [5] Ю.Н. Бобренко, А.М. Павелец, С.Ю. Павелец, В.М. Ткаченко. Письма ЖТФ, 20(12), 9 (1994).
- [6] А.Г. Роках, В.А. Смоляр. Изв. АН СССР. Сер. физ., 33(3), 473 (1969).
- [7] R.P. Joshi, K.H. Schoenbach, C. Molina, W.W. Hofer. J. Appl. Phys., 74(3), 1568 (1993).
- [8] С.Зн. Физика полупроводниковых приборов (М., Мир, 1984) т. 2.

- [9] Физико-химические свойства полупроводниковых веществ. Справочник (М., Наука, 1979).
- [10] C.A. Klein. Appl. Opt., 5(12), 1922 (1966).
- [11] С.В. Свечников, В.Г. Чалая. ФТТ, 8(10), 3108 (1966).
- [12] П.П. Горбик, Н.О. Май, А.В. Комащенко, В.М. Огенко, В.Д. Фурсенко. Доповіді НАН України, **12**, 85 (1999).
- [13] В.С. Вавилов, Н.А. Ухин. Радиационные эффекты в полупроводниках и полупроводниковых приборах (М., Атомиздат, 1969).
- [14] В.С. Вавилов, Н.П. Кекелидзе, Л.С. Смирнов. Действие излучений на полупроводники (М., Наука, 1988).
- [15] C.A. Klein. J. Phys. Soc. Japan, 21, 307 (1966).

Редактор Т.А. Полянская

Inner ionization energy in A^{II}B^{VI} compounds

A.V. Komashchenko, V.N. Komashchenko, K.V. Kolezhuk, G.I. Sheremetova, V.D. Fursenko, Yu.N. Bobrenko

Institute of Semiconductor Physics, Nacional Academy of Sciences of Ukraine, 03028 Kiev, Ukraine

Abstract We investigated how the sensitivity of the *p*-Cu_{1.8}S/*n*-A^{II}B^{VI}-type surface-barrier heterostructures dependes on the energy of exciting photons or accelebrated monoenergetic electron beams. A technique for determination of the mean inner ionization energy ε in direct-gap A^{II}B^{VI} compounds is suggested and ε values are found experimentally. It is shown that the relationship between ε and the semiconductor gap E_g is given by the following expression: $\varepsilon = 2.5E_g$.