Температурные и концентрационные зависимости подвижности носителей заряда в твердых растворах PbTe–MnTe

© Е.И. Рогачева[¶], И.М. Кривулькин

Национальный технический университет "Харьковский политехнический институт", 61002 Харьков, Украина

(Получена 8 мая 2001 г. Принята к печати 18 февраля 2002 г.)

Исследованы температурные зависимости (80–300 К) электропроводности (σ), коэффициента Холла ($R_{\rm H}$) и подвижности носителей заряда ($\mu_{\rm H}$) литых и прессованных образцов твердых растворов PbTe–MnTe (0–2.5 мол% MnTe). Для литых образцов $\mu_{\rm H}$ практически не изменяется в интервале 80–140 К, после чего падает по степенному закону $\mu_{\rm H} = aT^{-\nu}$. Для прессованных образцов в интервале 100–160 К при повышении температуры наблюдается экспоненциальный рост $\mu_{\rm H}$, который объясняется наличием энергетических барьеров высотой ΔE_a , создаваемых окисными пленками на межзеренных границах. На зависимостях $\mu_{\rm H}$, ν и ΔE_a от содержания MnTe в области составов 0.75–1.25 мол% обнаружены аномалии, которые связываются с концентрационным фазовым переходом перколяционного типа.

1. Введение

Полупроводниковые соединения А^{IV}В^{VI} и твердые растворы на их основе относятся к числу материалов, широко используемых в оптоэлектронике (в инфракрасной области), термоэлектричестве и других областях науки и техники [1]. Исследования концентрационных зависимостей свойств (см., например, [2-4]) показали, что в ряде твердых растворов на основе соединений А^{IV}В^{VI} в области малых концентраций примеси (~1мол%) обнаруживаются аномалии. Мы связываем наличие этих аномалий с концентрационными фазовыми переходами, присущими любым твердым растворам и обусловленными переходом от примесного дисконтинуума к "примесному конденсату" [5]. Наблюдаемый эффект требует всестороннего исследования и должен быть принят во внимание при разработке новых материалов и прогнозировании свойств твердых растворов. К числу важнейших характеристик полупроводниковых материалов, определяющих в ряде случаев возможности их практического использования, относится подвижность носителей заряда $\mu_{\rm H}$.

Объект настоящего исследования — твердые растворы на основе теллурида свинца в системе PbTe–MnTe, относящиеся к классу полумагнитных полупроводников, интенсивно исследуемых в настоящее время [6].

Цель работы — изучение температурных и концентрационных зависимостей подвижности носителей заряда.

2. Методика эксперимента

Сплавы PbTe-MnTe (0-2.5 мол% MnTe) были приготовлены в ампулах из элементов высокой степени чистоты и подвергнуты гомогенизирующему отжигу при 820 К в течение 200 ч. В соответствии с результатами микроструктурного и рентгенографического исследований, после указанной термообработки область твердых растворов на основе PbTe составляла ~ 3 мол%. Для проведения электрофизических измерений из полученных слитков выпиливали образцы в форме параллелепипедов размером $3 \times 3 \times 10$ мм³. Для получения прессованных образцов синтезированные сплавы измельчались в агатовой ступке на воздухе (средний размер частиц соответствовал ~ 200 мкм), после чего путем горячего прессования при $T = 620 \,\mathrm{K}$ и давлении $4 \,\mathrm{T/cm^2}$ были изготовлены образцы для измерения в форме параллелепипедов, которые отжигались в течение 200 ч при 820 К и охлаждались на воздухе. Измерения электропроводности σ и коэффициента Холла $R_{\rm H}$ проводились в постоянном магнитном поле 1 Тл при постоянном токе через образец. Шесть омических контактов изготавливались из индия путем пайки к поверхности образца. Холловская подвижность рассчитывалась по формуле $\mu_{\rm H} = R_{\rm H}\sigma$. Погрешность измерений σ и $R_{\rm H}$ не превышала 5%. Все исследуемые образцы имели проводимость р-типа.

3. Результаты и обсуждение

Характер температурных зависимостей $R_{\rm H}$ для литых и прессованных образцов PbTe–MnTe различных составов имеет сходный вид: во всем интервале температур наблюдается рост $R_{\rm H}$ с температурой и отношение R_{300}/R_{100} составляет $\sim 1.1-1.3$ (рис. 1). Факт незначительного роста $R_{\rm H}$ при повышении температуры в *p*-PbTe хорошо известен и обычно связывается со сложной структурой валентной зоны, состоящей из двух перекрывающихся подзон с различной плотностью состояний [7]. Носители в нижележащей по энергии подзоне имеют меньшую подвижность и роль носителей этой подзоны в кинетических эффектах возрастает с повышением температуры. С учетом наличия тяжелых и легких дырок выражение для вычисления $R_{\rm H}$ имеет вид

$$R_{\rm H} = \frac{r}{e} \frac{p_1 \mu_1^2 + p_2 \mu_2^2}{(p_1 \mu_1 + p_2 \mu_2)^2} = \frac{r}{e p_1} \frac{1 + \eta f^2}{(1 + \eta f)^2}, \qquad (1)$$

где p_1 и p_2 — концентрации легких и тяжелых дырок соответственно, μ_1 и μ_2 — их подвижности, $\eta = p_2/p_1$,

[¶] E-mail: rogacheva@kpi.kharkov.ua

Рис. 1. Температурные зависимости коэффициента Холла $R_{\rm H}$ для прессованных сплавов PbTe–MnTe с содержанием MnTe, мол%: I = 0, 2 = 0.5, 3 = 0.75, 4 = 1.25, 5 = 1.75, 6 = 2.5.

 $f = \mu_2/\mu_1$, *г* — холл-фактор, зависящий от степени вырождения и механизма рассеяния. Как видно из формулы (1), при увеличении вклада тяжелых дырок с ростом температуры растет и *R*_H. Аналогичный эффект должен наблюдаться и в сплавах PbTe–MnTe, имеющих структуру валентной зоны, идентичную валентной зоне *p*-PbTe [8].

Как видно из рис. 2, температурные зависимости холловской подвижности носителей заряда существенно различаются для литых и прессованных образцов. Для литых образцов µ_Н практически не изменяется до $\sim 140 \, \text{K}$, после чего снижается по степенному закону $\mu_{\rm H} = AT^{-\nu}$, где значение показателя степени ν зависит от состава твердого раствора и составляет v = 1.5 - 2.9 (рис. 2, *a*). Для прессованных образцов при увеличении температуры до ~ 200-220 К наблюдается рост подвижности носителей заряда, затем µ_H падает по степенному закону, как и в случае литых образцов (рис. 2, b). Построение зависимостей $\mu_{\rm H}(T)$ в координатах $\ln \mu_{\rm H} = f(1/T)$ (рис. 2, *b*) показало, что до ~ 160 К зависимость носит экспоненциальный характер: $\mu_{\rm H} \propto \exp(-\Delta E_a/kT)$, где ΔE_a — энергия активации. В интервале температур 100-160 К были рассчитаны значения ΔE_a для прессованных образцов различного состава.

На рис. З приведены температурные зависимости σ литых и прессованных образцов PbTe–MnTe. Электропроводность литых образцов монотонно снижается с ростом температуры (рис. 3, *a*), что характерно для полупроводников с вырожденным газом носителей тока. Особенностью зависимостей $\sigma(T)$ прессованных образцов (рис. 3, *b*) является наличие отчетливо выраженного участка роста σ в интервале температур 80–220 К. Полученные из зависимостей $\mu_{\rm H}(T)$ литых и прессованных образцов значения степенного коэффициента $\nu = 1.5-2.9$ свидетельствуют о том, что температурный ход подвижности в большинстве образцов не может объясняться только рассеянием на акустических колебаниях решетки, так как в этом случае для невырожденных полупроводников $\nu = 3/2$, а для вырожденных $\nu = 1$. Наблюдаемые в PbTe более высокие значения ν в настоящее время обычно связываются с наличием температурной зависимости эффективной массы [7], поскольку считается установленным, что основным механизмом рассеяния носителей заряда в PbTe при средних и высоких температурах является рассеяние на акустических

фононах. Из полученных в настоящей работе данных

Рис. 2. Температурные зависимости подвижности носителей заряда $\mu_{\rm H}$ в твердых растворах PbTe-MnTe. *a* — литые образцы с содержанием MnTe, мол%: *I* — 0, *2* — 0.25, *3* — 0.75, *4* — 1.25, *5* — 1.75, *6* — 2.25; *b* — прессованные образцы с содержанием MnTe, мол%: *I* — 0, *2* — 0.5, *3* — 0.75, *4* — 1.25, *5* — 1.75.

Рис. 3. Температурные зависимости электропроводности σ твердых растворов PbTe–MnTe. a — литые образцы с содержанием MnTe, мол%: 1 - 0, 2 - 0.25, 3 - 0.75, 4 - 1.25, 5 - 1.75, 6 - 2.25; b — прессованные образцы с содержанием MnTe, мол%: 1 - 0, 2 - 0.5, 3 - 0.75, 4 - 1.25, 5 - 1.75, 6 - 2.5.

видно, что при увеличении концентрации MnTe наблюдается тенденция к падению степенного коэффициента.

Активационный характер подвижности прессованных образцов в интервале 100–160 К может быть связан с наличием энергетических барьеров, обусловленных образованием тонких прослоек окислов на границах отдельных зерен. Прессованные образцы готовились из порошков, полученных путем измельчения слитков на воздухе и последующего горячего прессования в воздушной атмосфере, что могло привести к окислению. По-видимому, именно окисные пленки по границам зерен, создавая энергетические барьеры, обусловливают низкие значения $\mu_{\rm H}$ в прессованных образиах при низких температурах. Образованием акцепторных уровней

в приповерхностном слое зерен в результате адсорбции кислорода авторы [9] объясняли инверсию знака термоэдс в мелкодисперсных прессованных образцах PbTe с электронной проводимостью. Авторы [10,11] наблюдали экспоненциальную зависимость $\mu_{\rm H}(1/T)$ в области низких температур в пленках PbTe и связывали этот рост с активационной проводимостью, обусловленной наличием потенциальных барьеров на границах зерен. Согласно [12], для слоя, состоящего из хорошо проводящих кристаллитов, окруженных тонкими изолирующими прослойками, $R_{\rm H}$ определяется концентрацией носителей заряда в кристаллитах, а $\mu_{\rm H}$ связана с подвижностью носителей в кристаллитах $\mu_{\rm H0}$ и с высотой энергетического барьера на границах ΔE_a соотношением

$$\mu_{\rm H} = \mu_{\rm H0} e^{-\Delta E_a/kT}.$$
 (2)

В интервале температур 200–240 К возросшая энергия носителей заряда становится достаточной для преодоления ими энергетических барьеров, созданных прослойками на границах зерен прессованных образцов, и $\mu_{\rm H}$, как и в случае литых образцов, начинает падать с ростом температуры.

Наблюдаемое различие в значениях и характере температурных зависимостей $\mu_{\rm H}$ в литых и прессованных образцах показывает, что следует проявлять большую осторожность при интерпретации результатов измерений электрофизических свойств, проводимых на прессованных образцах.

На рис. 4 представлены изотермы холловских подвижностей носителей заряда, полученные для литых (a) и прессованных (b) образцов. Зависимости показателя степени ν (взятые в области температур, где преобладает рассеяние на акустических колебаниях решетки и ν сохраняет постоянное значение) и энергии активации ΔE_a (для прессованных образцов) от состава сплавов показаны на рис. 5.

Как видно из рис. 4 и 5, на всех изотермах можно выделить три участка. Первый и третий участки (0–0.75 и 1.25–2.5 мол% МпТе соответственно) характеризуются резким падением $\mu_{\rm H}$, ν и ΔE_a , что естественно связать с ростом степени дефектности кристаллической решетки и увеличением рассеяния электронов при увеличении содержания Мп. Авторы [13], также наблюдавшие значительное снижение подвижности РbTе при введении Мп, свидетельствующее о сильном нарушении периодического потенциала решетки, сделали заключение, что в отличие от других изовалентных твердых растворов, действие Мп в твердых растворах PbTe–MnTe не может рассматриваться как слабое возмущение.

На втором участке (0.75–1.25 мол% MnTe) на изотермах $\mu_{\rm H}$, ΔE_a и ν наблюдается аномальный рост указанных величин, свидетельствуя о качественных изменениях свойств твердого раствора при изменении содержания примеси. Аналогичные концентрационные аномалии наблюдались нами при исследовании других физических характеристик твердых растворов PbTe–MnTe (коэффициента термического расширения [14], теплоемкости [15], микротвердости [16]) и связывались (см. [5])

Рис. 4. Изотермы подвижности носителей заряда литых (*a*) и прессованных (*b*) образцов твердых растворов PbTe–MnTe.

с критическими явлениями, сопровождающими концентрационные фазовые переходы, имеющие перколяционную природу. Примесные атомы являются центрами локальных искажений решетки, источниками внутренних напряжений и деформаций, поле которых можно считать близкодействующим [17] и говорить о характерном радиусе деформационного взаимодействия R₀. При малой концентрации примесей, когда выполняется условие $l \gg R_0$ (l - paccтояние между примеснымиатомами), деформационные поля, создаваемые отдельными атомами, практически не перекрываются и вносят аддитивный вклад в снижение подвижности. По мере увеличения концентрации примесей происходит перекрытие деформационных полей соседних атомов, приводящее к частичной компенсации упругих напряжений противоположного знака и снижению общего уровня упругих напряжений. Когда этот процесс становится достаточно интенсивным, он может привести к увеличению $\mu_{\rm H}$, которое будет продолжаться до тех пор, пока процесс компенсации напряжений не завершится. Последующее введение атомов примеси приведет к новым искажениям решетки, а следовательно, и к новому падению величины µ_н. В приближении близкодействия, пользуясь перколяционной теорией [18], можно связать начало роста µ_H с достижением порога перколяции и критической концентрации x_C, при которой впервые образуется так называемый "бесконечный кластер" пронизывающая весь кристалл цепочка перекрывающихся деформационных сфер. В рамках этих представлений увеличение подвижности µ_Н с ростом концентрации примеси связано с увеличением плотности бесконечного кластера. Ситуация может быть аналогичной переходу Мотта, когда образование каналов протекания по электронным оболочкам отдельных примесных атомов при определенной их концентрации приводит к появлению электрической проводимости [19].

При некоторых оптимальных составах увеличивается вероятность процессов упорядочения примесных атомов. Несложный расчет показывает, что при ~ 1.0 мол% МпТе в твердом растворе PbTe–МпТе возможно упорядоченное распределение примесных атомов по узлам примитивной кубической решетки с периодом $a = 3a_0$, где a_0 — параметр элементарной ячейки. Значительный рост величин $\mu_{\rm H}$, ν и ΔE_a в интервале составов 0.75–1.25 мол% МпТе может косвенно указывать на наличие процессов упорядочения, сопровождающих образование примесного континуума.

Рис. 5. Зависимости энергии активации ΔE_a (3) на участке активационной проводимости (100–160 K) прессованных образцов и показателя степени ν в температурной зависимости подвижности ($\mu_{\rm H} \propto T^{-\nu}$) литых (160–300 K, кривая *I*) и прессованных (240–300 K, кривая *2*) образцов от состава твердого раствора PbTe–MnTe.

4. Заключение

В твердых растворах PbTe-MnTe при увеличении содержания МпТе от 0.75 до 1.25 мол% обнаружен аномальный рост подвижности носителей заряда $\mu_{\rm H}$ (при $T \approx 100-300 \,\mathrm{K}$), а также показателя степени ν в температурной зависимости $\mu_{\rm H} \propto T^{-\nu}$. Эти данные не согласуются с обычно наблюдаемым снижением величин $\mu_{\rm H}$ и *v* при увеличении концентрации примеси. Мы полагаем, что обнаруженный эффект является результатом взаимодействия деформационных полей примесных атомов при достаточно высокой их концентрации, когда этот процесс приобретает коллективный характер и приводит к частичному снятию упругих напряжений, создаваемых примесными атомами в кристалле. Наблюдаемый эффект является еще одним подтверждением высказанного нами ранее предположения [5] о существовании в любом твердом растворе концентрационных фазовых переходов перколяционного типа, соответствующих переходу к примесному континууму. Характер проявления и возможность наблюдения этого эффекта в других полупроводниковых системах должны в значительной степени зависеть от свойств матрицы и примеси.

Обнаружено, что прессованные образцы PbTe–MnTe в отличие от литых, имеют низкотемпературный участок активационной проводимости, наличие которого связывается с образованием энергетических барьеров, обусловленных процессами окисления на границах зерен. Энергия активации также является немонотонной функцией состава, обнаруживая аномалии в области предполагаемого концентрационного фазового перехода.

Работа выполнена при финансовой поддержке Фонда гражданских исследований и развития США (грант UE2-2069), а также Министерства образования и науки Украины в рамках программы "Новые вещества и материалы".

Список литературы

- А.В. Любченко, Е.А. Сальков, Ф.Ф. Сизов. Физические основы полупроводниковой инфракрасной фотоэлектроники (Киев, Наук. думка, 1984).
- [2] Е.И. Рогачева, Н.К. Жигарева, А.Б. Иванова. Изв. АН СССР. Неорг. матер., **24**, 1629 (1988).
- [3] Е.И. Рогачева. Изв. АН СССР. Неорг. матер., 25, 754 (1989).
- [4] E.I. Rogacheva, N.A. Sinelnik, O.N. Nashchekina. Acta Phys. Polon. (A), 84, 729 (1993).
- [5] E.I. Rogacheva. Japan. J. Appl. Phys., 32, Suppl. 32-3, 775 (1993).
- [6] F.V. Kyrychenko, J. Kossut. Phys. Rev. B, 61, 4449 (2000).
- [7] Ю.И. Равич, Б.А. Ефимова, И.А. Смирнов. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe и PbS (М., Наука, 1968).
- [8] И.А. Драбкин, Г.Ф. Захарюгина, И.В. Нельсон. ФТП, 5, 325 (1971).
- [9] Б.М. Гольцман, В.Ш. Саркисян, Л.С. Стильбанс, В.В. Шлыков. Изв. АН СССР. Неорг. матер. 4, 2194 (1968).

- [10] С.В. Пляцко. ФТП, **32**, 257 (1998).
- [11] В.Д. Окунев, Н.Н. Пафомов. ЖЭТФ, 116 (1), 276 (1999).
- [12] R.L. Petritz. Phys. Rev., 104, 1508 (1956).
- [13] Б.А. Ефимова, О.А. Казанская, Э.Ф. Косолапова, Л.Е. Москалева. Изв. АН СССР. Неорг. матер., 13, 1403 (1977).
- [14] E.I. Rogacheva, I.M. Krivulkin, V.P. Popov, T.A. Lobkovskaya. Phys. St. Sol. (a), **148**, K65 (1995).
- [15] E.I. Rogacheva, I.M. Krivulkin. Inst. Phys. Conf., No 152, 831 (1998).
- [16] E.I. Rogacheva, A.S. Sologubenko, I.M. Krivulkin. Inorg. Mater., 34, 545 (1998).
- [17] Т. Судзуки, Х. Есинага, С. Такеути. Динамика дислокаций и пластичность (М., Мир, 1989).
- [18] D. Stauffer, A. Aharony. *Introduction to Percolation Theory* (London–Washington, DC. Taylor and Francis, 1992).
- [19] Б.И. Шкловский, А.Л. Эфрос. Электронные свойства легированных полупроводников (М., Наука, 1979).

Редактор Т.А. Полянская

The temperature and concentration dependencies of the charge carrier mobility in PbTe–MnTe solid solutions

E.I. Rogacheva, I.M. Krivulkin

National Technical University "The Kharkov Polytechnical Institute", 61002 Kharkov, the Ukraine

Abstract Temperature dependences of the electrical conductivity (σ), the Hall coefficient ($R_{\rm H}$), and the charge carrier mobility ($\mu_{\rm H}$) have been obtained for cast and pressed samples of PbTe–MnTe solid solution (0–2.5 mol.% MnTe) in the temperature range of 80–300 K. The $\mu_{\rm H}$ remains constant within the 80–140 K range for cast samples and then decreases according to the degree law $\mu_{\rm H} = AT^{-\nu}$. The exponential rise of mobility (100–160 K) for pressed samples is observed, which is explained by the energy barriers created by the oxide films at grain boundaries. The amomalies of $\mu_{\rm H}$, ν and ΔE_a are found within the range of 0.75–1.25 mol.% MnTe on the isotherms. These anomalies are explained by the concentration phase transition of a percolation type.