Слоистая металлизация ферритов $Mg_{0.54}Zn_{0.46}Fe_2O_4$

© З.А. Самойленко, В.С. Абрамов, Н.Н. Ивахненко

Донецкий физико-технический институт Национальной академии наук Украины, 83114 Донецк, Украина

(Поступила в Редакцию в окончательном виде 24 января 2005 г.)

Методами рентгеновской спектроскопии и теоретически исследован характер межатомного взаимодействия в ферритах Mg_{0.54}Zn_{0.46}Fe₂O₄. Обнаружена перестройка электронной структуры образцов в процессе высокотемпературного отжига (1280°C, 0.5–0.8 h). Показано, что электронная перестройка сопровождается явлением слоистой металлизации феррита: чередованием слоев с металлической и ионно-ковалентной связями.

1. Введение

Повышенный интерес к магниторезистивным материалам ВТСП и ферритам обусловлен изучением природы зарядового и магнитного упорядочения их электронной структуры. Обширная информация об атомных зарядах может быть получена из рентгеновских спектров [1]. Как показали более ранние исследования [2,3], в процессе высокотемпературного отжига ферритов Mg_{0.54}Zn_{0.46}Fe₂O₄ (*T* = 1280°C, 0.5–0.8 h) происходит изменение структурно-химических неоднородностей, приводящее к различному виду упорядочений в твердом растворе [4,5]: магнитному (в ближайшем порядке), концентрационному (в мезоскопическом) и структурному (в матрице). Это является причиной нелинейных изменений ряда параметров (электрических, магнитных, структурных) [6]. Изменение электрических свойств может сопровождаться явлением слоистой металлизации, что является объектом исследования настоящей работы.

2. Методика эксперимента

Подобно тому как изменение межатомного взаимодействия исследовалось в работах [7,8], мы изучали рентгеновские эмиссионные спектры FeK_{β} (рис. 1), в которых энергетическое положение максимума FeK_{β_1} чувствительно к зарядовому состоянию ионов железа. Анализ этих спектров был проведен с помощью теоретической модели, позволяющей выявить особенности тонкой структуры спектров. FeK_{β} -линия представлялась в виде мультиплета K_{ij} с теоретически предсказанными энергетическими положениями K_{β} -линий (E_{ij}) , соответствующих энергиям перехода между определен-

Обозначения K_{ij} и энергетические положения E_{ij} линий K-спектра (расчет)

K _{ij}	E_{ij}, eV	K _{ij}	E_{ij}, eV	K _{ij}	E_{ij}, eV	K _{ij}	E_{ij}, eV
<i>K</i> ₁₁	7031.56	K ₂₁	7064.02	<i>K</i> ₃₁	7036.42	<i>K</i> ₄₁	7065.32
K_{12}	7036.98	K ₂₂	7058.62	K_{32}	7036.12	K_{42}	7059.49
K_{13}	7038.73	K ₂₃	7056.82	<i>K</i> ₃₃	7038.07	<i>K</i> ₄₃	7057.54
K_{14}	7046.01	K ₂₄	7049.62	<i>K</i> ₃₄	7045.86	<i>K</i> ₄₄	7049.76

ными энергетическими состояниями (таблица, рис. 1). В полученных экспериментально спектрах измерялись ординаты интенсивностей $I(E_{ij})$ этих линий. Далее из совокупности линий всех образцов выбиралась линия с максимальным значением интенсивности (например, для $\tau = 2 h$ линия K_{22}) и проводилась нормировка интенсивностей всех линий на указанную максимальную интенсивность. Такая процедура нормировки позволяет получить информацию как об изменении интенсивности каждой отдельной линии в процессе отжига (в зависимости от τ), так и о возможном процессе перераспределения интенсивностей между линиями тонкой структуры (в зависимости от $\Delta E = E_{ij} - E_{0\tau}$) при фиксированном τ . Здесь $E_{0\tau}$ — энергетическое положение центра тяжести линии FeK_{β}. Энергия ($E_{0,\tau}$, eV) рассчитывалась относительно эталонной линии СоКа1 с учетом величины дисперсии для изучаемого интервала спектра. Результаты проведенных исследований эволюции формы FeK_b-линий для магний-цинковых ферритов представлены на рис. 2. Они характеризуют изменение заселенностей дискретных энергетических состояний в процессе высокотемпературного отжига.

3. Теоретическая модель

Рассмотрим схему возникновения линий наблюдаемого К-спектра в рамках нашей теоретической модели [9,10]. За энергетическое положение β_1 - и β'-пиков отвечает энергия основной моды цепочки ${}_{1}{\rm Fe}^{0} - {}_{4}{\rm Fe}^{2+} - {}_{3}{\rm Fe}^{0}$. Квантовое состояние атомов ${}_{1}{\rm Fe}^{0}$ (электронная конфигурация $3d^8$, спиновый S = 1, орбитальный L = 3, угловой J = 4 моменты электронной оболочки, спиновой момент ядра I = 1/2) и ${}_{3}\text{Fe}^{0}$ ($3d^{7}4\bar{s}$, где запись вида 4s означает, что спиновый момент 45-электрона противоположен полному моменту конфигурации $3d^7$, S = 1, L = 3, J = 4, I = 1/2) описывается вектором состояния $|F;m\rangle = |9/2;-1\rangle$ с энергией основной колебательной моды $E_0 = 302 \, \text{keV}$. Квантовое число F получается при сложении углового момента электронной оболочки атома с ядерным моментом. Кристаллографические направления образуемых валентных связей описываются параметром $m = 3\cos^2 \vartheta - 1$, где ϑ — угол между локальной осью Z и локальной осью

Рис. 1. Зависимости интенсивностей *I* линий $\operatorname{Fe}_{K_{\beta_1\beta'}}$ от $\Delta E = E_{ij} - E_{0r}$ для ферритов $\operatorname{Mg}_{0.54}\operatorname{Zn}_{0.46}\operatorname{Fe}_2\operatorname{O}_4$. На оси абсцисс точка 0 соответствует началу отсчета энергии от E_{0r} , где E_{0r} — энергетическое положение центра тяжести линии β_1 .

симметрии [9,10]. Учет спонтанной деформации основной цепочки (параметр порядка $\Delta_q \neq 0$) приводит к появлению квазиакустических ветвей в спектре и как следствие к возникновению линий К₁, К₂ (с энергиями перехода $E_1 = 7047.81 \text{ eV}, E_2 = 7393.29 \text{ eV}$ соответственно) в спектре. Дальнейшая трансформация спектра обусловлена вкладом от второго параметра порядка $\Delta \neq 0$, связанного с мягкой модой дополнительной цепочки $[_{1}O^{-} - _{4}Fe^{2+}] - _{D}Fe - [_{3}O^{-} - _{4}Fe^{2+}]$. При этом комплексы $[10^{-} - 4Fe^{2+}], [30^{-} - 4Fe^{2+}]$ могут находиться в одном из двух возможных состояний $(|1; -1\rangle, |2; -1\rangle)$ и обменно связаны через промежуточный ион _DFe. В качестве иона _DFe выступают различающиеся зарядовым и магнитным состояниями ионы ${}_{4}\text{Fe}^{2+}(1/2), {}_{3}\text{Fe}^{3+}(1),$ $_{2}$ Fe⁴⁺(3/2), $_{2}$ Fe⁴⁺(1/2). (Здесь в скобках приведено квантовое число F состояния промежуточного иона). Это определяет дополнительное расщепление линий спектра. Связывание основной и дополнительной цепо-

чек приводит к образованию квазидвумерных структур. Энергии нормальных колебательных мод этих структур в конечном итоге определяют энергетическое положение линий в К-спектре. Сопоставление экспериментального и расчетного К-спектров дает возможность извлечь информацию о возможной электронной структуре и ее эволюции в процессе отжига. В таблице приведены обозначения и расчетные энергетические положения дополнительных линий К-спектра, возникающих из основной линии *K*₁ с учетом вклада от второго параметра порядка. Линии K_{ii} с индексом i = 1, 2 связаны с состоянием $|1;-1\rangle$, a c i = 3, 4 — с состоянием $|2;-1\rangle$ кислороджелезных комплексов дополнительной цепочки. Второй индекс j = 1, 2, 3, 4 учитывает вклад от промежуточных ионов ₄Fe²⁺(1/2), ₃Fe³⁺(1), ₂Fe⁴⁺(3/2), ₂Fe⁴⁺(1/2) соответственно. В реальном спектре линии K_{11}, K_{12}, K_{13} , K_{31}, K_{32}, K_{33} не наблюдаются, так как имеют слабую интенсивность. Расчетные энергетические положения

Рис. 2. Распределение интенсивности FeK_{β1β'} для дискретных значений энергий мультиплета (*N* — коэффициент нормировки интенсивности спектра).

линий, возникающих из второй основной линии K_2 , здесь не приведены, поскольку в настоящей работе эта область энергий экспериментально не исследовалась.

4. Тонкая структура рентгеновских спектров FeK₈

Проанализируем экспериментальные спектры на основе предложенной теоретической модели. Известно, [11], что основной вклад в переходы, ответственные за возникновение рентгеновских спектров, вносят 3*d*- и *4s*-электроны элементов VIII переходной группы. Кислород не имеет внутренней линии, которую можно было бы использовать в качестве внутреннего стандарта при определении изменений заселенностей его валентных 2*p*-оболочек. Из сравнения цепочки основной моды и комплексов цепочек мягкой моды видно, что они содержат одинаковый ион железа ($_4$ Fe²⁺). Следовательно, тонкая структура Fe*K*_β-линии связана с изменением состояния мягкой моды дополнительной цепочки. Эти изменения состояний обусловлены различным типом промежуточного иона *D*Fe. В экспериментальном FeK_{β_1} -спектре образование β_1 -пика связано с группой линий K_{23} и K_{43} , K_{22} и K_{42} . На склонах спектральной кривой высокэнергетическая область β_1 -пика (линии K_{21} и K_{41}) отображает наличие металлических слоев, тогда как низкоэнергетическая (пик β'), представленная линиями K_{34} , K_{14} , K_1 , K_{44} , K_{24} , характеризуют слои с ионноковалентным взаимодействием, в котором участвуют ионы железа и кислорода (p-d взаимодействие).

В образце с $\tau = 0.5$ h линия K_{22} расположена ближе к вершине β_1 по сравнению с линиями K_{23} , K_{43} и K_{42} . Основной вклад в ее интенсивность вносит мягкая мода в состоянии $|1; -1\rangle$. Форма линии β_1 гладкая и симметричная относительно центра тяжести, что свидетельствует об обменном взаимодействии между энергетическими уровнями с образованием распределения заселенностей, близкого к квазиравновесному. С увеличением времени отжига ($\tau = 1$ h) пик β_1 смещается и занимает положение K_{42} -линии, интенсивность которой определяется такой же (как и для линии K_{22}) мягкой модой, но в состоянии $|2; -1\rangle$. Таким образом, в процессе отжига от $\tau = 0.5$ до 1 h наблюдаемые смещение β_1 -пика и перераспределение интенсивностей линии K_{22} , K_{42} связаны с переводом мягкой моды из состояния $|1; -1\rangle$ в состояние $|2; -1\rangle$. В образцах с $\tau = 1-8$ h линия β_1 асимметрична (профиль линии типа Фано обусловлен взаимодействием отдельного возбуждения с непрерывным фоном [12]), что может быть интерпретировано как частичная делокализация носителей заряда (явление металлизации) с образованием свободных носителей заряда. Размытость и немонотонное изменение формы линии на склонах типа β' для образцов с $\tau = 0.5$, 1 и 8 h свидетельствуют о неоднородном уширении и возможной перестройке электронной структуры.

Следует подчеркнуть выявленную особенность $FeK_{\beta_1\beta'}$ -спектров: подвижность элементов тонкой структуры, проявляющуюся в изменении соотношений интенсивностей отдельных линий мультиплета в процессе эволюции структуры при увеличении времени отжига. Информацию об изменении заселенностей соответствующих электронных состояний позволяет получать не просто факт уширения спектра, а именно перераспределение интенсивностей по линиям (например, по К42, К22, К43 и К23). Информацию об электронной структуре можно извлекать по энергетическому положению отдельных линий спектра. Так, положения линий К₃₄, К₁₄, К₄₄, К₂₄ определяются энергией квантового перехода из состояний с локализованными электронами, когда эффект локализации достигается за счет механизма косвенного обмена через промежуточный ион $_2$ Fe⁴⁺(1/2) мягкой моды, а линии K_{21} , K_{41} — из состояний с коллективизированными электронами, когда эффект коллективизации достигается за счет обмена через ион ${}_{4}\text{Fe}^{2+}(1/2)$. Распределение заселенностей коллективизированных электронов по состояниям $(K_{21} \ \text{и} \ K_{41})$ в процессе высокотемпературного отжига остается квазиравновесным (интенсивность линии К21 в процессе отжига больше интенсивности линии K_{41} : $I(K_{21}) > I(K_{41})$, т.е. разность заселенностей между этими состояниями сохраняет знак плюс), хотя в процессе отжига интенсивность каждой линии изменяется. В низкоэнергетической группе линий в процессе отжига при $\tau = 0.5$, 2 и 8 h $I(K_{14}) < I(K_{44})$ и $I(K_{34}) < I(K_{24})$, а при $\tau = 1$ h $I(K_{14}) > I(K_{44})$ и $I(K_{34}) > I(K_{24})$, т.е. происходит аномальное изменение соотношения интенсивностей между внутренними линиями пар (K_{41}, K_{44}) и (K_{34}, K_{24}) . При этом разность заселенностей между локализованными электронными состояниями (К₁₄ и К₄₄) меняет знак с минуса (при $\tau = 0.5 \,\mathrm{h}$) на плюс (при $\tau = 1 \,\mathrm{h}$) и далее вновь на минус (при $\tau = 2$ и 8 h). Аналогичное поведение имеет место для состояний (К₃₄ и К₂₄). Положение высокоэнергетической пары линий (K₂₃, K₄₃) определяется энергией квантового перехода из неравновесного метастабильного состояния с локализованными электронами, когда эффект локализации достигается за счет механизма косвенного обмена через промежуточный ион $_{2}$ Fe⁴⁺(3/2), находящийся в возбужденном состоянии с квантовым числом F = 3/2. При этом в процессе отжига разность заселенностей между локализованными электронными состояниями (K_{23} , K_{43}) сохраняет знак минус. Положение другой высокоэнергетической пары линий (K_{22} , K_{42}) определяется энергией квантового перехода из электронных состояний, стабилизированных за счет механизма косвенного обмена через промежуточный ион ${}_{3}\text{Fe}^{3+}(1)$. В процессе отжига наблюдается чередование знака разности заселенностей между состояниями k_{22} и K_{42} : при $\tau = 0.5$ и 2 h знак плюс, а при $\tau = 1$ и 8 h знак минус. Это свидетельствует о перестройке электронной структуры в процессе температурного отжига и является отличительной особенностью поведения указанных состояний.

Полученные теоретические и экспериментальные данные о тонкой структуре FeK_{B1}-линии согласуются с результатами исследований зависимости интегральных параметров пиков β_1 , β' от времени отжига (рис. 3). На рис. З, а показана экспериментальная зависимость интенсивности пиков β_1 и β' от времени отжига. При этом суммарная интенсивность пиков β_1 и β' приравнивалась к 100 единицам. Интенсивность пика β_1 характеризует распределение основной группы *d*-электронных состояний ионов железа в феррите. Кривые I_{β_1} и $I_{\beta'}$ мало изменяются для образцов с $\tau = 0.5, 2$ и 8 h. Однако для образца с $\tau = 1 h$ наблюдаются коррелированные изменения плотностей электронных состояний, что следует из факта одновременного появления локального максимума интенсивности Ів' и локального минимума интенсивности І_{β1}. Согласно теоретическим исследованиям, наблюдаемое перераспределение интенсивностей спектров FeK_{β_1} и $FeK_{\beta'}$ в основном связано с перераспределением заселенностей между состояниями (K_{34}, K_{14}) и (К22, К42), которое сопровождает процесс перестройки электронной структуры. Увеличение интенсивности I_{β_1} для $\tau = 1$ h по сравнению с $\tau = 0.5$ h (рис. 3, *a*) связано с увеличением заселенностей состояний К₃₄ и К₂₄ (рис. 2).

На рис. 3, b показан немонотонный ход зависимости коэффициента асимметрии $\kappa = a/b$ спектральной линии FeK_{*B*1} от времени отжига ферритов, определяемый как отношение эффективных плотностей коллективизированных (участок *a* в высокоэнергетической области β_1) и локализованных (участок b в низкоэнергетической области β_1) состояний электронов. Значение параметра $\kappa \ll 1$ указывает на преобладающий вклад ионноковалентной связи с образованием локализованных электронных состояний, а $\kappa \gg 1$ — металлической связи с появлением свободных носителей заряда в структуре материала. При промежуточном значении $\kappa \approx 1$ вклады металлической и ковалентной связей становятся одинакового порядка, что приводит к сосуществованию в структуре как коллективизированных, так и локализованных электронных состояний. При этом появляется возможность реализации эффекта переключения связей с металлической на ковалентную (и наоборот), что соответствует смене знака параметра $\kappa - 1$ при переходе через значение $\kappa = 1$ в процессе отжига образцов. Такие изменения параметра к наблюдаются на временном

Рис. 3. Зависимости интегральных параметров линий β_1 и β' от времени отжига образцов: a — интенсивностей I_{β_1} и $I_{\beta'}$; b — коэффициента асимметрии $\kappa = a/b$ Fe K_{β_1} -линии, где a и b — полуширины линии β_1 (вставка — пример определения параметров a и b из рентгеновского спектра для $\tau = 0.5$ h); c — интегральных интенсивностей компонент мессбауэровских спектров (вставка — мессбауэровский спектр); d — ширины $\gamma = a + b$ спектральной Fe K_{β_1} — линии.

интервале от $\tau = 0.5$ до 2 h с образованием локального минимума при $\tau = 1$ h. Другими дополнительными аргументами в пользу представлений о наличии эффекта переключения связей служат совпадение локальных экстремумов на временных зависимостях I_{β_1} , $I_{\beta'}$, κ , γ (рис. 3, *a*-*c*) при $\tau = 1$ h и коррелированные изменения интегральных интенсивностей I_{β_1} , $I_{\beta'}$ на указанном выше временном интервале (рис. 3, а).

С увеличением времени отжига от $\tau = 1$ до 8 h вклад металлической связи увеличивается, что проявляется также в увеличении интенсивности группы высокоэнергетических состояний K_{21} и K_{41} (рис. 2) и согласуется с увеличением коэффициента асимметрии κ (рис. 3, *b*).

5. Особенности магнитного упорядочения

Для анализа магнитного порядка исследовали [6] мессбауэровские у-спектры поглощения ⁵⁷Fe от анализируемых образцов, полученные с применением радиоактивного источника у-квантов ⁵⁷Со активностью 50 mCu в матрице хрома. На рис. 3, с показана зависимость интегральных интенсивностей компонент мессбауэровских спектров Mg-Zn-ферритов. Как видно из рис. 3, с (кривая А), при увеличении времени отжига образцов при $T = 1280^{\circ}$ С уже от 0.5 h и далее интегральная интенсивность $S_A \approx$ const, т. е. концентрация и упорядочение магнитных ионов Fe³⁺, занимающих тетраэдрические позиции А, практически не изменяются. Однако изменяются долевые вклады интенсивностей S_{B1} и S_{B2} от секстетов В₁ и В₂, которые связаны с наличием двух неэквивалентных октаэдрических позиций (В1 и В2) железа в магнитной структуре феррита. Эта неэквивалентность определяется различным ближайшим окружением (из магнитных ионов) октаэдрического узла. Интенсивность S_{B1} определяется концентрацией магнитных атомов железа Fe³⁺ в позициях B₁, обменно взаимодействующих с ближайшим окружением из 5 и 6 магнитных атомов, а S_{B2} — в позициях B₂, обменно взаимодействующих с ближайшим окружением из 3 и 4 магнитных атомов [6]. При $\tau < 2h$ выполняется неравенство $S_{B1} > S_{B2}$, а при $\tau > 2 h$ — обратное соотношение $S_{B1} < S_{B2}$. Следовательно, при переходе значения $\tau = 2 \, \mathrm{h}$ происходит смена магнитного упорядочения от дальнодействующего $(S_{B1} > S_{B2})$ к близкодействующему $(S_{B2} > S_{B1})$.

Известно [13,14], что изменение магнитного состояния ионов железа может приводить к изменениям ширины спектральной линии, которая зависит от спинорбитального взаимодействия *d*-*d*-электронов: чем сильнее это взаимодействие, тем уже β_1 -линия. Поэтому представляет интерес сравнить поведение магнитных параметров (рис. 3, *c*) и ширины спектральной линии (γ) основного пика β_1 (рис. 3, *d*) от времени отжига. Так, при $\tau = 0.5$ h, с одной стороны, наблюдается магнитное упорядочение ионов железа (рис. 3, *c*) с характерными отклонениями $S_{B1} - S_A \approx S_A - S_{B2}$, а с другой стороны,

ширина спектральной линии (рис. 3, *d*) минимальна. При $\tau = 1 h$ отклонение $S_{B1} - S_A$ становится меньше отклонения $S_A - S_{B2}$, т.е. происходит дополнительное разупорядочение магнитного состояния, что сопровождается увеличением ширины спектральной линии β_1 с образованием пика (рис. 3, d). При $\tau = 2h$ вклады от интенсивностей секстетов В1 и В2 становятся приблизительно одинаковыми (рис. 3, с), при этом ширина спектральной линии (рис. 3, d) уменьшается по сравнению с $\tau = 1 h$ и достигает локального минимума. При дальнейшем увеличении времени отжига до $\tau = 8 \, \mathrm{h}$ интенсивность секстета В₂ становится больше интенсивности секстета B₁ (рис. 3, c), а ширина спектральной линии монотонно возрастает (рис. 3, d). Следовательно, наиболее разупорядоченными в магнитном отношении являются состояния с $\tau = 1 h$ (рис. 3, *c*), спектральная линия которых максимально широкая (рис. 3, d). При этом дополнительный вклад в магнитное разупорядочение возникает перед последующим фазовым магнитным переходом: сменой магнитных квазифаз $B_1 \rightarrow B_2$ (рис. 3, c). Сравнительный анализ всех данных (рис. 1-3) указывает на то, что в исследуемых образцах имеются ферромагнитные области (рис. 3, b, c; линии K_{22} и К₄₂ чувствительны к коллективизированному ферромагнитному упорядочению, рис. 2) с проводимостью металлического типа и антиферромагнитные области (рис.3, b, c; линии K_{23} и K_{43} чувствительны к локальному антиферромагнитному упорядочению, рис. 2) с проводимостью диэлектрического типа. Соотношение областей изменяется с увеличением времени отжига нелинейно (рис. 3, b, c). Ферромагнитный порядок сопровождается явлением металлизации, а антиферромагнитный — локализации электронных состояний.

6. Выводы

Тонкая структура FeK_β-спектра связана с наличием в структуре дополнительной цепочки различающихся зарядовым и магнитным состояниями промежуточных ионов $_4\text{Fe}^{2+}(1/2)$, $_3\text{Fe}^{3+}(1)$, $_2\text{Fe}^{4+}(3/2)$, $_2\text{Fe}^{4+}(1/2)$, через которые осуществляется косвенное обменное вза-имодействие между кислород-железными комплексами $[_1\text{O}^- - _4\text{Fe}^{2+}]$ и $[_3\text{O}^- - _4\text{Fe}^{2+}]$.

В процессе отжига наблюдается перераспределение заселенностей между электронными состояниями $FeK_{\beta_1\beta'}$ -спектра, которое может приводить к изменению знака (инверсии) разности заселенности между некоторыми состояниями при изменении времени отжига образцов.

Исследуемые образцы содержат области с коллективизированным ферромагнитным упорядочением и проводимостью металлического типа, а также области с антиферромагнитным упорядочением и проводимостью диэлектрического типа.

Слоистая металлизация в рентгеновских эмиссионных спектрах проявляется в сосуществовании элементов

тонкой структуры спектра $FeK_{\beta_1\beta'}$, одни из которых отражают электронные состояния структуры с металлической связью, тогда как другие — с ионно-ковалентной. При этом в процессе отжига образцов имеет место эффект переключения связей с металлической на ковалентную (и наоборот).

Список литературы

- [1] М.А. Блохин, И.Г. Швейцер. Рентгеноспектральный справочник. Наука, М. (1982). 456 с.
- [2] B.P. Ladgnonkar, P.N. Vosambekar, A.S. Vaingakar. I. MMM 210, 1–3, 289 (2000).
- [3] I.L. Dormann, M.I. Nugues. Phys.: Condens. Matter 2, 1223 (1990).
- [4] З.А. Самойленко, Н.Н. Ивахненко, В.П. Пащенко, О.В. Копаев, Б.К. Остафийчук, И.М. Гасюк. ЖТФ 72, 3, 83 (2002).
- [5] З.А. Самойленко, В.С. Абрамов, Н.Н. Ивахненко. ФТТ 43, 8, 1496 (2001).
- [6] B.K. Ostafiychyk, J.V. Kopayev, I.M. Gasyuk. Functional Mater. 6, 4, 686 (1999).
- [7] З.А. Самойленко, В.С. Абрамов, Н.Н. Ивахненко. Письма в ЖЭТФ 72, 9, 679 (2000).
- [8] В.Д. Окунев, З.А. Самойленко. Письма в ЖЭТФ 53, 42, 42 (1990).
- [9] В.С. Абрамов, А.И. Линник. ФТВД 8, 3, 90 (1998).
- [10] V.S. Abramov, V.P. Pashenko, S.I. Khartsev, O.P. Cherenkov. Functional Mater. 6, 1, 64 (1999).
- [11] В.В. Немошкаленко, В.Н. Уваров. Металлофизика и новейшие технологии 19, 3, 16 (1997).
- [12] К. Томсен, М. Кардон. В кн.: Физические свойства высокотемпературных сверхпроводников / под ред. Д.М. Гинзбурга. Мир, М. (1990). 504 с.
- [13] К.И. Нарбутт. Изв. АН СССР. Сер. физ. 40, 355 (1976).
- [14] В.Ф. Демехин, Г.Ф. Лемешко, А.Т. Шуваев. Изв. АН СССР. Сер. Физ. 38, 587 (1974).