Зонная структура, магнитные и упругие свойства перовскитов SrFeO₃ и LaFeO₃

© И.Р. Шеин, К.И. Шеин, В.Л. Кожевников, А.Л. Ивановский

Институт химии твердого тела Уральского отделения Российской академии наук, 620219 Екатеринбург, Россия

E-mail: shein@ihim.uran.ru

(Поступила в Редакцию 25 ноября 2004 г.)

Методом *ab initio* псевдопотенциалов (пакет VASP) с учетом одноузельных кулоновских корреляций (формализм LSDA + U) исследованы зонная структура, магнитные и упругие характеристики перовскитов SrFeO₃ и LaFeO₃ с коллинеарными спиновыми конфигурациями: ферромагнитной и антиферромагнитной (типы *A*, *C* и *G*). В интервале давлений 0–50 GPa основными являются состояния ферромагнитного металла для SrFeO₃ и антиферромагнитного изолятора *G*-типа для LaFeO₃.

Работа выполнена при финансовой поддержке программы РАН "Водородная энергетика и топливные элементы".

1. Введение

После открытия "коллосального" магнетосопротивления в манганатах [1] эффекты спинового и зарядового упорядочения, а также их роль в формировании зонной структуры и физических свойств сложных оксидов переходных металлов (систем с сильными кулоновскими корреляциями) привлекают повышенное внимание. К данному классу систем относятся перовскитоподобные ферриты *M*FeO₃, ряд которых обладает смешанным электронионным типом проводимости и перспективен в качестве катодных и мембранных материалов (см. обзор [2]).

Как известно, MFeO₃-фазы в зависимости от типа Мподрешетки проявляют различные свойства: LaFeO₃ антиферромагнитный (АФМ) изолятор [3], SrFeO₃ металл [4]. CaFeO₃ является системой с зарядовым упорядочением (Fe^{IV} \rightarrow Fe^{IV+x} + Fe^{IV-x}) [5]. Важно отметить, что тип спинового и зарядового состояний для конкретных фаз может принципиально меняться в зависимости от многих факторов: стехиометрии (наличия кислородных вакансий), температуры, внешнего давления. Так, в области стехиометрии SrFeO_x (2.5 < x < 3.0)реализуюстя различные состояния зарядового и спинового упорядочения или комбинированный случай зарядового и спинового упорядочения [6]. Барическая обработка CaFeO3 приводит к подавлению зарядового упорядочения (при $P > 20 \,\text{GPa}$) и существенно меняет температуру перехода из АФМ-фазы в состояние спинового стекла [7], а для SrFeO₃ способствует фазовому переходу $A\Phi M \rightarrow \phi$ ерромагнитное (ΦM) состояние [8,9].

В настоящее время зонная структура SrFeO₃ и LaFeO₃ исследована в ряде работ. В рамках теории функционала локальной спиновой плотности (LSDA) методами линейных muffin-tin орбиталей — сильной связи (TB LMTO-ASA) [10] и присоединенных сферических волн (ASW) [11,12] — для SrFeO₃ исследовались энергетические зоны и межатомные взаимодействия. Зонная структура ФМ- и АФМ-фаз LaFeO₃ изучалась в приближении LSDA (методы TB LMTO–ASA [13], LAPW [3]), а также FLMTO–GGA [14]. Обнаружено, что при LSDAрасчетах происходит систематическое занижение величины запрещенной щели (ЗЩ) и атомных магнитных моментов (MM) феррита. Так, согласно [3], значения ЗЩ и MM (Fe) LaFeO₃ равны 0.2 eV и 3.7 $\mu_{\rm B}$, тогда как экспериментальные величины составляют ~ 2.1 eV (оптические измерения [15]) и 4.6 ± 0.2 $\mu_{\rm B}$ [16]. Учет одноузельных корреляций (расчеты по модели LSDA + *U* методом LMTO–ASA) показал [17], что с ростом кулоновского параметре *J*) ЗЩ LaFeO₃ увеличивается до 3.4 eV, а MM (Fe) — до 4.4 $\mu_{\rm B}$. Влияние корреляционной поправки на параметры зонной структуры SrFeO₃ не рассматривалось.

В настоящей работе схема LSDA + U использована для сравнительного анализа зонной структуры и межатомных взаимодействий перовскитов SrFeO₃ и LaFeO₃ с различными типами коллинеарного магнитного упорядочения: ФМ и АФМ (*A*-, *C*- и *G*-типы). Кроме того, учитывая перспективы применения фаз на основе ферритов в качестве катодных материалов, мы впервые выполнили расчеты их упругих параметров: объемных модулей B_0 и их первых производных B'_0 , а также рассмотрели изменение энергетических и магнитных параметров этих фаз в условиях всестороннего сжатия.

2. Модели и детали расчета

Сравнительный анализ зонной структуры перовскитоподобных фаз SrFeO₃ и LaFeO₃ проведен для кубической структуры (пространственная группа Pm3m) со следующими позициями атомов (в ячейке): О — 3d (0, 0, 1/2), (Sr La) — 1b (1/2, 1/2, 1/2), Fe — 1a (0, 0, 0). Координационными полиэдрами (КП) атомов кислорода и Fe являются октаэдры [Fe₂(Sr, La)₄] и [O₆] соответственно; КП Sr или La — кубооктаэдры [O₁₂].

Расчетные (метод LSDA + U, для ФМ- и АФМ- (типы магнитного порядка A, C, G) фаз) и экспериментальные характеристики перовскитоподобных оксидов SrFeO₃ и LaFeO₃: разности между минимальной энергией для каждой из рассмотренных магнитных фаз и энергией стабильной фазы ΔE_{tot} (eV/cell), равновесные параметры решеток a_0 (nm), модули всестороннего сжатия B_0 (GPa) и их первые производные B', плотность состояний на уровне Ферми $N(E_F)$ (state/eV·cell) или ширина запрещенной щели (eV), магнитные моменты атомов (μ_B)

Параметр	LaFeO ₃			SrFeO ₃				
	Эксперимент	ΦМ	$\mathrm{A}\Phi\mathrm{M}(G)$	Эксперимент	ΦМ	$A\Phi M(A)$	$A\Phi M(C)$	$\mathrm{A}\Phi\mathrm{M}(G)$
$\Delta E_{\rm tot}$ a_0		0.318 0.3852	0.000 0.3841	- 0.3850 [4]	0.000 0.3790	0.072 0.3789	0.146 0.3793	0.262 0.3801
B_0 B' $N(E_F)/3III$	 	197.9 5.40 2.78	198.4 5.40 2.52	["] 	171.3 5.40 0.84	162.0 5.42 0.76	159.0 5.42 0.83	147.5 5.40 0.64
MM (Fe)	4.6 ± 0.2	4.23	4.06	3.1 ± 0.1	3.70	3.72	3.73	3.64
$MM\left(O\right)$	_	0.21	0.00	0.1–0.3 [26,27]	0.08	0.06	0.00	0.00
MM (Sr, La)	—	0.00	0.00	_	0.01	0.02	0.00	0.00

Межатомные расстояния связаны с параметром ячейки *a* как Fe–O = a/2, O–O = (Sr, La)–O = $(a/\sqrt{2})$, Fe–(Sr, La) = $a\sqrt{3}/2$. Число формульных единиц в элементарной ячейке Z = 1.

Рассмотрено четыре типа коллинеарных магнитных состояний ферритов: ферромагнитное и три типа АФМ-конфигураций, где последние соответствуют ФМ-упорядочению спинов в плоскостях и АФМупорядочению между соседними плоскостями атомов Fe: тип A — вдоль оси z ($\langle 001 \rangle$), тип C — вдоль диагонали основания куба ($\langle 110 \rangle$), тип G — вдоль диагонали куба ($\langle 111 \rangle$) (рис. 1). При описании всех типов магнитного упорядочения использовались расчетные суперъячейки, состоящие из восьми элементарных ячеек (Z = 8).

Расчеты зонной структуры SrFeO₃ и LaFeO₃ проведены методом *ab initio* псевдопотенциалов (пакет VASP) [18–20], обменно-корреляционная энергия учитывалась по схеме [21]. *Ab initio* псевдопотенциалы генерировались с использованием метода PAW [22]. Для учета одноузельных кулоновских корреляций по схеме LSDA + U было использовано представление Дударева и др. [23], где кулоновский (U) и обменный (J) параметры представлены эффективным параметром $U_{\text{eff}} = U - J$.

Рис. 1. Типы коллинеарных спиновых упорядочений (в подрешетке железа) для SrFeO₃ и LaFeO₃: ферромагнитное (F) и антиферромагнитные (типы A, C, G).

Физика твердого тела, 2005, том 47, вып. 11

Для обеих фаз взяты значения параметров Fe [17]: U = 6.0 eV и J = 0.6 eV ($U_{\text{eff}} = 5.4 \text{ eV}$). При обсуждении магнитных эффектов в качестве исходных использованы результаты LSDA-расчетов парамагнитных фаз (La, Sr)FeO₃ (U = J = 0).

При построении плотностей электронных состояний интегрирование по зоне Бриллюэна проведено методом тетраэдров. Критерий сходимости для полной энергии систем составлял 0.0001 eV. Эффект барической обработки (в интервале 0-50 GPa) моделировался изотропным сжатием ячейки. Для определения модулей всестороннего сжатия B_0 и их первых производных от давления B' вычислялись полные энергии кристаллов как функции объема ячейки с использованием уравнения Бирча [24].

Для равновесных состояний фаз получены полные и парциальные плотности состояний; для анализа эффектов межатомных взаимодействий построены карты зарядовой плотности (ρ) и разностные карты спиновых плотностей ($\Delta \rho = \rho \uparrow - \rho \downarrow$).

3. Обсуждение результатов

На первом этапе минимизацией полной энергии систем E_{tot} (рис. 2) определены равновесные состояния для всех рассмотренных магнитных фаз SrFeO₃ и LaFeO₃. Для SrFeO₃ равновесные параметры решеток a_0 магнитных фаз близки, для наиболее стабильной ФМ-фазы $a_0 = 0.3790$ nm, что разумно согласуется с экспериментом (0.3851–0.3852 nm [25,26]): различия между рассчитанными и измеренными [25,26] величинами a_0 не превышают 1.6% (см. таблицу). В зависимости от типа магнитного порядка параметр a_0 меняется не более чем на 0.3%. Согласно недавним измерениям [27], параметры решетки отожженного монокристалла состава SrFeO_{2.96} равны a = 0.3864 nm, b = 0.3865 nm и c = 0.3868 nm.

Рис. 2. Зависимость *E*_{tot} от параметра ячейки магнитных фаз SrFeO₃ и LaFeO₃.

Для модельной кубической фазы LaFeO₃ параметр a_0 составляет 0.3841–0.3852 nm, что удовлетворительно согласуется с данными по нейтронной дифракции для структуры кубического перовскита (пространственная группа *Pm3m*): $a_0 = 0.3926$ nm [16], а также с межатомными расстояниями в синтезируемых образцах LaFeO₃ орторомбической (пространственная группа *Pbnm*) перовскитоподобной структуры [28].

Из данных рис. 1 и таблицы следует, что среди коллинеарных магнитных фаз SrFeO₃ более устойчивой является ФМ-фаза, остальные располагаются (в порядке убывания их стабильности) в ряд $\Phi M \rightarrow A\Phi M(A) \rightarrow A\Phi M(C) \rightarrow A\Phi M(G)$.

Согласно данным нейтронной дифракции [4], SrFeO₃ ниже $T_N = 134$ К является неколлинеарным антиферромагнетиком со спиральной структурой, что свидетельствует о конкуренции ФМ- и АФМ-взаимодействий между атомами Fe в модели Гейзенберга. В то же время малые волновой вектор спиральной структуры $(Q = 0.135a^*$ вдоль направления $\langle 111 \rangle$) и угол поворота соседних спинов (~ 40°), а также экспериментальные оценки параметров обменных взаимодействий между ближайшими $(J_1 = 1.2 \text{ meV})$ и более удаленными атомами Fe $(J_2 = -0.2 \text{ meV} \text{ и } J_4 = -0.3 \text{ meV} [4,29,30]$ указывают на то, что ФМ-взаимодействия в SrFeO₃ существенно сильнее, чем АФМ. Это согласуется с нашими данными о максимальной стабильности (среди коллинеарных магнитных фаз SrFeO₃) ФМ-состояния. Кроме того, стабилизацию ФМ-фазы SrFeO₃ наблюдали при незначительном допировании кобальтом [31]. При высоких давлениях (~ 70 GPa), согласно ⁵⁷Fe мессбауэровским спектрам, SrFeO₃ переходит ФМ-состояние [8,9]. Эффект связывают с уменьшением расстояний Fe–Fe и ростом

Рис. 3. Спиновые плотности Fe3*d*-состояний и их разложение на t_{2g} и e_g -компоненты для ФМ SrFeO₃.

Рис. 4. Спиновые плотности O2*p*-состояний ФМ SrFeO₃.

Рис. 5. Пространственные конфигурации и распределения в плоскости [110] спиновых плотностей в ФМ SrFeO₃. *a* —состояния со спином вверх ($\rho\uparrow$), *b* — состояния со спином вниз ($\rho\downarrow$), *c* — разностная плотность спиновых состояний ($\Delta\rho = \rho\uparrow - \rho\downarrow$).

ширины *d*-зоны железа. Как следует из рис. 2, при всех параметрах решетки ФМ-фаза остается более устойчивой, что позволяет качественно объяснить результаты экспериментов [8,9].

Принципиально иная ситуация характерна для LaFeO₃ (рис. 2). Расчеты (в согласии с экспериментами [3]) свидетельствуют о том, что для этой фазы наиболее устойчива АФМ-конфигурация (*G*-тип), причем ΔE_{tot} ФМ- и АФМ-фаз (0.318 eV/cell) гораздо больше, чем для SrFeO₃.

Проведенные расчеты упругих модулей магитных фаз SrFeO₃ и LaFeO₃ показывают (см. таблицу), что B_0 для G-AΦM-фазы LaFeO₃ больше, чем B_0 для ФМ-фазы SrFeO₃. В зависимости от типа магнитного порядка изменения упругих модулей $(B_0(\Phi M)/B_0(G-A\Phi M))$ для металлоподобного SrFeO₃ оказываются гораздо существеннее (~ 16%), чем для изолятора LaFeO₃ (не более 1%).

Рассмотрим особенности зонной структуры для ФМ SrFeO₃ и АФМ LaFeO₃. Общий спектр ФМ SrFeO₃ включает низкоэнергетические полосы квазиостовных O2*s*-и Sr4*p*-состояний. Спиновые расщепления O2*s*-полосы малы (~ 0.4 eV), а для Sr4*p*-состояний практически отсутствуют (ММ стронция ~ 0.01 μ_B). Наиболее существен эффект спиновой поляризации для Fe3*d*-зон, в результате *d*↑-зона понижает, а *d*↓-зона повышает свою энергию. Разделение Fe*d*-состояний (по пространственной и спиновой симметрии) на четыре группы ($t_{2g}\downarrow$, ↑ и

Рис. 6. Карты зарядовой плотности LaFeO₃ в плоскостях [110] (*a*) и [1/2, 0, 0] (*b*). Интервалы между соседними контурами $\rho = 0.025 \text{ e/Å}^3$.

 $e_{g}\uparrow,\downarrow)$ приводит к различной степени их гибридизации с соответствующими 2р-состояниями кислорода в интервале от $-7.2 \,\text{eV}$ до E_F (рис. 3, 4). Эффекты поляризации состояний с противоположной спиновой ориентацией для разных атомов становятся особенно наглядными при сравнении карт спиновых плотностей $\rho\uparrow$, \downarrow и разностной карты спиновых плотностей $\Delta \rho$ (рис. 5). Видно, что поляризация состояний кислорода незначительна. ММ атомов кислорода ($\sim 0.2 \mu_{\rm B}$) индуцированы состояниями Fe за счет перекрывания валентных оболочек железо-кислород. Важно подчеркнуть, что занятые *d*-состояния с противоположной спиновой ориентацией участвуют в организации межатомных взаимодействий в SrFeO₃ различным образом. Как видно из рис. 5, контуры положительных значений $\Delta \rho$ атома железа заметно деформированы, что указывает на доминирование выскоспиновых *t*_{2g}↑-состояний в формировании "боковых" *п*-связей Fe-O. Наоборот, заметный вклад в *о*-связи со стороны кислорода вносят низкоспиновые состояния.

Уровень Ферми E_F ФМ SrFeO₃ расположен в области $t_{2g} \downarrow$ - и $e_g \uparrow$ -зон, тогда как вклады $t_{2g} \uparrow$ -, $e_g \downarrow$ -зон пренебрежимо малы (рис. 3).

Для LaFeO₃ t_{2g} [↑]- и e_g [↑]-зоны располагаются вблизи нижнего края занятой полосы O2*p*-состояний (σ -зона). В свою очередь нижний край зоны проводимости составлен вкладами преимущественно t_{2g} [↓]-состояний, тогда как e_g [↓]-состояния расположены на $\sim 0.8 \text{ eV}$ выше и примешиваются к общей полосе свободных антисвязы-

вающих состояний O2*p*-Fe3*d*-La5*d* (σ^* -зона). Как и в феррите стронция, в LaFeO₃ происходит гибридизация состояний Fe*d*↓ –O2*p*, ответственных за ковалентную составляющую связи Fe–O. Наоборот, перекрывание занятых состояний La–O в области σ -зоны незначительно. Эти различия четко видны на картах зарядовой плотности (рис. 6). Запрещенная щель AФM LaFeO₃ составляет 2.52 eV, что хорошо согласуется с экспериментом (2.1 eV [15]), а также с данными расчетов методом LMTO–ASA с применением схемы LSDA + *U* (2.1 eV [17]). Магнитные моменты атомов Fe составляют 4.06 $\mu_{\rm B}$ (эксперимент дает 4.6 $\mu_{\rm B}$ [16]), по данным дру-

Рис. 7. Зависимость *E*_{tot} магнитных фаз SrFeO₃ от внешнего давления.

2002

гих расчетов MM(Fe) равны $3.5 \mu_{\rm B}$ (LMTO-ASA [17]), $3.7 \mu_{\rm B}$ (LSDA + U_2 [32]), $4.1 \mu_{\rm B}$ (LSDA + U [17]), $4.6 \mu_{\rm B}$ (метод Хартри-Фока [33]).

В заключение отметим, что проведенные расчеты позволили рассмотреть изменения энергетических состояний коллинеарных магнитных фаз кубических перовскитов SrFeO₃ и LaFeO₃ в условиях внешнего гидростатического давления. Проведенные оценки (рис. 7) свидетельствуют о том, что в интервале P до 50 GPa магнитных фазовых переходов не происходит, т.е. максимально устойчивыми остаются состояния ферромагнитного металла для SrFeO₃ и антиферромагнитного изолятора G-типа для LaFeO₃.

Список литературы

- R. von Helmolt, J. Wecker, B. Holzaphel, L. Scheltz, K. Samwer. Phys. Rev. Lett. 71, 14, 2331 (1993).
- [2] N.N. Oleynikov, V.A. Ketsko. Russ. J. Inorgan. Chem. 49, Suppl. 1, 1 (2004).
- [3] D.D. Sharma, N. Shanthi, S.R. Barman, N. Hamada, H. Sawada, K. Terakura. Phys. Rev. Lett. 75, *6*, 1126 (1995).
- [4] T. Takeda, Y. Yamaguchi, H. Watanabe. J. Phys. Soc. Jpn. 33, 4, 967 (1972).
- [5] T. Akao, Y. Azuma, M. Usuda, Y. Nishihata, J. Mizuki, N. Hamada, N. Hayashi, T. Terashima, M. Takano. Phys. Rev. Lett. **91**, *15*, 156405 (2003).
- [6] A. Lebon, P. Adler, C. Bernhard, A.V. Boris, A.V. Pimenov, A. Maljuk, C.T. Lin, C. Ulrich, B. Keimer. Phys. Rev. Lett. 92, 3, 037 202 (2004).
- [7] T. Kawakami, S. Nasu, T. Sasaki, K. Kuzushita, S. Morimoto, S. Endo, S. Kawasaki, M. Takano. J. Phys.: Cond. Matter 14, 44, 10713 (2002).
- [8] S. Nasu. Hyperfine Interact. 128, 2, 101 (2000).
- [9] S. Nasu, T. Kawakami, S. Kawasaki, M. Takano. Hyperfine Interact. **144**, *2*, 119 (2002).
- [10] S. Mathi Jaya, R. Jagadish, R. Rao, R. Asokamani. Phys. Rev. B 43, 16, 13 274 (1991).
- [11] S. Matar, P. Monh, G. Demezeau. J. Magn. Magn. Mater. 140–144, 3, 169 (1995).
- [12] S. Matar. Prog. Solid State Chem. **31**, *4*, 239 (2003).
- [13] P. Mahadevan, N. Shanthi, D.D. Sarma. J. Phys.: Cond. Matter 9, 15, 3129 (1997).
- [14] H. Hamada, H. Sawada, I. Solovyev, K. Terakura. Physica B 237–238, 11 (1997).
- [15] T. Arima, Y. Tokura, J.B. Torrance. Phys. Rev. B 48, 23, 17006 (1993).
- [16] W.C. Koehler, E.O. Wollan. J. Phys. Chem. Sol. 2, 2, 100 (1957).
- [17] Z.O. Yang, Z. Huang, L. Ye, X.D. Xie. Phys. Rev. B 60, 23, 15674 (1999).
- [18] G. Kresse, J. Hafner. Phys. Rev. B 47, 1, 558 (1993).
- [19] G. Kresse, J. Furthmuller. Comput. Mat. Sci. 6, 1, 15 (1996).
- [20] G. Kresse, J. Furthmuller. Phys. Rev. B 54, 16, 11169 (1996).
- [21] D.M. Ceperley, B.L. Alder. Phys. Rev. Lett. 45, 7, 566 (1980).
- [22] G. Kresse, J. Joubert. Phys. Rev. B 59, 3, 1758 (1999).
- [23] S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton. Phys. Rev. B 57, 3, 1505 (1998).
- [24] F. Birch. Geophys. Res. 83, 8, 1257 (1978).

- [25] A.E. Bocquet, A. Fujimori, T. Mizokawa, T. Saitoh, H. Namatame, S. Suga, N. Kimizuka, Y. Takeda, M. Takano. Phys. Rev. B 45, 4, 1561 (1992).
- [26] J.P. Hodges, S. Short, J.D. Jorgensen, X. Xiong, B. Dabrowski, S.M. Mini, C.W. Kimball. J. Solid State Chem. 151, 2, 190 (2000).
- [27] A. Maljuk, J. Strempfer, C. Ilrich, A. Lebon, C.T. Lin. J. Cryst. Growth 257, 3, 427 (2003).
- [28] P. Coppens, M. Eidschutz. Acta Cryst. 19, 3, 524 (1965).
- [29] P. Bezdicka, L. Fournes, A. Wattiaux, J.C. Grenier, M. Pouchard. Solid State Commun. 91, 3, 501 (1994).
- [30] S. Kawasaki, M. Takano, Y. Takeda. J. Solid State Chem. 121, *1*, 174 (1996).
- [31] M. Abbate, G. Zampieri, J. Okamoto, A. Fujimori, S. Kawasaki, M. Takano. Phys. Rev. B 65, 16, 165 120 (2002).
- [32] I. Solovyev, N. Hamada, K. Terakura. Phys. Rev. B 53, 11, 7158 (1996).
- [33] T. Mizokawa, A. Fujimori. Phys. Rev. B 54, 8, 5368 (1996).