05

Фазовая диаграмма и свойства твердых растворов трехкомпонентной системы ниобатов натрия-лития-калия

© Л.А. Резниченко, О.Н. Разумовская, Л.А. Шилкина, С.И. Дудкина, А.В. Бородин

Научно-исследовательский институт физики Ростовского государственного университета, Ростов-на-Дону E-mail: klevtsov@ip.rsu.ru

Поступило в Редакцию 11 сентября 2001 г.

На основе рентгеновских данных построена фазовая диаграмма системы (Na,Li,K)NbO₃ в области, прилегающей к NaNbO₃. Изучены электрофизические свойства твердых растворов в широком интервале концентраций компонентов. Получены составы для высоко- и среднечастотных пьезопреобразователей.

Настоящая работа является продолжением цикла исследований трехкомпонентных систем вида (Na, Li, A')NbO₃ с A' = Pb_{0.5}; Sr_{0.5}; Cd_{0.5}, предпринятых в [1–5]. Объектом предстоящего изучения явилась система xNaNbO₃–yLiNbO₃–zKNbO₃, твердые растворы (TP) которой были получены двухстадийным (1123 K $1.8 \cdot 10^4$ s, 1173 K $1.44 \cdot 10^4$ s) твердофазным синтезом с последующим горячим прессованием (1223÷1473 K в зависимости от состава, 19.6 MPa, $2.4 \cdot 10^3$ s), обеспечившим высокую относительную плотность образцов ($\rho_1^* = 0.985$).

Изучение тройной системы (Na,Li,K)NbO₃ с целью выявления границ существования однофазных областей, исследования кинетики и

1

^{*} $\rho_1 = \rho/\rho_2$, где ρ — плотность образца, ρ_2 — его рентгеновская плотность; ρ_1 — относительная величина.

механизма взаимодействия исходных компонентов, а также последовательности протекающих реакций в процессе синтеза проведено в [6]. Система рассматривалась как квазибинарная, общая формула изученных композиций которой имела вид (1 - y) (Na_xK_{1-x})NbO₃-yLiNbO₃ ($0 \le y \le 0.20, 0.45 \le x \le 0.50$). Содержание NaNbO₃ варьировалось в тех пределах, которые обеспечивали в системе (Na,K)NbO₃ наилучшие электрофизические свойства [7].

В нашем случае анализу подвергались ТР, принадлежащие шести *z*-сечениям, соответствующим 2.5 ÷ 15.0 mol.% KNbO₃. В каждом сечении синтезированы ТР с 1.0 ÷ 15.0 mol.% LiNbO₃. Верхний предел у-сечений выбран из соображений ограничения ряда непрерывных ТР в бинарной системе (Na,Li)NbO₃ 14.5 mol.% LiNbO₃ [8]; *z*-сечений существованием в системе (Na,K)NbO3 практически во всей рассматриваемой области концентраций компонентов (за исключением очень близкого к NaNbO₃ участка) однофазной ромбической (R = RII [9]) структуры с моноклинной (М2) перовскитной подъячейкой (параметры которой $a_0 = c_0, b_0, \beta \neq 90^\circ$ связаны с параметрами элементарной R-ячейки A, B, C соотношениями $A = 2a_0 \cos \beta/2; B = 2b_0;$ $C = 2a_0 \sin \beta/2$, аналогичной реализуемой в системе (Na,Li)NbO₃ при 0.032 $\leq x \leq 0.118$ [10] и осложненной известными в системе $(Na,K)NbO_3$ фазовыми переходами при x > 0.15 [7]. Кроме того, представляло интерес исследовать только часть фазовой диаграммы системы, прилегающей к NaNbO3, как это было сделано нами в других случаях [1-5], с целью сохранить в анализируемых ТР специфические характеристики [11], обусловленные именно близостью их к NaNbO₃.

Вид фазовой диаграммы анализируемой системы (рис. 1) определился диаграммами составляющих ее бинарных систем (Na,Li)NbO₃ и (Na,K)NbO₃ в пределах используемых концентраций компонентов. Вблизи NaNbO₃ располагается фаза R(M4) (с $B = 4b_0$), характерная для самого NaNbO₃ при комнатной температуре [12], переходящая в обеих системах в R(M2)-фазу через морфотропную область (MO) с R-структурами различной мультиплетности [13]. По мере увеличения z поле, занимаемое R(M2)-фазой, резко сужается; напротив же, границы сосуществования R(M2)- и ромбоэдрической (Rh)-фаз сильно раздвигаются, образуя область, имеющую наибольшее сечение ~ 10.0 mol.% (по y), в отличие от ~ 1.0 mol.% в системе (Na,Li)NbO₃ [8]. Так же заметно расширяется и Rh-область. Правая граница примыкающей к ней

Рис. 1. Фазовая диаграмма трехкомпонентной системы (Na,Li,K)NbO₃.

МО с Rh + R(M2)-фазами нанесена условно пунктиром из-за трудности ее выявления вследствие узкого концентрационного интервала существования. Ширина следующей R(M2)-области практически одинакова при всех z. Повышение концентрации LiNbO₃ выше 12.0 ÷ 14.5 mol.% (при разных z) приводит к образованию незначительного количества (1.0 ÷ 8.0 mol.%) примеси: до z < 2.5 mol.% — LiNbO₃, при больших z — (Na,K)Nb₃O₈, тем раньше, чем больше содержание KNbO₃ в системе. Это согласуется с данными [6] о снижении предела растворимости LiNbO₃ в (Na,K)NbO₃ и свидетельствует о затрудненности твердофазного синтеза анализируемых ТР в присутствии достаточно больших количеств KNbO₃. Заметим, что так как в системе

Рис. 2. Зависимости электрофизических характеристик твердых растворов системы (Na,Li,K)NbO₃ от содержания LiNbO₃ для сечений $z = 2.5 \div 10.0$ mol.%.

(Na,K)NbO₃ Rh-фаза не возникает [7], области R(M2) + Rh, Rh, Rh + R(M2), вероятно, при больших концентрациях KNbO₃ окажутся замкнутыми.

На рис. 2 показаны зависимости электрофизических характеристик: относительной диэлектрической проницаемости до $\varepsilon/\varepsilon_0$ и после $\varepsilon_{33}^T/\varepsilon_0$ поляризации, планарного коэффициента электромеханической связи K_p , пьезомодуля d_{31} , механической добротности Q_M , скорости звука V_R и модуля Юнга Y_{11}^E , а также температуры спекания T TP с $z = 2.5 \div 10$ mol.%, а в табл. 1 представлены аналогичные характеристики для TP с $z = 12.5 \div 15.0$ mol.%. Немонотонное поведение характеристик, несомненно, является следствием сложности фазовой диаграммы тройной системы с большим количеством межфазных границ. При этом внутри MO такая немонотонность обусловлена, вероятно, изменением фазовых

Li,K)NbO3	Фазовая д
$\frac{E}{11} \cdot 10^{-11}$, N/m ²	иаграі
1.36	MM
1.37	a ı
1.26	10
1.19	BO
1.22	ЙС
1.34	TB
1.19	2 T
0.90	Вe
1.0	рд
1.11	ЫX
1.33	0
1.35	aci
1.19	во
0.90	od
1.33	В.,
	•

Состав	<i>Т</i> , К	ρ , g/cm ³	T_c , K	$\varepsilon/\varepsilon_0$	$\varepsilon_{33}^T/\varepsilon_0$	$ \rho_v, \Omega \cdot \mathbf{m} $ при 373 К	K_p	<i>d</i> ₃₁ , pC/N	Q_M	V_R , km/s	$Y_{11}^E \cdot 10^{-12}$ N/m ²
K _{0 125} Na _{0 865} Li _{0 01} NbO ₃	1398	4.346	553	299	179	$1.5 \cdot 10^{10}$	0.232	15.4	242	5.73	1.36
K _{0.125} Na _{0.850} Li _{0.025} NbO ₃	1313	4.409	573	272	165	$4.2 \cdot 10^{8}$	0.229	14.6	303	5.71	1.37
K _{0.125} Na _{0.835} Li _{0.040} NbO ₃	1298	4.397	520	273	168	$0.7\cdot 10^{10}$	0.229	15.2	248	5.50	1.26
K _{0.125} Na _{0.815} Li _{0.06} NbO ₃	1303	4.368	537	245	173	$2.7 \cdot 10^{9}$	0.224	15.3	146	5.39	1.19
K _{0.125} Na _{0.785} Li _{0.09} NbO ₃	1373	4.425	536	210	141	$2.6 \cdot 10^{9}$	0.274	16.2	205	5.50	1.22
K _{0.125} Na _{0.7875} Li _{0.0875} NbO ₃	1373	4.475	558	236	170	$1.0 \cdot 10^{9}$	0.186	11.8	409	5.68	1.34
K _{0.125} Na _{0.7788} Li _{0.0962} NbO ₃	1353	4.54	563	219	169	$0.6\cdot10^{10}$	0.134	9.0	251	5.31	1.19
K _{0.125} Na _{0.7656} Li _{0.1094} NbO ₃	1273	4.319	532	184	145	$2.8 \cdot 10^{9}$	0.206	15.2	67	4.67	0.90
K _{0.125} Na _{0.7613} Li _{0.11370} NbO ₃	1273	4.320	553	740	710	$2.5 \cdot 10^{9}$	0.254	17.4	164	5.06	1.0
K _{0.125} Na _{0.7545} Li _{0.1205} NbO ₃	1223	4.410	548	1070	980	$0.4\cdot10^{10}$	0.206	18.0	253	5.18	1.11
K _{0.150} Na _{0.800} Li _{0.05} NbO ₃	1418	4.357	608	250	190	$1.5 \cdot 10^{9}$	0.170	11.4	235	5.72	1.33
K _{0.150} Na _{0.780} Li _{0.07} NbO ₃	1363	4.486	563	258	168	$1.3 \cdot 10^{9}$	0.226	14.2	183	5.65	1.35
K _{0.150} Na _{0.7650} Li _{0.085} NbO ₃	1388	4.333	505	223	154	$0.8\cdot 10^{10}$	0.268	16.9	222	5.47	1.19
K _{0.150} Na _{0.7665} Li _{0.0935} NbO ₃	1353	4.500	553	184	133	$2.5 \cdot 10^{9}$	0.236	16.0	190	4.66	0.90
K _{0.150} Na _{0.74380} Li _{0.1062} NbO ₃	1373	4.451	546	353	258	$1.6 \cdot 10^{10}$	0.129	10.1	447	5.68	1.33
K _{0.150} Na _{0.7895} Li _{0.1105} NbO ₃	1273	4.327	547	269	143	$9.1 \cdot 10^{8}$	0.202	13.7	141	4.82	0.92
K _{0.150} Na _{0.7295} Li _{0.1205} NbO ₃	1253	4.452	548	650	420	$0.4\cdot10^{10}$	0.240	14.2	170	5.34	1.15

* T_c — температура Кюри; ρ_v — удельное объемное электрическое сопротивление при 373 К.

Письма в ЖТФ, 2002, том 28, вып. 3

S

Таблица 2. Составы, основные электрофизические параметры, температуры спекания и плотности некоторых ТР системы (Na,Li,K)NbO₃, перспективных для практических использований

Состав	<i>Т</i> , К	$\varepsilon_{33}^T/\varepsilon_0$	$egin{array}{c} K_p \ (K_t)^* \end{array}$	<i>d</i> ₃₁ , pC/N (<i>d</i> ₃₃ , pC/N)	Qм	V _R , km/s	$Y_{11}^E \cdot 10^{-11}, N/m^2$	<i>Т</i> _с , К	ρ , g/cm ³
K _{0.025} Na _{0.965} Li _{0.07} NbO ₃	1333	126	0.214	11.7	473	5.28	0.88	613	4.416
K _{0.025} Na _{0.885} Li _{0.09} NbO ₃	1373	101	0.210	11.3	121	5.25	1.07	653	4.243
K _{0.05} Na _{0.8625} Li _{0.1235} NbO ₃	1273	906	0.135	20.7	77	5.51	1.23	520	4.435
K _{0.075} Na _{0.8047} Li _{0.1202} NbO ₃	1313	725	0.266	39.5	77	5.02	1.06	560	4.477
K _{0.075} Na _{0.8094} Li _{0.1156} NbO ₃	1313	161	0.055	3.3	1093	5.71	1.4	577	4.566
			(0.352)	(21.1)					

* *K*_t — коэффициент электромеханической связи толщинной моды колебаний.

соотношений при концентрационных вариациях состава, приводящим к немонотонным изменениям структурных параметров.

Основные характеристики некоторых ТР системы (Na,Li,K)NbO₃, перспективных для практических использований, приведены в табл. 2.

Составы № 1, 2 характеризуются очень низкой $\varepsilon_{33}^T / \varepsilon_0$ и очень высокой V_R при достаточно высоких (для таких значений $\varepsilon_{33}^T/\varepsilon_0$) K_p и d_{31} , умеренными величинами Q_M . Такие значения V_R и $\varepsilon_{33}^T/\varepsilon_0$ определяют высокочастотный (ВЧ) диапазон эксплуатации пьезопреобразователей на основе этих материалов. Высокие V_R к тому же позволяют получать заданную частоту на менее тонких пластинах, что упрощает технологию изготовления ВЧ-устройств за счет возможности увеличения их резонансных размеров. Это, в свою очередь, выгодно и с точки зрения уменьшения емкости преобразователя, а низкая $\varepsilon_{33}^{T}/\varepsilon_{0}$ немаловажна и для электрического согласования преобразователя с генератором и нагрузкой. Указанные значения K_p и d₃₁ характеризуют достаточно высокую эффективность работы такого преобразователя, а Q_M — равномерную амплитудно-частотную характеристику и возможность получения коротких импульсов. Низкое значение плотности приводит, с одной стороны, к значительному снижению веса изделий, что может быть решающим для многих применений (аэрокосмическая техника), с другой — к уменьшению акустического импеданса, что важ-

но для согласования с акустической нагрузкой. Высокие *T_c* материалов расширяют их рабочий интервал температур.

Составы № 3, 4 со средними значениями $\varepsilon_{33}^T/\varepsilon_0$, высокими d_{31} и V_R могут быть использованы в качестве основы активных материалов, эксплуатируемых в среднечастотном диапазоне. Их высокая V_R позволяет изготавливать среднечастотные преобразователи, возбуждающие металлические резонаторы с высокой скоростью звука.

Состав № 5 при низкой $\varepsilon_{33}^T/\varepsilon_0$ и высокой Q_M обладает повышенной анизотропией пьезоэлектрических параметров (K_t/K_p и $d_{33}/d_{31} \ge 6$), способствующей подавлению нежелательных колебаний. Такие материалы могут быть использованы в ультразвуковой дефектоскопии, акселерометрии, толщинометрии, а также в ВЧ-устройствах неразрушающего контроля и медицинской диагностической аппаратуры.

Работа выполнена при финансовой поддержке Российского Фонда фундаментальных исследований (грант № 99-02-17575).

Список литературы

- Фесенко Е.Г., Резниченко Л.А., Иванова Л.С. и др. // ЖТФ. 1985. Т. 55. В. 3. С. 601–606.
- [2] Резниченко Л.А., Разумовская О.Н., Данцигер А.Я. и др. // Сб. докл. Международной науч.-практич. конф. "Пьезотехника-97". Обнинск, 1997. С. 197–207.
- [3] Резниченко Л.А., Разумовская О.Н., Шилкина Л.А. и др. // ЖТФ. 2000. Т. 70. В. 11. С. 58–63.
- [4] Резниченко Л.А., Разумовская О.Н., Шилкина Л.А. и др. // ЖТФ. 2000. Т. 70. В. 11. С. 63–67.
- [5] Резниченко Л.А., Разумовская О.Н., Шилкина Л.А. и др. // ЖТФ. 2001. Т. 71. В. 1. С. 26–30.
- [6] Фрейденфельд Э.Ж., Дамбекалне М.Я., Янсон Г.Д. // Сб. материалов III Межотрасл. совещ. по методам получения и анализа ферритовых, сегнетои пьезоэлектрических материалов и сырья для них. Донецк, 1970. С. 3–9.
- [7] Яффе Б., Кук У., Яффе Г. Пьезоэлектрическая керамика. М.: Мир, 1974. 288 с.
- [8] Шилкина Л.А., Резниченко Л.А., Куприянов М.Ф., Фесенко Е.Г. // ЖТФ. 1977. Т. 47. В. 10. С. 2173–2178.
- [9] Фесенко Е.Г. Семейство перовскита и сегнетоэлектричество. М.: Атомиздат, 1972. 248 с.

- [10] Резниченко Л.А., Шилкина Л.А., Разумовская О.Н. и др. // Сб. материалов Междунар. симпозиума "Фазовые превращения в твердых растворах и сплавах" ("Ома-II"). Сочи, 2001 (в печати).
- [11] Шилкина Л.А., Позднякова И.В., Резниченко Л.А. и др. // Сб. 8-го Междунар. симпозиума по физике сегнетоэлектриков-полупроводников. Ростов-на-Дону, 1998. С. 190–191.
- [12] Фесенко Е.Г., Данцигер А.Я., Резниченко Л.А. и др. // ЖТФ. 1982. Т. 52. В. 11. С. 2262–2266.
- [13] Megaw H.D. // Ferroelectrics. 1974. V. 7. N 1/2/3/4. P. 87-89.