06 Модифицирование свойств Cd_xHg_{1-x}Te и Zn_xCd_yHg_{1-x-y}Te обработкой низкоэнергетичными ионами

© К.Д. Мынбаев, Н.Л. Баженов, В.А. Смирнов, В.И. Иванов-Омский

Физико-технический институт им. А.Ф. Иоффе РАН, С.-Петербург E-mail: mynkad@mail.ioffe.ru

Поступило в Редакцию 3 июня 2002 г.

Исследован эффект инверсии типа проводимости в твердых растворах Cd_xHg_{1-x} Те составов $0.28 \le x \le 0.55$ и $Zn_xCd_yHg_{1-x-y}$ Те различных составов при обработке поверхности материала *p*-типа низкоэнергетичными ионами аргона. Показано, что для возникновения инверсии в Cd_xHg_{1-x} Те с составами $0.28 \le x \le 0.39$ существенна нейтрализация пучка ионов, которыми проводится обработка. Выявленная зависимость глубины инверсии в Cd_xHg_{1-x} Те от состава твердого раствора согласуется с диффузионной моделью инверсии типа проводимости при ионной обработке.

Благодаря своим уникальным физическим свойствам твердые растворы теллурида кадмия-ртути $Cd_xHg_{1-x}Te$ (КРТ) на сегодняшний день продолжают оставаться основным материалом инфракрасной оптоэлектроники. В последнее время одним из наиболее распространенных методов формирования p-n-переходов для создания фотоприемников на основе КРТ является обработка материала низкоэнергетичными ионами инертных газов, инвертирующая тип проводимости поверхностного слоя из p- в n- на заданную глубину [1–4].

Ранее нами сообщалось о результатах экспериментов по созданию таким методом p-n-переходов в слоях Cd_xHg_{1-x} Те и о свойствах полученных слоев n-типа [2–5]. Однако в этих экспериментах инверсия в n-тип наблюдалась только в образцах составов $x \le 0.24$, что соответствует величине запрещенной зоны $E_g \le 0.15 \text{ eV}$ и краю фоточувствительности $\lambda \sim 9 \, \mu$ m при T = 77 K.

В настоящей работе мы сообщаем об успешных экспериментах по инверсии типа проводимости низкоэнергетичной ионной обработкой

64

Таблица 1	۱.	Параметры	эпитаксиальных	слоев	КРТ	до	И	после	обра	ботки
-----------	----	-----------	----------------	-------	-----	----	---	-------	------	-------

Обра-	E_g , eV	Состав	Парам исходных	етры к слоев	Параметры слоев после обработки		
зец	500 K	л	$N_a - N_d$, cm ⁻³	$\mu_p, \mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s}$	$n, {\rm cm}^{-3}$	$\mu_n, \mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s}$	
C1	0.264	0.28	$8.0\cdot10^{15}$	360	$1.0\cdot 10^{15}$	$3.7\cdot 10^4$	
C2	0.291	0.30	$1.1\cdot 10^{16}$	420	$1.4\cdot10^{15}$	$6.2\cdot 10^4$	
C3	0.304	0.31	$7.3\cdot10^{15}$	460	$6.3\cdot10^{14}$	$2.1\cdot 10^4$	
C4	0.318	0.32	$3.2\cdot10^{16}$	420	$2.7\cdot10^{15}$	$4.9\cdot10^3$	
C5	0.412	0.39	$1.8\cdot 10^{16}$	250	$1.1\cdot10^{15}$	$1.9\cdot 10^4$	
C6	0.412	0.39	$2.2\cdot 10^{16}$	260	$8.8\cdot10^{14}$	$2.0\cdot 10^4$	
C7	0.565	0.50	$2.1\cdot 10^{16}$	75	Нет инверсии		
C8	0.594	0.52	$2.4\cdot 10^{16}$	120		»	
C9	0.637	0.55	$2.3\cdot 10^{16}$	260		»	

эпитаксиальных слоев КРТ с составом до 0.39 ($E_g \leq 0.41 \text{ eV}, \lambda \geq 3 \mu \text{m}$). Кроме того, рассмотрена инверсия типа проводимости в слоях твердых растворов $\text{Zn}_x \text{Cd}_y \text{Hg}_{1-x-y}$ Те (ЦКРТ) с 0.15 $\leq E_g \leq 0.35 \text{ eV}$. Последние считаются альтернативой КРТ, поскольку введение Zn стабилизирует слабую химическую связь Hg–Te и, таким образом, должно повысить качество материала. Отметим, что данные по инверсии типа проводимости в ЦКРТ ионной обработкой очень скупы [6,7].

Исследуемые слои выращены методом жидкофазной эпитаксии на подложках CdTe из расплава, обогащенного теллуром. Послеростовым термическим отжигом в парах ртути они приводились к *p*-типу проводимости с концентрацией нескомпенсированных акцепторов $N_a - N_d = (4.6 \div 380) \cdot 10^{15} \text{ cm}^{-3}$. Обработка слоев проводилась в вакуумной камере пучком нейтрализованных ионов аргона с энергией от 60 до 800 eV и плотностью тока от 0.05 до 0.2 mA/cm². Время обработки составляло 20 min, и специального охлаждения образцов во время обработки не применялось.

Для определения глубины инверсии h и электрических параметров полученных слоев n-типа на подвергнутых ионной обработке образцах при послойном стравливании с шагом $0.7 \,\mu$ m измерялись коэффициент Холла и проводимость на постоянном токе. Измерения проводились при 77 К для КРТ с x < 0.4 и ЦКРТ и при 300 К для КРТ с x > 0.5.

Зависимость L от x для образцов КРТ.

В табл. 1 представлены результаты измерения электрических параметров эпитаксиальных слоев КРТ с составом $0.28 \le x \le 0.55$, обработанных ионами с энергией 400 eV при плотности тока 0.1 mA/cm^2 . Как видно, инверсия произошла во всех образцах состава $x \le 0.5$. Низкая концентрация электронов *n* и их высокая подвижность μ_n свидетельствуют о хорошем качестве полученного *n*-слоя. Данные табл. 1 также подтверждают сделанное ранее наблюдение о взаимосвязи между *n* в образцах после инверсии и $N_a - N_d$ в исходном образце [5]. При изменении энергии ионов и плотности тока обработки электрические параметры инвертированных слоев практически не менялись.

Зависимость h от состава твердого раствора x для образцов КРТ, обработанных ионами в одном и том же режиме, приведена на рисунке. Поскольку в экспериментах использовались образцы с разной исходной величиной $N_a - N_d$, а ранее нами было установлено [5], что h обратно

Обра- зец		Состав		Парам исходнь	метры іх слоев	Параметры слоев после обработки		
	E_g, eV	x	у	$N_a - N_d,$ cm ⁻³	$\mu_p, \ { m cm}^2/{ m V}\cdot{ m s}$	n, cm ⁻³	$\mu_n, \ { m cm}^2/{ m V}\cdot{ m s}$	
Z1	0.344	0.17	0.07	$8.0\cdot10^{16}$	230	$1.0\cdot 10^{14}$	$3.0\cdot 10^4$	
Z2	0.275	0.11	0.15	$2.5\cdot 10^{16}$	305	$1.7\cdot 10^{15}$	$1.5\cdot 10^4$	
Z3	0.199	0.11	0.09	$1.2\cdot10^{17}$	155	$3.1 \cdot 10^{15}$	$4.1 \cdot 10^4$	
Z4	0.185	0.11	0.09	$4.6 \cdot 10^{15}$	350	$1.1 \cdot 10^{15}$	$9.0 \cdot 10^{3}$	
Z5	0.185	0.13	0.10	$3.8\cdot10^{17}$	130	$6.9\cdot10^{14}$	$1.3 \cdot 10^{5}$	
Z6	0.146	0.08	0.09	$3.1\cdot10^{17}$	200	$3.5\cdot10^{15}$	$2.3\cdot 10^4$	

Таблица 2. Параметры эпитаксиальных слоев $Zn_xCd_yHg_{1-x-y}Te$ до и после обработки

пропорциональна $(N_a - N_d)^{1/2}$, то по оси ординат отложена величина $L = h \cdot (N_a - N_d)^{1/2}$. Из рисунка видно, что имеет место убывание L с возрастанием х. Этот результат хорошо согласуется с общепринятой на сегодняшний день моделью инверсии типа проводимости при низкоэнергетичной ионной обработке КРТ. Согласно этой модели, инверсия обусловлена диффузией атомов межузельной ртути, высвобожденных с поверхности в результате ее распыления, и их аннигиляцией с вакансиями ртути — акцепторами, определявшими ранее *p*-тип проводимости материала [3,5,8]. В рамках этой модели $h^2/t \sim C_s D/(N_a - N_d)$, где *D* — коэффициент диффузии, *C_s* — поверхностная концентрация атомов межузельной ртути и t — время обработки. Очевидно, что для существования столь сильной зависимости h(x), как на рисунке, должно иметь место резкое уменьшение C_s при возрастании x. И действительно, известно, что скорость ионно-лучевого распыления КРТ, а значит и темп генерации свободных атомов вещества на поверхности, убывает с возрастанием х [9]. С ростом х также падает и доля атомов ртути в общем числе высвобожденных атомов. Кроме того, при возрастании x, а значит и Eg, усиливается влияние внутреннего электрического поля, возникающего у границы инвертированного слоя и снижающего эффективную величину C_s [10].

Результаты измерения электрических параметров эпитаксиальных слоев ЦКРТ, обработанных ионами в указанном выше режиме, пред-

ставлены в табл. 2. Величина E_g для этих образцов определялась по полуспаду спектра оптического пропускания слоев при 300 К. Здесь также обращают на себя внимание низкая концентрация и высокая подвижность носителей в образцах, инвертированных в *n*-тип. Однако корреляция между *n* в слоях после инверсии и $N_a - N_d$ в исходных образцах отсутствует. Кроме того, явной зависимости *h* ни от *x* и *y*, ни от E_g в ЦКРТ мы не наблюдали.

В описываемых экспериментах нами была достигнута инверсия типа проводимости в образцах КРТ с $x \leq 0.39$ ($E_g \leq 0.41 \text{ eV}$), обработанных пучком нейтрализованных ионов аргона. Отметим, что в более ранних работах [2,5] инверсии в слоях КРТ с x > 0.24 не наблюдалось. Однако в этих работах использовались ионы Ar⁺ без нейтрализации, причем при ионной обработке образец закреплялся на диэлектрической подложке. Таким образом, возникновение эффектов инверсии типа проводимости в слоях КРТ с x > 0.24, очевидно, связано с тем, проводится ли обработка поверхности пучком заряженных ионов или нейтрализованным пучком. При обработке заряженными ионами на поверхности образцов создается заряженный слой. В случае узкозонного полупроводника, каковыми являются твердые растворы КРТ с $x \sim 0.2$, этот заряд компенсируется собственными носителями, концентрация которых в этих материалах при температуре обработки весьма велика. В материале с большим x, а значит и Eg, концентрация собственных носителей существенно меньше и недостаточна для компенсации заряда вблизи поверхности. Накапливающийся заряд препятствует дальнейшему распылению поверхности. Кроме того, наличие заряда на поверхности накладывается на эффект вышеупомянутого внутреннего поля заряженных дефектов, и в результате эффективное значение C_s снижается настолько, что инверсии не происходит. При x > 0.5 уменьшение содержания ртути в материале и эффект внутреннего поля снижают C_s столь сильно, что даже обработка пучком нейтрализованных ионов, когда заряда на поверхности нет, не приводит к инверсии.

Список литературы

- Blackman M.V., Charlton D.E., Jenner M.D. et al. // Electron. Lett. 1987. V. 23 (19). P. 978–979.
- [2] Иванов-Омский В.И., Миронов К.Е., Мынбаев К.Д. // ФТП. 1990. Т. 24 (12).
 С. 2222–2224.

- [4] Bahir G., Garber V., Rosenfeld D. // Appl. Phys. Lett. 2001. V. 78 (10). P. 1331– 1333.
- [5] Ivanov-Omskii V.I., Mironov K.E., Mynbaev K.D. // Semicond. Sci. Technol. 1993. V. 8 (5). P. 634–637.
- [6] Brogowski P., Mucha H., Piotrowski J. // Phys. stat. sol. (a). 1989. V. 114. P. K37–K39.
- [7] Rolland S., Granger R., Triboulet R. // J. Cryst. Growth. 1992. V. 117. P. 208.
- [8] Shaw D., Capper P. // Journ. Mat. Sci.: Mater. Electron. 2000. V. 11 (2). P. 169– 177.
- [9] Wang L., Zhang L.H. // J. Electr. Mater. 2000. V. 29 (6). P. 873-876.
- [10] Богобоящий В.В., Ижнин И.И. // Изв. вузов. Физика. 2000. Т. 43 (8). С. 16– 25.