Долговременные релаксационные явления в монокристалле $Pb_{0.94}Ba_{0.06}Sc_{0.5}Nb_{0.5}O_3$ (PBSN-6)

© А.И. Бурханов, С.В. Кравченко, А.В. Шильников, И.П. Раевский*, В.П. Сахненко*

Волгоградский государственный архитектурно-строительный университет,

400074 Волгоград, Россия

* Научно-исследовательский институт физики Ростовского государственного университета,

344090 Ростов-на-Дону, Россия

E-mail: postmaster@vgasa.ru

(Поступила в Редакцию 28 января 2005 г.)

Исследован долговременный процесс релаксации поляризации в области температур, соответствующих релаксорному состоянию в монокристалле PBSN-6. Анализ временного поведения диэлектрической проницаемости $\varepsilon'(t)$ для измерительных частот от 1 Hz до 1 kHz в слабых полях E_0 показал, что получаемые путем экстраполяции зависимостей типа $\varepsilon'(t) \sim \lg(t/t_0)$ и $\varepsilon'(t) \sim \exp\{-[\ln(t/t_0)]^{\beta}\}$ времена релаксации (или времена "замораживания") имеют значения порядка $10^8 - 10^{11}$ min и существенным образом зависят от величины прикладываемого к образцу смещающего поля. Исследование характера диэлектрического отклика в средних и сильных инфранизкочастотных полях выявило, что после выдержки образца в смещающем поле, меньшем коэрцитивного, исчезают дополнительные аномалии в амплитудных зависимостях эффективного тангенса угла диэлектрических потерь $tg_{eff}(E_0)$, наблюдаемые в термически "омоложенном" образце.

1. Введение

Известно, что монокристалл скандониобата свинца, допированный барием (PBSN), проявляет релаксорные свойства [1]. Одним из характерных свойств релаксоров является изменение с течением времени при постоянной температуре некоторых электрофизических параметров, например диэлектрической проницаемости є' и диэлектрических потерь є" [2-5]. В [5] при исследовании временны́х изменений $\varepsilon'(t)$ и $\varepsilon''(t)$ в низкотемпературной области в монокристалле PMN отмечалось нарушение монотонного (логарифмического) спада $\varepsilon'(t)$ и $\varepsilon''(t)$ по истечении определенного времени t_d. При этом время t_d зависело от величины прикладываемого к образцу смещающего поля Е=: чем больше Е=, тем меньшим было время наблюдения резкого спада (ступеньки) на кривых $\varepsilon'(t)$ и $\varepsilon''(t)$. Данное явление авторы [5] связывали с кинетическим фазовым переходом из релаксорной фазы в сегнетоэлектрическую, который возможен при наличии на образце смещающего поля Е.

Подобный характер диэлектрического отклика в низко- и высокочастотном диапазонах отмечался и для системы скандониобата свинца с добавками 6 at.% бария (PBSN-6) в [6]. В то же время и для PMN, и для PBSN-6 исследование процессов изменения $\varepsilon'(t)$ при подаче смещающего поля на образец включало так называемый начальный временной интервал, т.е. изменения диэлектрического отклика фиксировались сразу после подключения смещающего поля Е к образцу, который только что был охлажден от $T > T_m$ (T_m — температура максимума диэлектрической проницаемости $\varepsilon'(t)$) до исследуемой температуры $T_i < T_m$. В [7] на примере релаксора SBN-75 было показано, насколько заметным может быть влияние на характер спада $\varepsilon'(t)$ и $\varepsilon''(t)$ времени предварительного (до подключения поля) старения данного релаксора при выбранной температуре: чем меньше время старения, тем чувствительнее к влиянию E_{\pm} был образец (и наоборот). В этом случае ситуация подобна наблюдаемой для спинового стекла (как обмечается в [8], по мере старения стекло становится все более "твердым" по отношению к воздействию магнитного поля). Таким образом, процессы, происходящие в релаксоре в первый момент подключения поля (сразу после охлаждения образца), сложно использовать при интерпретации различных физических явлений в такого рода объектах.

В настоящей работе поставлена цель исследовать процессы релаксации в PBSN-6 при временах, существенно превосходящих время охлаждения образца до исследуемой температуры, и последующего подключения к нему смещающего или сильных переменных полей, что в дальнейшем предполагало возможность выделения каких-либо преобладающих механизмов релаксации поляризации во всей области температур существования размытого фазового перехода в исследуемой системе.

2. Образцы и методика измерений

Монокристаллы PBSN были выращены методом массовой кристаллизации. Методика выращивания, а также рентгеноструктурные данные для этих кристаллов приведены в [9,10]. В настоящей работе исследования диэлектрических свойств в диапазоне от 0.1 до 1000 Hz проводились как мостовым методом в ультраслабых измерительных полях ($E_0 = 0.8 \text{ V/cm}$) при различных значениях постоянного смещающего поля ($E_{=} = 0-1000 \text{ V/cm}$), так и осциллографическим методом на модифицированной установке Сойера–Тауэра в широкой области амплитуд E_0 (от слабых до сильных, т.е. больше коэрцитивных: $E_0 > E_c$) переменных полей. Перед началом каждого эксперимента образец

подвергался "отжигу" при температуре $T > T_m$ в течение 30 min. Затем образец охлаждался до заданной температуры T_i. Скорость изменения температуры составляла не более 1°С/тіп.

3. Экспериментальные результаты и обсуждение

На рис. 1 представлены временные зависимости диэлектрической проницаемости $\varepsilon'[\lg(t/t_0)]$ ($t_0 = 1 \min$) при частотах измерительного поля 1, 10, 100 и 1000 Hz, измеренные в течение 5000 min выдержки образца при температуре $T_i = 30^{\circ}$ С. На рис. 1, *а* показаны временны́е зависимости до воздействия смещающего поля Е₌, на рис. 1, *b* и *с* — при воздействии *E*₌ различной величины.

Рис. 1. Временная зависимость диэлектрической проницаемости $\varepsilon'(t/t_0)$ в монокристалле PBSN-6 при различных частотах измерительного поля и значениях смещающего поля $E_{=} = 0$ (a), 500 (b) и 1000 V/ст (c). Температура выдержки образца $T_i = 30^{\circ}$ С.

Таблица 1. Значения времени релаксации ("замораживания") поляризации в монокристалле PBSN-6 при различных величинах смещающего поля и постоянной температуре $T_i = 30^{\circ}$ C

$E_{=}, V/cm$	au, min
0 500 1000	$\frac{1 \cdot 10^{11}}{1 \cdot 10^9} \\ \frac{1 \cdot 10^8}{1 \cdot 10^8}$

Таблица 2. Разность показателей порядка Δn при различных значениях смещающего поля на образце PBSN-6 и температуре $T_i = 30^\circ C$

$E_{=}, V/cm$	Δn
0	4.4
500	2.67
1000	0.95

Прямые линии получены путем аппроксимации экспериментальных данных с помощью логарифмической зависимости

$$\varepsilon'(t) = A - B \lg(t/t_0), \tag{1}$$

где *А* и *В* — некоторые аппроксимационные параметры.

Как следует из хода кривых $\varepsilon'[\lg(t/t_0)]$, качественного изменения характера зависимости во всем интервале времен измерений не фиксируется ни до, ни после приложения к образцу смещающего поля, т.е. эффекта резкого уменьшения значений ε' (ступеньки) на данном интервале времен не наблюдается. Однако оценка времени релаксации (или времени "замораживания" релаксаторов) τ по пересечению экстраполированных зависимостей $\varepsilon'[\lg(t/t_0)]$ свидетельствует о том, что подача смещающего поля и его увеличение постепенно приводят к уменьшению значений т (табл. 1). При этом даже при значении $E_{=} = 1000 \, \mathrm{V/cm}$ время релаксации τ имеет очень большие величины, что согласуется с представлениями о физике релаксорного состояния материалов с размытыми фазовыми переходами (сосуществование сегнетоэлектрического и стекольного состояний [11,12]).

Необходимо отметить также, что если отделить инфранизкочастотные и высокочастотные интервалы времен, где пересекаются прямые 1 и 10 Hz (инфранизкочастотные) и соответственно 100 и 1000 Hz (высокочастотные), то различие в получаемых величинах времен релаксации $\tau_{1-10 \text{ Hz}}$ и $\tau_{100-1000 \text{ Hz}}$ достигнет существенных значений. В табл. 2 представлена разность показателей порядка для $\tau_{1\text{--}10\,\text{Hz}} = 1\cdot 10^{n1}$ и $\tau_{100\text{--}1000\,\text{Hz}} = 1\cdot 10^{n2}$ при различных значениях смещающего поля на образце PBSN-6.

Как следует из табл. 2, интервал $\Delta n = n1 - n2$ сокращается с увеличением Е₌ на несколько единиц. Если предположить, что указанный интервал Δn может характеризовать распределение времен релаксации различного типа релаксаторов при определенных условиях,

Рис. 2. Временны́е зависимости $\varepsilon'(t/t_0)$ в монокристалле PBSN-6 при различных частотах измерительного поля и значениях смещающего поля $E_{=} = 0$ (a,c) и 500 V/cm (b,d). Температура выдержки образца $T_i = 7^{\circ}$ С.

то при подаче на образец смещающего поля (в рассматриваемом случае $E_{=} < E_c$) происходит "выключение" части релаксаторов, отвечающих за вклад в ε^* . При этом можно предположить, что в PBSN-6, где существует возможность спонтанного фазового перехода из релаксорного в сегнетоэлектрическое состояние, "выключе-

ние" релаксаторов при $E_{=} < E_c$ происходит не только за счет ориентирующего воздействия смещающего поля на отдельные полярные нанообласти, но и за счет частичного слияния полярных нанообластей (кластеров) при воздействии поля с последующим образованием доменной структуры в материале. Данное предположение хорошо согласуется с результатами, представленными на рис. 2, где показан случай, когда температура старения T_i выбиралась вблизи температуры так называемого спонтанного фазового перехода ($T_{\rm sph}$) из релаксорного в сегнетоэлектрическое состояние в PBSN-6.

В отличие от случаев, показанных на рис. 1, где временна́я зависимость $\varepsilon'(t)$ описывалась логарифмической функцией, здесь (рис. 2) при $T_i = 7^{\circ}$ С спад диэлектрической проницаемости лучше описывается аппроксимационной функцией следующего типа:

$$\varepsilon'(t) \sim \exp\{-[\ln(t/t_0)]^\beta\},\tag{2}$$

где $\beta < 1, t \gg t_0$ ($t_0 = 1 \min$).

Подача поля на образец при $T_i = 7^{\circ}$ С приводит к существенному уменьшению частотной дисперсии ε^* (по сравнению с воздействием смещающего поля той же величины при $T_i = 30^{\circ}$ С; рис. 1).

Изменение типа временны́х асимптотик при приближении температуры выдержки к $T_{\rm sph}$, вероятнее всего, связано с тем, что при охлаждении образца от $T > T_m$ до $T \approx T_{\rm sph}$ фазовое состояние начинает меняться от релаксорного к стеклоподобному, т.е. вблизи $T_{\rm sph}$ проявляются процессы взаимодействия между полярными нанообластями. Это, с одной стороны, может приводить к стеклоподобному "замораживанию", а с другой — к возникновению структур типа фрактокластеров ("микроэлектретов") [13,14] или твидов [15], как при мартенситных фазовых превращениях [16].

Аналогичный характер изменения типа временны́х зависимостей был обнаружен в [17] для релаксорной керамики ЦТСЛ-8/35/65 при приближении температур выдержки образца к характерной температуре в релаксоре T_d (температуре макроскопической деполяризации образца). По-видимому, в случае PBSN-6 подача относительно слабых внешних полей при $T \approx T_{sph}$ существенно ускоряет процесс образования такой мезоскопической структуры, которая в дальнейшем превращается в доменную структуру сегнетэлектрической фазы в материале.

Влияние предварительной выдержки релаксора в смещающем поле при температуре, близкой к $T_{\rm sph}$, на процессы поляризации и переполяризации в монокристалле PBSN-6 показано на рис. 3. На рис. 3 представлены амплитудные зависимости эффективного тангенса угла диэлектрических потерь $tg_{\rm eff}\delta(E_0)$, полученных из петель переключения поляризации для термически "омоложенного" и предварительно выдержанного при $T_i = 7^{\circ}$ С ($T_i \approx T_{\rm sph}$) и $E_{=} = 500$ V/ст образцов PBSN-6. Видно, что на "омоложенном" образце с уменьшением частоты измерительного поля в области средних полей

Рис. 3. Амплитудные зависимости эффективного тангенса угла диэлектрических потерь $tg_{eff}\delta(E_0)$, полученных из петель переключения поляризации для предварительно выдержанного при $T_i = 7^{\circ}C$ ($T \approx T_{sph}$), $E_{=} = 500 \text{ V/cm}$ (I) и термически "омоложенного" (2) образцов PBSN-6.

 $(E_0 \sim 1500-1600 \text{ V/cm})$ появляется аномалия в виде излома зависимости tg_{eff} $\delta(E_0)$. Для выдержанного образца подобной аномалии не наблюдается.

Заметим, что ранее нами в [18] для этого материала в температурных зависимостях $tg_{eff}\delta(T)$, измеряемых при различных амплитудах поля E_0 , фиксировалась аномалия данного параметра в виде дополнительного максимума $tg_{eff}\delta(T)$ вблизи $T \approx 10^{\circ}$ С только для полей $E_0 \geq 1650 \text{ V/cm}$. Это указывало на критичность значения данного поля для PBSN-6: при достижении этого значения могло индуцироваться сегнетоэлектрическое состояние при температурах, соответствующих релаксорному состоянию материала. Тот факт, что в предварительно выдержанном образце в области таких критических полей на амплитудных зависимостях $tg_{eff}\delta(E_0)$ не проявилось никаких эффектов, может свидетельствовать о том, что в процессе длительного воздействия смещающего поля на образец в значительной части объема материала произошел фазовый переход из релаксорного в сегнетоэлектрическое состояние и теперь процессы переполяризации связаны главным образом с механизмами движения доменных границ.

Однако необходимо учитывать и то, что после длительной выдержки (старения) сегнетоэлектрических и родственных им материалов на их свойства начинают существенно влиять дефекты (процессы пиннингадепиннинга доменных или фазовых границ) [19,20]. О закреплении доменных или фазовых границ свидетельствует уменьшение значений $\operatorname{tg}_{\operatorname{eff}} \delta(E_0)$ в длительно выдержанном образце по сравнению с "омоложенным" для интервала амплитуд, не превосходящих 3000 V/cm (рис. 3). При $E > 3000 \, \text{V/cm}$ значения $\text{tg}_{\text{eff}} \delta(E_0)$ для выдержанного и "омоложенного" образцов практически совпадают, что может указывать на полный срыв (депиннинг) доменных и фазовых границ с дефектов при таких внешних полях и участие всего объема образца в процессах поляризации и переполяризации в данных условиях эксперимента.

4. Выводы

1) Анализ временны́х зависимостей $\varepsilon'(t)$ в широком интервале частот измерительных полей свидетельствует о том, что времена релаксации (времена "замораживания") в области размытого фазового перехода в монокристалле PBSN-6 имеют значения от 10^8 до 10^{11} min и существенным образом зависят от величины прикладываемого к образцу смещающего поля.

2) Выявленные изменения характера долговременной релаксации в PBSN-6 при приближении температуры выдержки (старения) T_i к температуре так называемого спонтанного (без воздействия внешнего поля) фазового перехода $T_{\rm sph}$ в сегнетоэлектрическое состояние, вероятнее всего, обусловлены тем, что фазовое состояние материала проходит следующие стадии: при $T_i > T_m$ — суперпараэлектрическую, при $T_i \approx T_m$ — релаксорную, при $T_{\rm sph} < T_i < T_m$ — стеклоподобную.

3) Наличие дополнительной аномалии (наряду с аномалией при T_m) в температурных зависимостях поляризационных характеристик в области температур ниже T_m до воздействия на образец смещающего поля и ее отстутствие после такого воздействия указывает на то, что выдержка образца в смещающем поле, даже не превосходящем коэрцитивное, приводит к постепенному исчезновению релаксорной и появлению сегнетэлектрической фазы в области температур $T_{\rm sph}-T_m$.

Список литературы

- [1] И.П. Раевский, В.В. Еремкин, В.Г. Смотраков, Е.С. Гагарина, М.А. Малицкая. ФТТ **42**, *1*, 154 (2000).
- [2] А.В. Шильников, А.И. Бурханов, Е.Х. Биркс. ФТТ 29, 3, 899 (1987).

2211

- [3] W.Y. Pan, T.R. Shrout, L.E. Cross. J. Mater. Sci. Lett. 8, 771 (1989).
- [4] A.I. Burkhanov, A.V. Shilnikov, A. Sternberg. Ferroelectrics 90, 39 (1989).
- [5] E.V. Colla, E.Yu. Koroleva, N.M. Okuneva, S.B. Vakhrushev. Phys. Rev. Lett. 4, 9, 1681 (1995).
- [6] I.P. Raevski, M.A. Malitskaya, E.S. Gagarina, V.G. Smotrakov, E.V. Sahkar, S.I. Raevskaya, V.V. Eremkin. Ferroelectrics 299, 115 (2004).
- [7] A.I. Burkhanov, A.V. Shil'nikov, R.E. Uzakov. SPIE 2967, 199 (1997).
- [8] В.С. Доценко. УФН 163, 6, 1 (1993).
- [9] I.P. Raevskii, V.G. Smotrakov, V.V. Eremkin, E.S. Gagarina, M.A. Malitskaya. Ferroelectrics 247, 127 (2000).
- [10] И.П. Раевский, В.В. Еремкин, В.Г. Смотраков, Е.С. Гагарина, М.А. Малицкая. Кристаллография 46, 1, 144 (2001).
- [11] M.D. Glinchuk, V.A. Stephanovich. J. Phys.: Cond. Matter 10, 11 081 (1998).
- [12] S.A. Gridnev. Ferroelectrics 266, 171 (2002).
- [13] А.И. Бурханов. В сб.: Тр. Междунар. семинара "Релаксационные явления в твердых телах" (Воронеж, 1995). Изд-во Воронеж. технич. ун-та (1996). Ч. 1. С. 89.
- [14] А.И. Бурханов, А.В. Шильников, Р.Э. Узаков. Кристаллография 42, 6, 1069 (1997).
- [15] Dwight Viehland, M.Y. Kim, Z. Xu, Jie-Fang Li. Work of Int. Conf. "Electroceramics V" / Eds J.L. Baptista, J.A. Labrincha, P.M. Vilarino. University of Averio, Portugal (1996). Book 1. P. 97.
- [16] A. Bratkovsky, E.K.H. Salje, V. Heine. Phase Trans. 52, 77 (1994).
- [17] A.I. Burkhanov, A.V. Shil'nikov. Ferroelectrics 299, 153 (2004).
- [18] А.В. Шильников, С.В. Кравченко, А.И. Бурханов, И.П. Раевский, В.П. Сахненко, Л.И. Иевлева. Материалы 4-й Междунар. конф. "Кристаллы: рост, свойства, реальная структура, применение". Александров (2003). С. 236.
- [19] Б.А. Струков, А.П. Леванюк. Физические основы сегнетоэлектрических явлений в кристаллах. Наука, М. (1995). 301 с.
- [20] А.В. Шильников. Автореф. докт. дис. (1998).