от Облучение электронами с энергией 0.9 MeV *p*-SiC, выращенного методом сублимации

© А.А. Лебедев, В.В. Козловский

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Санкт-Петербургский государственный политехнический университет

Поступило в Редакцию 17 февраля 2014 г.

Определена скорость удаления носителей (V_d) в 3 политипах SiC, выращенного методом сублимации, *p*-типа проводимости при его облучении электронами с энергией 0.9 MeV. На основе известных литературных данных проводится сравнение величины V_d в карбиде кремния при комнатной температуре в зависимости от политипа, типа проводимости и технологии изготовления. Предложена модель, объясняющая различие в значениях величины V_d .

В настоящее время облучение полупроводников электронами широко используется как для фундаментальных исследований, так и для решения прикладных задач. В то же время работ, посвященных изучению воздействия электронного облучения на *p*-SiC, в известной нам литературе не так много [1–3]. Целью данной работы было частично ликвидировать данный пробел.

Задачей настоящего исследования являлось определение скорости удаления носителей при электронном облучении *p*-SiC, выращенного методом сублимации, и сравнение со значением V_d , полученным для карбида кремния, выращенного методом газофазной эпитаксии (Chemical Vapor Deposition (CVD)). Для работы использовались три политипа карбида кремния: 4*H*, 6*H* и 15*R*.

Исследовавшиеся эпитаксиальные слои толщиной ~ 10 μ m были выращены методом сублимационной эпитаксии (SE) в вакууме [4] на основе подложек *n*-типа проводимости с концентрацией нескомпенсированных доноров (Nd-Na) ~ 3-5 10¹⁸ cm⁻³. Для роста использовались подложки производства фирмы CREE (4*H*-SiC) и полученные по методу Лэли (6*H*- и 15*R*-SiC). Для получения *p*-типа проводимости источник эпитаксиального роста был легирован алюминием.

45

Для создания омических контактов к подложке *n*-типа проводимости на ее поверхность напылялись слои металла Ti/Ni/Au толщиной 50/300/200 nm соответственно. Далее проводилась процедура отжига металла с полупроводником при температуре 1000°C в течение 90 s при высоком вакууме. При этом формировались низкоомные омические контакты с переходными (контактным) сопротивлением порядка $4-5 \cdot 10^{-6} \Omega \cdot$ сm. Диоды Шоттки диаметром 500–800 μ m были сформированы за счет напыления на поверхность эпитаксиального слоя металлического золота.

Облучение электронами с энергией 0.9 MeV проводилось на импульсном ускорителе resonant transformer accelerator (частота импульсов 490 Hz, длительность импульса $330\,\mu$ s) на охлаждаемой проточной водой мишени. Пробег электронов с энергией 0.9 Mev составляет ~ 1.0 mm в SiC. Средняя плотность тока пучка электронов составляла $12.5\,\mu$ A · cm⁻². Можно считать, что при электронном облучении дефекты вводились равномерно по объему образцов, поскольку толщина облучаемых образцов SiC была значительно меньше длины пробега электронов. Максимальная доза облучения составляла $2 \cdot 10^{17}$ cm⁻². Скорость удаления носителей рассчитывалась по формуле

$$V_d = (N_0 - N_1) \backslash \Delta D,$$

где N_0 — концентрация $N_a - N_d$ в эпитаксиальном слое до облучения; N_1 — концентрация $N_a - N_d$ в эпитаксиальном слое после облучения; ΔD — доза облучения.

Концентрации нескомпенсированных акцепторов $(N_a - N_d)$ в исходных и облученных образцах определялись из вольт-фарадных характеристик на стандартной установке с параллельной схемой замещения и синусоидальной частотой 10 kHz при комнатной температуре.

Полученные результаты представлены в табл. 1. Как видно из таблицы, для всех 3 политипов SiC скорости удаления носителей оказались близкими и составили 1-1.7 сm⁻¹. Отметим, что эти значения почти на 2 порядка больше, чем значения V_d , определенные для образцов *n*-типа проводимости, выращенных методом SE [6–8].

В таблице 2 представлены наши и литературные данные по определению величины V_d для 4*H*- и 6*H*-карбида кремния *n*- и *p*-типа проводимости, выращенного как методом SE, так и методом CVD. Как видно из таблицы, при электронном облучении материала *n*-типа

Таблица 1. Скорости удаления носителей в сублимационном *p*-SiC при облучении электронами с энергией 0.9 MeV

Политип	Исходная концентрация, $10^{17} \mathrm{cm}^{-3}$	Скорость удаления носителей, ст ⁻¹
4 <i>H</i>	23	1.7
6 <i>H</i>	6	1.3
15 <i>R</i>	5	1.0

Таблица 2. Скорости удаления носителей и диффузионные длины неосновных носителей заряда в карбиде кремния при комнатной температуре в зависимости от политипа, типа проводимости и технологии изготовления

Тип материала		Энергия электронов			Диффузионная длина	
		0.5 MeV	1 MeV	6 MeV	неосновных носителей заряда, µm [10,11]**	
6H-SiC	Ν	CVD			1.0 [9]	~ 10
		SE		0.015 [6]		~ 1
	Р	CVD		0.26 [8]		~ 1
		SE		1.3*		~ 1.5
4H-SiC	Ν	CVD		0.1 [8]	2.15 [9]	~ 12
		SE		0.015 [6]		< 0.5
	Р	CVD	0.8 [5]			~ 1.5
		SE		1.7*		1-2

* Настоящая работа.

** В слоях с концентрацией 10¹⁷ см⁻³.

проводимости величина V_d меньше для сублимационного SiC, чем для CVD SiC, и больше в случае облучения материала *p*-типа проводимости.

С нашей точки зрения, данное различие может быть связано с разным спектром глубоких центров (ГЦ) в SiC, выращенном по различным технологиям. Одним из занчительных отличий материала, полученного методом CVD, и сублимационного материала является малая диффузионная длина неосновных носителей заряда в n-SiC.

Как видно из табл. 2, это различие больше чем на порядок. При этом в материале *p*-типа такой разницы нет, диффузионная длина в *p*-сублимационных слоях бывает даже выше, чем в слоях, выращенных методом CVD.

Это различие может быть связано с тем, что сублимационные слои выращиваются в более высокотемпературных условиях, при которых растущий слой неконтролируемо легируется алюминием и бором из графитового тигля. Данные примеси образуют в SiC акцепторные центры и компенсируют материал *n*-типа проводимости. Кроме того, в материале *n*-типа проводимости эти центры заряжены отрицательно и снижают подвижность и диффузионную длину дырок. А в материале *p*-типа проводимости они нейтральны и, видимо, на подвижности и диффузионной длине электронов не сказываются.

Известно, что облучение полупроводников электронами приводит к образованию в них френкелевских пар (вакансия—междуузельный атом). Можно предположить, что наличие заряженных компенсирующих акцепторов в *n*-SiC, выращенном методом SE, снижает диффузионную длину компонентов френкелевских пар, так же как и диффузионную длину носителей заряда. Это увеличивает вероятность рекомбинации компонентов пар, уменьшает концентрацию образующихся радиационных дефектов и увеличивает радиационную стойкость сублимационного *n*-SiC по сравнению с материалом, выращенным методом CVD.

Таким образом, показано, что скорость удаления носителей при облучении сублимационного *p*-SiC электронами с энергией 0.9 MeV составляет $1-2 \text{ cm}^{-1}$. Обнаружено, что величина V_d для сублимационного *p*-SiC практически не отличается от величины V_d для *p*-SiC, выращенного методом CVD. В то же время скорость удаления носителей в сублимационном *n*-SiC на порядок ниже, чем в *n*-SiC, выращенном методом CVD. Высказано предположение, что наблюдавшиеся различия могут быть связаны с различным примесным составом эпитаксиальных слоев SiC, выращенных по разным технологиям.

Список литературы

- [1] Matsuura H., Aso K., Kagamihara S. et al. // Appl. Phys. Lett. 2003. V. 83. P. 4981.
- [2] Zolnai Z., Son N.T., Hallin C., Janzen E. // J. Appl. Phys. 2004. V. 96. P. 2408.

- [3] Luo J.M., Zhong Z.Q., Gong M., Fung S, Ling C.C. // J. Appl. Phys. 2009.
 V. 105. P. 063 711.
- [4] Savkina N.S., Lebedev A.A., Davydov D.V. et al. // Materials Science and Engineering. B. 2000. V. 61–62. P. 50–54.
- [5] Matsuura H., Minohara N., Ohsima T. // J. Appl. Phys. 2008. V. 104. P. 043 702.
- [6] Kozlovski V.V., Bogdanova E.V., Emtsev V.V., Emtsev K.V., Lebedev A.A., Lomasov V.N. // Material Science Forum. 2005. V. 483–485. P. 383.
- [7] Козловский В.В., Емцев В.В., Емцев К.В., Строкан Н.Б., Иванов А.М., Ломасов В.Н., Оганесян Г.А., Лебедев А.А. // ФТП. 2008. V. 42. Р. 243.
- [8] *Iwamoto N., Onoda S., Hishiki S., Oshima T.* et al. // Material Science Forum. 2009. V. 600–603. P. 1043.
- [9] Mikelsen J., Grossner U., Bleka J.H., Monakhov E.V., Svensson B.G., Yakimova R., Henry A., Janzen E., Lebedev A.A. // Mater. Sci. Forum. 2009. V. 425. P. 600–603.
- [10] Levinshtein M.E., Rumyantsev S.L., Shur M.S. Properties of Advanced Semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe. New York: Wiley, 2001.
- [11] Camara N. et al. // Semiconductor Science and Technology. 2008. V. 23. P. 025 016.