09;15

Получение спектральных стереоизображений с электронной перестройкой по спектру и с поляризационным разделением

© А.С. Мачихин, В.Э. Пожар

Научно-технологический центр уникального приборостроения РАН, Москва E-mail: aalexanderr@mail.ru

Поступило в Редакцию 13 апреля 2014 г.

Рассмотрена задача получения стереоизображений объектов в произвольных узких спектральных интервалах. Предложен метод, основанный на одновременной фильтрации двух световых пучков, образующих стереопару, в одной акустооптической ячейке с разделением выходных пучков по поляризации. Найдена оптимальная геометрия дифракции, сформулированы требования к акустооптическому фильтру. Приведены оценки характеристик спектральной стереосистемы.

Методы спектрально-контрастной визуализации позволяют решать множество задач, в том числе отображать распределение физикохимических свойств наблюдаемого объекта. Для этого выделяют свет в полосе поглощения, испускания или флуоресценции визуализируемого вещества. Эти методы получили широкое распространение в задачах дистанционного зондирования, биомедицине, машинном зрении.

В настоящее время активно развиваются методы определения трехмерной структуры объектов, например, томография, стереоскопия и пр. [1,2]. Очевидно, что применение спектрального контрастирования позволяет получить более полную информацию о положении и форме элементов исследуемого объекта. Спектральная фильтрация дает возможность выделять те интервалы длин волн, где отсутствуют фоновые помехи и наиболее интенсивно проявляются свойства исследуемых объектов [3]. Например, многие микроскопы, предназначенные для стереоскопической регистрации, дополнены несколькими спектральными фильтрами, хотя это позволяет получить объемные изображения лишь

58

в нескольких фиксированных полосах спектра. Поэтому актуальной является задача получения стереоизображений на произвольных длинах волн *λ*.

Поскольку существует несколько различных способов получения и наблюдения стереоизображений, отличающихся методом разделения образующих стереопару световых пучков, то задача интеграции перестраиваемых оптических фильтров в схему стереоскопии должна решаться по-разному.

Одним из наиболее эффективных и часто применяемых приемов является разделение по поляризации. В этом случае 2 световых пучка, образующих стереопару, поляризуются в вертикальном и горизонтальном направлении так, что при наблюдении через поляризационные очки каждый глаз видит один из двух пучков, выходящих под разными углами по отношению к рассматриваемому объекту, что и создает эффект стереовидения (объемности) [2]. Для обеспечения перестройки по спектру излучение необходимо дополнительно пропустить через перестраиваемый оптический фильтр, например акустооптический (АО) [4].

Для этого в каждом стереоскопическом канале необходимо поместить по одному АО-фильтру. Оба фильтра должны обеспечивать широкоугольную дифракцию. Таким образом, устройство формирует 2 пучка, имеющие заданную длину волны и взаимно ортогональную поляризацию, отображающие вид объекта в разном ракурсе. Наблюдение стереоэффекта возможно с использованием поляризационных очков, содержащих 2 скрещенных поляроида, ориентированных по направлению поляризации выходящих пучков.

Эта схема имеет ряд недостатков, затрудняющих ее реализацию и использование. Во-первых, это необходимость использования 2 АО-фильтров, каждый из которых является сложным активным устройством; во-вторых, на АО-фильтры накладываются условия полной идентичности изготовления и сборки; в-третьих, необходимость в их синхронизации; в-четвертых, необходимость абсолютной геометрической и спектральной калибровки. Идентичность необходима, чтобы аберрации изображения в обоих каналах были одинаковы во избежание разрушения стереоэффекта и для высокого качества восстановления трехмерной структуры объекта. Расхождение длины волны настройки каналов не позволяет получить контрастное изображение в двух каналах одновременно.

Рис. 1. Структурная оптическая схема устройства: *1* — исследуемый объект, *2* — входная диафрагма; *3* — входной объектив, *4* — входные поляризаторы, *5* — АО-ячейка, *6* — выходная диафрагма.

В данной работе предложена схема получения ортогональнополяризованных спектральных стереоизображений, в которой данные недостатки в значительной степени устранены за счет дифракции двух световых пучков в одной АО-ячейке на одной и той же акустической волне. Подобные схемы с одновременной дифракцией 2 пучков ранее использовались для решения других задач, в частности для фильтрации неполяризованного излучения и эффективного использования обоих пучков после дифракции [5,6].

Оптическая схема предлагаемого устройства представлена на рис. 1. На входе устройства расположена двухапертурная диафрагма 2, формирующая 2 световых пучка, распространяющихся от объекта *I* под разными углами, которые с помощью входного объектива *3* направляются на входные ортогонально-ориентированные поляризаторы *4*. Далее ортогонально-поляризованные световые пучки попадают под определенными углами β_1 и β_2 в АО-ячейку 5, представляющую собой кристалл, в котором возбуждается бегущая ультразвуковая волна, период которой определяется частотой *f* подаваемого на акустический излучатель высокочастотного электрического сигнала, а сама частота связана с выделяемой длиной волны λ обратно пропорциональной зависимостью $f = \lambda^{-1}b(\lambda, \alpha)$, где коэффициент пропорциональности *b* зависит от углов распространения α и слабо от длины волны (вследствие дисперсии). В АО-ячейке *5* эти пучки дифрагируют с отклонением направления распространения $\Delta \alpha_1$ и $\Delta \alpha_2$ и изменением направления

Рис. 2. Схема распространения волн в АО-ячейке (*a*) и векторная диаграмма их дифракции на акустической волне (*b*).

линейной поляризации на ортогональную. Ориентация падающих световых пучков α_1 и α_2 и акустической волны выбираются таким образом (рис. 2), чтобы дифрагированные пучки распространялись параллельно. При этом недифрагированные пучки могут быть задержаны выходной диафрагмой 6. Так как оба пучка дифрагируют в одном и том же месте, возможные искажения изображения из-за дифракции будут практически одинаковыми в обоих каналах и не нарушат стереоэффект [7]. Использование одной АО-ячейки вместо двух обеспечивает идентичность двух стереоскопических каналов, уменьшение количества поляризаторов, решение проблемы взаимной синхронизации каналов, меньшие массу и габариты устройства, снижение требований к элементам устройства и упрощение его изготовления и юстировки.

Устройство работает следующим образом. Рассматриваемый объект помещается в переднюю фокальную плоскость устройства. Задается частота ультразвука, соответствующая требуемой длине волны света, и после заполнения АО-ячейки ультразвуковой волной на выходе устройства появляются 2 световых ортогонально-поляризованных пучка, имеющих заданную длину волны, совмещенных (частично или полностью) и распространяющихся параллельно, каждое из которых несет изображение объекта под соответствующим углом наблюдения. При рассмотрении через поляризационные очки каждое изображение воспринимается своим глазом, что и обеспечивает стереоэффект.

Углы α_1 и α_2 распространения падающих световых пучков в одноосном кристалле при широкоугольной геометрии АО-взаимодействия [8], обеспечивающие параллельное распространение дифрагированных пучков, должны быть связаны соотношением

$$\alpha_2 = \operatorname{arcctg}(\xi^4 \operatorname{ctg} \alpha_1), \tag{1}$$

где $\xi = n_e/n_0$, n_e и n_0 — показатели преломления кристалла необыкновенно (e) и обыкновенно (o) поляризованного света. Углы α отсчитываются от оптической оси Z одноосного кристалла и относятся к пучкам внутри кристалла (рис. 2). Соответствующие углы вне кристалла β_1 и β_2 связаны с углами в кристалле α_1 и α_2 формулами Френеля: $\sin \beta_1 = n_e \sin \alpha_1$, $\sin \beta_2 = n_0 \sin \alpha_2$. Угол распространения акустической волны α_s при этом составляет [5, 9]

$$\alpha_{s} = \frac{\pi}{2} + \operatorname{arcctg}\left(\frac{\xi \operatorname{ctg} \alpha_{1}}{\xi^{3} \operatorname{ctg}^{2} \alpha_{1} + \sqrt{(\xi^{4} \operatorname{ctg}^{2} \alpha_{1} + 1)(\xi^{2} \operatorname{ctg}^{2} \alpha_{1} + 1)}}\right). \quad (2)$$

Рис. 3. Зависимость $\Delta \alpha(\alpha_1)$ для АО-ячейки из TeO₂ при $\lambda = 532$ nm.

Согласно формуле (1), для любого угла распространения первого пучка α_1 однозначно определяется угол распространения второго пучка α_2 . На рис. 3 представлена рассчитанная зависимость угла между этими пучками $\Delta \alpha = \alpha_2 - \alpha_1$ от α_1 . Она имеет единственный максимум $\Delta \alpha_{\max}$ при $\alpha_1 = \alpha_1^{opt}$. Можно показать, что из всех возможных пар углов α_1 , $\alpha_2(\alpha_1)$ наибольший угол между пучками в кристалле $\Delta \alpha_{\max}$, а соответственно и наибольший параллакс $\Delta \beta_{\max} = \beta_2 - \beta_1$ достигаются при выполнении условий

$$\alpha_1^{opt} = \operatorname{arcctg}(\xi^2),$$

$$\alpha_2^{opt} = \operatorname{arcctg}(\xi^2)$$
(3)

и составляет $\Delta \alpha_{\max} = \operatorname{arctg}(\xi^2) - \operatorname{arcctg}(\xi^2)$. При этом же условии (3) максимальны также и углы $\Delta \alpha_1$, $\Delta \alpha_2$ отклонения пучков при дифракции

$$\Delta \alpha_1 = \alpha'_1 - \alpha_1 = \operatorname{arctg}(1 - \operatorname{arcctg}(\xi^2)),$$

$$\Delta \alpha_2 = \alpha'_2 - \alpha_2 = \operatorname{arctg}(1 - \operatorname{arctg}(\xi^2)).$$
(4)

Таким образом, оптимальные углы распространения световых пучков α_1^{opt} и α_2^{opt} , соответствующие максимальному параллаксу $\Delta\beta_{\max}$

(и соответственно максимальному стереоэффекту) и максимальным углам разведения $\Delta \alpha_1$, $\Delta \alpha_2$ (и соответственно минимально требуемому расстоянию до выходной диафрагмы и минимальной длине устройства), определяются формулой (3). Угол распространения акустической волны при этом составит

$$\alpha_s^{opt} = \frac{\pi}{2} + \operatorname{arcctg}\left(\sqrt{2(\xi^2 + 1)} + 1\right).$$
(5)

Например, для кристалла TeO₂, являющегося основным для AO-фильтров материалом, на длине волны $\lambda = 532$ nm двулучепреломление составляет $\xi = 1.07$ ($n_e = 2.46$ и $n_0 = 2.30$), что соответствует углам $\alpha_1^{opt} = 48.8^{\circ}$, $\alpha_2^{opt} = 41.2^{\circ}$, $\alpha_s^{opt} = 108.0^{\circ}$ и параллаксу $\Delta \alpha = 7.6^{\circ}$. Как ясно из проведенных рассуждений, снос акустической волны, который в парателлурите может быть весьма большим [10], не влияет ни на выбор геометрии, ни на результат дифракции.

Условие (3) определяется величиной двулучепреломления кристалла ξ , которая зависит от длины волны света λ . Поэтому оптимальные углы $a_{1.2}^{opt}$ также зависят от λ , однако вдали от края поглощения материала (380 nm для TeO₂) дисперсия $n_e - n_0$ мала и спектральной зависимостью углов $a_{1.2}^{opt}$ можно пренебречь. Например, для TeO₂ на длине волны $\lambda = 1060$ nm оптимальные углы падения световых пучков имеют следующие значения: $\alpha_1^{opt} = 48.6^\circ$, $\alpha_2^{opt} = 41.4^\circ$, $\alpha_s^{opt} = 108.1^\circ$, что практически совпадает с приведенными выше значениями этих углов для $\lambda = 532$ nm.

Угол сведения световых пучков в кристалле $\Delta \alpha$ устанавливается в соответствии с требуемым параллаксом $\Delta \beta$ наблюдения и углом распространения ультразвука α_s .

Таким образом, найденная геометрия двухлучевой дифракции позволяет создать перестраиваемый АО-фильтр, способный фильтровать одновременно 2 световых пучка разной поляризации и сводить их в одном направлении. Стереоизображение объекта может рассматриваться непосредственно глазами с помощью поляризационных стереоочков. Важно, что это можно делать с любого расстояния и в широком диапазоне спектра без изменения входной оптики.

В отличие от существующих приборов, выполняющих аналогичные функции, в рассмотренном устройстве обеспечиваются идентичность 2 стереоскопических каналов, сокращение числа АО-ячеек и поляри-

заторов, решение проблемы взаимной синхронизации каналов, уменьшение массы и габаритов, упрощение его юстировки.

Этот метод получения спектральных стереоизображений может найти применение в микроскопии, киноиндустрии, аэрофотосъемке, машинном зрении и других отраслях науки и техники.

Работа выполнена при поддержке грантов РФФИ 13-02-12210 офи_м и 13-00-14379 Ир.

Список литературы

- [1] *Handbook* of optical coherent tomography / Ed. by B. Bouma, G. Tearney. N.Y.: Marcel Dekker, Inc., 2002. 519 p.
- [2] Ezhov V., Studentsov S. // Proc. SPIE. 2005. V. 5821. P. 102.
- [3] *Yoon S., Thai C.* // Proc. ASABE Annual International Meeting. 2009. N 096583. P. 1.
- [4] Pozhar V., Machihin A. // AIP Conf. Proc. 2012. V. 1433. P. 65.
- [5] Епихин В.М., Визен Ф.Л., Пальцев Л.Л. // ЖТФ. 1987. Т. 57. В. 10. С. 1910.
- [6] Волошинов В.Б., Молчанов В.Я., Бабкина Т.М. // ЖТФ. 2000. Т. 70. В. 9. С. 93.
- [7] Pozhar V., Machihin A. // Appl. Opt. 2012. V. 51. N 19. P. 4513.
- [8] Chang I. // Electron. Lett. 1975. V. 25. P. 617.
- [9] Мачихин А.С., Пожар В.Э. // ЖТФ. 2010. Т. 80. В. 10. С. 101.
- [10] Буров В.А., Волошинов В.Б., Дмитриев К.В., Поликарпова Н.В. // УФН. 2011. Т. 181. № 11. С. 1205–1211.