07

Синергетика взаимодействия подвижных и неподвижных дислокаций при формировании дислокационных структур в ударной волне. Влияние энергии дефектов упаковки

© Г.А. Малыгин¹, С.Л. Огарков², А.В. Андрияш²

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова, Москва, Россия
 E-mail: malygin.ga@mail.ioffe.ru

(Поступила в Редакцию 10 июля 2014 г.)

На основе анализа взаимодействия двух кинетических процессов, описываемых уравнениями реакционнодиффузионного типа для плотностей, соответственно, подвижных и образующих неподвижные диполи дислокаций сформулировано кинетическое уравнение для плотности дислокаций, отражающее основные моменты формирования в ударной волне дислокационных структур различного типа. Показано, что при относительно низких давлениях за фронтом ударной волны возникает неоднородная (ячеистая) дислокационная структура, а при высоких давлениях — однородное распределение плотности дислокаций с дефектами упаковки (ДУ). Переход от ячеистого характера распределения плотности дислокаций к однородному распределению дислокаций с ДУ зависит от энергии дефектов упаковки γ_D металла, чем меньше величина этой энергии, тем ниже величина давления в ударной волне σ_c , при котором происходит переход от первого типа дислокационной структуры ко второму ее типу. Найдено, что зависимость критического давления от энергии γ_D описывается законом $\sigma_c \sim (\gamma_D/\mu b)^{2/3}$, что находит подтверждение в эксперименте (μ — модуль сдвига, b — вектор Бюргерса).

1. Введение

При действии на кристалл интенсивного лазерного излучения в нем возникает ударная волна пластического сжатия кристалла [1,2]. Дислокационная структура в волне по мере роста интенсивности излучения и соответственно роста давления и скорости деформации развивается в последовательности: однородное распределение дислокаций — ячеистая (cell) дислокационная структура — однородное распределение дислокаций с дефектами упаковки и, наконец, при давлениях выше 60 GPa — деформационная структура из микродвойников [1-4]. В поликристаллах на характер дислокационной структуры в волне влияет размер зерен [5-7], а в сплавах — наличие преципитатов [7,8] и величина энергии дефектов упаковки (ЭДУ) [9]. При давлениях выше 1-10 GPa существенным становится генерация геометрически необходимых (ГН) дислокаций на фронте ударной волны [4,10], в результате чего характер и параметры дислокационной структуры за фронтом ударной волны (по традиционной терминологии — за упругим предвестником) становятся зависимыми от плотности ГН дислокаций и, следовательно, от давления.

Наряду с реальным физическим экспериментом характер формирующихся при ударе дислокационных структур исследуют сейчас также методами молекулярно-динамического [10,11] и дискретно-дислокационного [8,12] моделирования. Ввиду своей наглядности компьютерное моделирование дополняет результаты реальных экспериментов и позволяет наблюдать за формированием дислокационной структуры или ее отдельных элементов на разных масштабных уровнях.

Результаты экспериментов [1,3,4] и моделирования [5] показывают, что в монокристаллах Си и Ni дислокационная структура до давлений 30–40 GPa имеет неоднородный (ячеистый) характер и состоит из полных дислокаций, сконцентрированных в границах (стенках) ячеек. Выше этого давления возникает однородное распределение дислокаций с дефектами упаковки (ДУ). В поликристаллах согласно [7] ячеистая дислокационная структура не образуется при размере зерен меньше $\approx 1 \,\mu$ m. Так, она не возникает в нанокристаллическом Ni [5]. МД моделирование показывает, что пластическая деформация нанокристаллического материала, как и в квазистатических условиях деформирования [13], осуществляется путем испускания и поглощения границами зерен частичных (partial) дислокаций Шокли.

Существенное влияние на характер формирующейся при ударе дислокационной структуры оказывает величина энергии ДУ [9]. Рост концентрации атомов алюминия в кристаллах сплава Cu–Al, уменьшая величину ЭДУ, существенно (с 30 до 2 GPa) снижает критическое напряжение перехода от пространственно неоднородного распределения плотности дислокаций к однородному ее распределению в виде расщепленных (extended) дислокаций [9].

Целью настоящей работы является анализ влияния энергии дефектов упаковки на напряжение перехода от ячеистого характера распределения дислокаций в ударной волне к однородному распределению дислокаций с ДУ. Как и при анализе влияния размера зерен и плотности преципитатов на указанный переход [7], анализ базируется на кинетическом уравнении для плотности дислокаций и критических условиях возникновения их ячеистого распределения [14]. В разделах 2 и 3 получены соотношения для параметров кинетического уравнения, которые влияют на этот переход. В разделе 4 показано, что уменьшение величины ЭДУ существенно снижает напряжение перехода от ячеистого к однородному распределению плотности дислокаций.

Синергетика взаимодействия подвижных и неподвижных дислокаций

В [7,14] при анализе влияния давления, размера зерен и объемной плотности преципитатов на переход от ячеистой дислокационной структуры к однородному распределению дислокаций за фронтом ударной волны использовалось модельное уравнение для плотности дислокаций вида [15,16]

$$\frac{\partial \rho(y,t)}{\partial t} = (1-\beta) \frac{u}{\lambda_m} \rho + \delta_f u \rho^{3/2} - h_a u \rho^2 + (1-\xi) D_m \frac{\partial^2 \rho}{\partial y^2}, \qquad (1)$$

где $\rho(y, t)$ — плотность подвижных дислокаций, у координата в нормальном к плоскости скольжения дислокаций направлении, t — время, u — скорость дислокаций, D_m — коэффициент диффузии винтовых участков дислокационных петель механизмом двойного поперечного скольжения (ДПС, double cross-slip), λ_m и $1/\delta_f \rho^{1/2}$ — длина пробега дислокаций между актами их размножения на препятствиях, соответственно, не деформационного и деформационного (лес дислокаций с плотностью $ho_f =
ho$) происхождения, $\delta_f \approx 10^{-2}$ коэффициент, определяющий интенсивность последнего процесса, h_a — характерное расстояние аннигиляции винтовых участков дислокационных петель механизмом поперечного скольжения [17]. В уравнении (1) параметры ξ и β определяют вид формирующейся в материале дислокационной структуры. При $\xi < 1$ и $\beta < 1$ результатом распространения ударной волны является пространственно однородная дислокационная структура, а при $\xi > 1$ и $\beta > 1$ — неоднородная (ячеистая) дислокационная структура [7,14]. Особенность уравнения (1) применительно к проблеме возникновения и распространения ударных пластических волн состоит в том, что часть коэффициентов и параметров этого уравнения зависят от давления в волне.

Уравнение (1) является результатом взаимодействия двух кинетических процессов, развивающихся в пластически деформируемом кристалле: размножения дислокаций и их иммобилизации и аннигиляции в дислокационных диполях [16]

$$\frac{\partial \rho_m(y,t)}{\partial t} = \frac{u}{\lambda_m} \rho_m + \delta_f u \rho_m^{3/2} - h_a u \rho_m^2 - \frac{u}{h_i} \rho_i + D_m \frac{\partial^2 \rho_m}{\partial y^2}, \qquad (2a)$$

$$\frac{\partial \rho_i(y,t)}{\partial t} = \frac{u}{\lambda_i} \rho_m - \frac{u}{h_i} \rho_i + D_i \frac{\partial^2 \rho_i}{\partial y^2}.$$
 (2b)

Здесь ρ_m — плотность подвижных дислокаций, генерируемых дислокационными источниками Франка-Рида (Ф-Р), возникшими в результате действия механизма ДПС, ρ_i — плотность дислокаций, образующих неподвижные, аннигилирующие винтовые диполи, $\lambda_m \sim (\delta_f
ho_G^{1/2})^{-1}$ — длина пробега дислокаций между актами их размножения на лесе геометрически необходимых (ГН) дислокаций с плотностью ρ_G , генерируемых на фронте ударной волны [4], λ_i — длина пробега дислокаций между актами двойного поперечного скольжения с образованием винтовых диполей, h_i — характерное расстояние аннигиляции винтовых дислокаций в диполе, D_m и D_i — коэффициенты диффузии двойным поперечным скольжением, соответственно, подвижных дислокаций и дислокаций, образующих диполи. Система уравнений (2) является дислокационным аналогом системы уравнений типа "активатор (катализатор)-ингибитор" в различных химических, физических и биологических средах [16,18]. В качестве активатора выступают подвижные дислокации, генерируемые источниками Ф-Р, способные к размножению механизмом ДПС, а в качестве ингибиторов — малоподвижные, аннигилирующие винтовые липоли.

Согласно уравнениям (2) стационарные пространственно однородные плотности дислокаций ρ_{m0} и ρ_{i0} определяются уравнениями

$$\rho_{i0} = h_i \left(\lambda_m^{-1} + \delta_f \rho_{m0}^{1/2} - h_a \, \rho_{m0} \right) \rho_{m0}, \tag{3a}$$

$$\rho_{i0} = \frac{h_i}{\lambda_i} \rho_{m0}. \tag{3b}$$

Решая совместно уравнения (3), получаем уравнение для стационарной плотности подвижных дислокаций, корни которого равны

$$\left(\rho_{m0}^{1/2}\right)_{1,2} = \frac{\delta_f}{2h_a} \left[1 \mp \sqrt{1 - \frac{4h_a}{\delta_f^2 \lambda_m} (\beta_{im} - 1)}\right],$$
 (4a)

где $\beta_{im} = \lambda_m / \lambda_i$ — относительный коэффициент иммобилизации дислокаций. На рис. 1 кривые *I* и *II* демонстрируют зависимости приведенных значений корней (4a)

$$\lambda_m (\rho_{m0}^{1/2})_{1,2} = \frac{1}{2\omega_a} \left[1 \mp \sqrt{1 - 4\omega_a(\beta_{im} - 1)} \right]$$
(4b)

от коэффициента иммобилизации дислокаций β_{im} при двух значениях параметра $\omega_a = h_a/\delta_f \lambda_m$, соответственно, 10^{-2} и 1.0 (кривые *A* и *B*). Пунктирами *a*, *b* и *c* на

Рис. 1. Зависимость приведенных значений корней (4a) уравнений (3) от коэффициента иммобилизации дислокаций β_{im} при двух значениях параметра $\omega_a = 10^{-2}$ и 1.0 (кривые *A* и *B*).

рисунке указаны значения коэффициентов иммобилизации дислокаций, соответственно, в диапазонах $\beta_{im} < 1$, $1 < \beta_{im} < 1 + \delta_f / 4\omega_a$ и $\beta_{im} > 1 + \delta_f / 4\omega_a$, а цифрами Iи 2 — значения корней (4b) при пересечении пунктирами а и b кривых А и В. Из рисунка видно, что при $\beta_{im} < 1$, когда доминирует процесс размножения дислокаций, имеется один корень и, следовательно, одна точка кинетического равновесия, а при $1 < \beta_{im} < 1 + \delta_f / 4\omega_a$ — два корня и, следовательно, две точки равновесия, между которыми возможны переходы. Существование двух точек кинетического равновесия является результатом нелинейного характера системы уравнений (2). Наконец, при $\beta_{im} > 1 + \delta_f / 4\omega_a$, т.е. при сильной иммобилизации (аннигиляции) дислокаций в диполях, в кристалле возникает однородное бесструктурное распределение дислокаций из-за отсутствия кинетического (синергетического) взаимодействия подвижных и неподвижных дислокаций.

Для дальнейшего анализа системы уравнений (2) запишем ее в следующем виде

$$t_m \frac{\partial \rho_m(y,t)}{\partial t} = \rho_m + \delta_f \lambda_m \rho_m^{3/2} - h_a \lambda_m \rho_m^2 - \frac{\lambda_m}{h_i} \rho_i + R_m^2 \frac{\partial^2 \rho_m}{\partial y^2}, \quad (5a)$$

$$t_i \frac{\partial \rho_i(y,t)}{\partial t} = \frac{h_i}{\lambda i} \rho_m - \rho_i + R_i^2 \frac{\partial^2 \rho_i}{\partial y^2}, \quad (5b)$$

где $t_m = \lambda_m/u$, $t_i = h_i/u$, $R_m^2 = D_m \lambda_m/u$ и $R_i^2 = D_i h_i/u$. Поскольку $t_i/t_m = h_i/\lambda_m \ll 1$, то в каждый данный момент плотность дислокаций в диполях остается стационарной относительно плотности подвижных дислокаций и подчиняется редуцированному уравнению (5b)

$$R_i^2 \frac{\partial^2 \rho_i}{\partial y^2} - \rho_i = -\frac{h_i}{\lambda_i} \rho_m, \tag{6a}$$

решение которого имеет вид

$$\rho_i(y,t) = \frac{h_i}{\lambda_i} \int_{y}^{\infty} \exp\left(-\frac{|y-y'|}{R_i}\right) \rho_m(y',t) \frac{dy'}{R_i}.$$
 (6b)

Подставляя (6b) в уравнение (5a), получаем интегродифференциальное уравнение для плотности только подвижных дислокаций

$$t_{m} \frac{\partial \rho_{m}(y, t)}{\partial t} = f(\rho_{m})$$
$$-\beta_{im} \int_{y}^{\infty} \exp\left(-\frac{|y-y'|}{R_{i}}\right) \rho_{m}(y', t) \frac{dy'}{R_{i}} + R_{m}^{2} \frac{\partial^{2} \rho_{m}}{\partial y^{2}}, \quad (7)$$

где введено обозначение $f(\rho_m) = \rho_m + \delta_f \lambda_m \rho_m^{3/2} - -h_a \lambda_m \rho_m^2$.

Ввиду нелинейного характера уравнения (7), найти его решение в замкнутом виде не представляется возможным. Можно получить приближенное решение этого уравнения вблизи равновесного значения плотности подвижных дислокаций (ρ_{m0})₁ (4a). Вводя стандартное отклонение от положения равновесия $\delta\rho_m \sim \exp(\omega t + iqy)$, получаем дисперсионное соотношение для волновых векторов

$$t_m \omega(q) = \left[\frac{df(\rho_m)}{d\rho_m}\right]_{(\rho_{m0})_1} - \frac{\beta_{im}}{1 + R_i^2 q^2} - R_m^2 q^2.$$
(8a)

В обозначениях (4b)

$$\left[\frac{df(\rho_m)}{d\rho_m}\right]_{(\rho_{m0})_1} = 1 + \alpha,$$

$$\alpha = \lambda_m \left(\rho_{m0}^{1/2}\right)_1 \left[\frac{3}{2} - 2\omega_a \lambda_m \left(\rho_{m0}^{1/2}\right)_1\right] \delta_f.$$
(8b)

Далее, ограничиваясь в (8а) волновыми векторами $R_i^2 q^2 \ll 1$, получаем с учетом того, что $(1 + R_i^2 q^2)^{-1} \approx 1 - R_i^2 q^2$, дисперсионное соотношение

$$t_m \omega(q) = (1 - \beta) + (\xi - 1) R_m^2 q^2,$$
 (9a)

в котором

$$\beta = \beta_{im} - \alpha, \quad \xi = \left(R_i^2/R_m^2\right)\beta_{im}.$$
 (9b)

Легко проверить, что дисперсионному соотношению (9a) соответствует уравнение (1) для плотности подвижных дислокаций (индекс *m* опущен). Инверсия знака диффузионного потока в уравнении (1) при $\xi > 1$ является результатом дальнодействующего взаимодействия подвижных и неподвижных дислокаций, описываемого интегралом в правой части уравнения (7).

Физика твердого тела, 2015, том 57, вып. 1

3. Зависимость параметров β и ξ от давления

Как уже было указано выше, величина параметров β и ξ определяет характер образующейся в кристалле после прохождения по нему ударной волны дислокационной структуры: при $\beta > 1$ и $\xi > 1$ — дислокации распределены неравномерно и сосредоточены в границах дислокационных ячеек, а при $\beta < 1$ и $\xi < 1$ они равномерно распределены по кристаллу [14]. В настоящем разделе найдена зависимость указанных параметров от давления и показано, что при относительно малых давлениях реализуется первый вариант дислокационной структуры, а при относительно больших — второй вариант.

Параметры β и ξ являются сложной комбинацией кинетических коэффициентов системы уравнений (2) [16]. В обозначениях (2) и (4) настоящей работы

$$\beta = \beta_{im} - \alpha, \quad \xi = \frac{h_i D_i}{\lambda_m D_m} \beta_{im} = \frac{h_i D_i}{\lambda_i D_m}.$$
 (10a)

Зависимость этих коэффициентов от сдвиговых напряжений τ найдена в [16] с учетом распределения высоты диполей h по экспоненциальному закону $P(h) = h_0^{-1} \exp(-h/h_0)$, где h_0 — структурно чувствительный параметр, определяющий среднюю высоту диполей (в случае кристаллов меди $h_0 = 20$ nm [16]). Принимая во внимание, что при двойном поперечном скольжении иммобилизация дислокаций в диполях происходит при высоте диполей меньше некоторого критического значения h_{im} , а выше этого значения диполи не образуются, а возникают источники Франка–Рида, получаем следующую зависимость относительного коэффициента иммобилизации дислокаций от напряжения сдвига τ [16]

$$\beta_{im} = \frac{\lambda_m}{\lambda_i} = \exp\left(\frac{h_{im}}{h_0}\right) - 1, \quad h_{im} = \frac{\mu b}{8\pi(1-\nu)\tau}, \quad (10b)$$

где

$$\lambda_m = \lambda_s \exp(h_{im}/h_0), \quad \lambda_i = \lambda_s \left(1 - \exp(-h_{im}/h_0)\right)^{-1},$$

 $\lambda_s = (\delta_f \rho_G^{1/2})^{-1}$ — длина пробега винтовых участков дислокационных петель при их размножении на ГН дислокациях механизмом двойного микропоперечного скольжения. Аналогично с учетом зависимостей от сдвигового напряжения коэффициентов [16]

$$h_i = \lambda_s \left(1 - \exp(-h_{ia}/h_0)\right)^{-1}, \quad h_{ai} = \frac{\mu b}{2\pi \tau},$$

 $D_m = \lambda_D u \eta, \quad D_i = \lambda_D u (1 - \eta), \quad \lambda_D = \frac{h_0^2}{\lambda_m},$
 $\eta = \left\lfloor 1 + h_{im}/h_0 + 0.5(h_{im}/h_0)^2 \right\rfloor \exp(-h_{im}/h_0), \quad (10c)$

Рис. 2. Зависимость параметров ξ и β_{im} от давления согласно соотношениям (10b) и (10d) (кривые *1* и 2).

находим зависимость параметра ξ от напряжения τ

$$\xi = \frac{1 - \exp(-h_{im}/h_0)}{1 - \exp(-h_{ai}/h_0)} \left[\frac{1 - \eta}{\eta}\right],$$
 (10d)

где h_{ai} — критическая высота винтового диполя при его аннигиляции.

Девиаторная компонента напряжений τ связана с давлением σ на ударном фронте (упругом предвестнике) соотношением

$$\tau = \frac{1 - 2\nu}{2(1 - \nu)} \sigma \approx 0.25\sigma. \tag{11}$$

Обработка [14] экспериментальных данных [3], а также результаты компьютерного моделирования [19,20] показывают, что численный коэффициент в (11), связывающий напряжение сдвига за ударным фронтом с давлением, на один-два порядка меньше и находится для кристаллов Си и Ni в пределах 0.002-0.02. Такое снижение напряжений сдвига за ударным фронтом связано с сильной релаксацией девиаторной компоненты напряжений [21] вследствие генерации ГН дислокаций на ударном фронте. На рис. 2 кривая 1 демонстрирует зависимость параметра ξ от давления в волне при соотношении $\tau/\sigma = 0.001$ и данных для кристаллов меди: $\mu = 48$ GPa, b = 0.256 nm, $\nu = 0.33$. Кривая 2 на этом рисунке показывает зависимость параметра β от давления согласно формулам (8b) и (10a) при том же соотношении $\tau/\sigma = 0.001$, величине коэффициента $h_a = 4b$ и зависимости плотности ρ_G ГН дислокаций от давления [1,14]

$$\frac{\rho_G}{\rho_{G0}} = \frac{1}{3^3 \chi^3} \left(\frac{\sigma}{E}\right)^3, \quad \rho_{G0} = \frac{\pi^2}{0.8\sqrt{2}(1-\nu)b^2} \approx \frac{13}{b^2},$$
(12)

где $\chi=3(1-\nu)/(1+\nu)\approx 1.5,\; E=128\,{\rm GPa}$ — модуль Юнга.

Приведенные на рис. 2 результаты расчета параметров $\beta = \beta_{im}$ (в (9b) $\alpha \ll 1$) и ξ для кристаллов меди показывают, что с ростом давления величина этих параметров уменьшается и при достаточно больших давлениях становится меньше единицы. Таким образом, с ростом давления должен наблюдаться переход от неоднородного (ячеистого) распределения плотности дислокаций к однородному ее распределению при прохождении ударной волны по кристаллу. Условия $\beta > 1$, $\xi > 1$ являются необходимыми, но недостаточными условиями для формирования ячеистой дислокационной структуры. Так, в стационарном случае $\partial \rho / \partial t = 0$ решение уравнения (1) имеет вид [14,15,21]

$$\rho_{c}(x) = \frac{\rho_{\max}^{(c)}}{[1 + (f_{c} - 1)\sin^{2}(\pi x/\Lambda_{c})]^{2}},$$

$$\Lambda_{c} = 4\pi \left(\frac{\xi - 1}{\beta - 1}\right)^{1/2} (\lambda_{D}\lambda_{m})^{1/2},$$

$$f_{c} = \left(\frac{\rho_{\max}^{(c)}}{\rho_{\min}^{(c)}}\right)^{1/2} = \frac{1 + (1 - \eta_{c})^{1/2}}{1 - (1 - \eta_{c})^{1/2}}, \quad \eta_{c} = \frac{25}{6} (\beta - 1)a,$$
(13)

при условиях $0 < \eta_c < 1$, $\xi > 1$. Здесь Λ_c — размер ячеек в стационарной ячеистой дислокационной структуре, $\rho_{\max}^{(c)}$ и $\rho_{\min}^{(c)} \ll \rho_{\max}^{(c)}$ — соответственно максимальная (в стенках ячеек) и минимальная (в центре ячеек) плотность дислокаций в кристалле, $a = \delta_f^{-1} k_a b \rho_G^{1/2}$, $k_a = h_a/b$ — коэффициент аннигиляции винтовых дислокаций. Принимая во внимание зависимость параметра *a* от давления, $a \sim \rho_G^{1/2} \sim \sigma^{3/2}$, находим, что ячеистая дислокационная структура формируется при давлениях

$$\sigma < \sigma_c, \quad \sigma_c = \frac{3\chi E}{\left(b^2 \rho_{G0}\right)^{1/3}} \left[\frac{6\delta_f}{25(\beta - 1)k_a}\right]^{2/3}.$$
 (14)

Для кристаллов меди при $k_a = 4$, $\beta = 1.015$ получаем близкую к эксперименту оценку критического давления $\sigma_c \approx 29$ GPa, выше которого ячеистая дислокационная структура в чистой меди не формируется.

4. Влияние энергии дефектов упаковки на критическое давление *σ*_c

В [9] найдено, что в монокристаллах сплава Cu–Al критическое напряжение (давление) перехода от ячеистой дислокационной структуры к однородному распределению дислокаций с дефектами упаковки снижается с $\sigma_c = 29$ GPa для монокристаллов меди до 2 GPa для сплава с концентрацией атомов алюминия 6 wt.% при соответствующем снижении энергии дефектов упаковки γ_D с 57 до 5 mJ/m² (рис. 3). Согласно критерию (13) эта энергия может оказывать влияние на параметр β , но из-за относительного характера коэффициента β_{im} в (10a) и (10b) это влияние не должно быть значительным. Не вызывает сомнения, что ЭДУ влияет на

Рис. 3. Зависимость критического давления σ_c перехода от ячеистой дислокационной структуры к однородному распределению дислокаций от величины энергии дефектов упаковки γ_D согласно условию (14). Кривые *I* и *2* — расчет σ_c при коэффициентах аннигиляции дислокаций k_a согласно уравнениям, соответственно, (15) и (19). Экспериментальные точки — данные [9,22] для меди и сплавов Cu–Al.

коэффициент k_a . Аннигиляция винтовых участков дислокационных петель механизмом поперечного скольжения является причиной динамического отдыха и появления третьей стадии на кривых деформационного упрочнения кристаллов с ГЦК решеткой, а также кристаллов с ОЦК решеткой при температурах выше $0.1T_m$, где T_m температура плавления кристалла.

Согласно [16,17] коэффициент аннигиляции дислокаций $k_a \sim 1/\tau_3$, где τ_3 — напряжение начала третьей стадии на кривой деформационного упрочнения кристаллов, необходимое для создания стяжки (constriction) критического размера на линии дислокации для перехода дислокации в плоскость поперечного скольжения [23]. С учетом этого обстоятельства в [17] получена следующая зависимость коэффициента k_a от температуры T, энергии γ_D и скорости деформации $\dot{\varepsilon}$

$$k_a = k_0 \exp\left(\frac{k_{\rm B}T}{A} \ln\left(\frac{\dot{\varepsilon}_0}{\dot{\varepsilon}}\right)\right), \quad A = \frac{0.35\mu b^3}{1 + 180(\gamma_D/\mu b)},\tag{15}$$

где k_0 — коэффициент аннигиляции при T = 0, k_B — постояная Больцмана, $\dot{\varepsilon}_0 \approx 10^{12} \, {\rm s}^{-1}$. Согласно формуле (15) коэффициент k_a с ростом ЭДУ увеличивается. На рис. 3 кривая I показывает результат расчета для кристаллов Си критического давления σ_c (14) от энергии γ_D с учетом зависимости коэффициента k_a от нее при $T = 293 \, {\rm K}$, $k_0 = 3$, $\dot{\varepsilon} = 10^8 \, {\rm s}^{-1}$. Видно, что для чистой меди ($\gamma_D = 57 \, {\rm mJ/m^2}$) согласно данным [9] экспериментальная точка близка к кривой I, а согласно

результатам [23] она располагается значительно ниже этой кривой. С другой стороны, экспериментальные точки для сплавов Cu–Al ($\gamma_D = 5$ и 37 mJ/m²) лежат значительно ниже кривой *I* и имеют противоположную этой кривой тенденцию, а именно, с ростом энергии ДУ напряжение σ_c увеличивается, а не снижается.

Столь существенное расхождение между теорией и экспериментом связано, по-видимому, с тем, что расчет [23] напряжения т₃ не учитывал после перехода дислокации в плоскость поперечного скольжения энергию, необходимую для расширения петли до размера, достаточного для встречи ее с дислокационной петлей с противоположным знаком вектора Бюргерса на той же плоскости поперечного скольжения [17]. Чтобы учесть это обстоятельство, воспользуемся уравнениями баланса энергии образования дислокационных петель в отсутствие и в присутствие энергии дефектов упаковки [9]. В первом приближении энергией взаимодействия (притяжения) петель с разными знаками вектора Бюргерса, пропорциональной логарифму расстояния между ними, можно пренебречь по сравнению с собственными энергиями образования полупетель, энергией *у*_D и работой, совершаемой напряжением τ . При $\gamma_D = 0$ зависимость энергии образования одной полупетли от ее радиуса r имеет вид

$$W_{0} = \frac{1}{4} \mu b^{2} r \left(\frac{2-\nu}{1-\nu}\right) \ln\left(\frac{r}{b}\right) - \frac{\pi}{2} r^{2} \tau b, \qquad (16a)$$

$$r_{0} = \frac{\mu b}{4\pi\tau} \left(\frac{2-\nu}{1-\nu}\right) \left(\ln\frac{r_{0}}{b} + 1\right),$$

$$W_{0c} = \frac{\mu b^{2}}{8\pi} \left(\frac{2-\nu}{1-\nu}\right) \left(\ln\frac{r_{0}}{b}\right) r_{0}, \qquad (16b)$$

где r_0 и W_{0c} — критический радиус полупетли и энергия ее образования, отвечающие условию $dW_0/dr = 0$. Соответственно в случае расщепленной дислокации имеем

$$W_{D} = \frac{1}{4} \mu b_{p}^{2} r \left(\frac{2-\nu}{1-\nu}\right) \ln\left(\frac{r}{b}\right) + \frac{\pi}{2} r^{2} \gamma_{D} - \frac{\pi}{2} r^{2} \tau b_{p},$$
(17a)
$$r_{D} = \frac{\mu b_{p}^{2}}{4\pi (\tau b_{p} - \gamma_{D})} \left(\frac{2-\nu}{1-\nu}\right) \left(\ln \frac{r_{D}}{b} + 1\right),$$

$$W_{Dc} = \frac{\mu b_{p}^{2}}{8\pi} \left(\frac{2-\nu}{1-\nu}\right) \left(\ln \frac{r_{D}}{b}\right) r_{D},$$
(17b)

где $b_p = b/\sqrt{3}$ — вектор Бюргерса частичной дислокации Шокли. На рис. 4 кривые 1 и 2 демонстрируют результаты расчета отношений критических радиусов полупетель и энергий их образования без учета и с учетом энергии дефектов упаковки от отношения энергии γ_D и напряжения τ . Видно, что при одинаковом уровне напряжений и относительно низких значениях ЭДУ основной вклад в величину критического радиуса полупетли и энергию ее образования вносит собственная энергия (натяжение) дислокаций. Противоположная

Рис. 4. Зависимость отношений критических радиусов r_0/r_D (1) и энергий образования дислокационных петель W_{0c}/W_{Dc} (2) от величины отношения энергии дефектов упаковки γ_D к силе $b\tau$, действующей на единицу длины дислокации, в отсутствие (r_0, W_{0c}) и при наличии (r_D, W_{Dc}) расщепления дислокаций. Пунктирная линия соответствует равенствам $r_0 = r_D$ и $W_{0c} = W_{Dc}$.

ситуация имеет место при относительно больших значениях γ_D . Равенство радиусов $r_0 = r_D = r_c$ и энергий $W_{0c} = W_{Dc} = W_c$ наступает при напряжениях соответственно,

$$\tau_{c1} = \frac{3}{\sqrt{3} - 1} \frac{\gamma_D}{b}, \quad \tau_{c2} = \frac{9}{3\sqrt{3} - 1} \frac{\gamma_D}{b}.$$
(18a)

При $\gamma_D = 0$ эти напряжения равны нулю. Это означает, что указанные напряжения отражают влияние ЭДУ на процесс расширения дислокационных полупетель на плоскости поперечного скольжения на расстояния, достаточные для аннигиляции винтовых участков полупетель с противоположными знаками вектора Бюргерса, т. е. являются критическими факторами для этого процесса. Для критического радиуса r_c и энергетического барьера W_c получаем соотношения

$$r_{c} = \frac{\mu b}{4\pi\tau_{c1}} \left(\frac{2-\nu}{1-\nu}\right) \left(\ln\frac{r_{c}}{b}+1\right),$$
$$W_{c} = \frac{\mu b^{2}}{8\pi} \left(\frac{2-\nu}{1-\nu}\right) \left(\ln\frac{r_{c}}{b}\right) r_{c}.$$
(18b)

В случае кристаллов сплава Cu–Al оценка показывает, что при снижении ЭДУ с 60 до 6 mJ/m² (рис. 3) напряжение $\tau_{c1} \sim \gamma_D$ снижается с 960 до 96 MPa, а критический радиус $r_c \sim 1/\gamma_D$ возрастает с 13 до 130 nm, что существенно больше величины собственного расщепления дислокаций [24] в отсутствие приложенного к кристаллу напряжения $\Delta x_D = \mu b_p^2/2\pi\gamma_D \approx 2.8-28$ nm. Рассматривая напряжение $\tau_{c1} = \tau_c$ как напряжение, препятствующее аннигиляции винтовых участков дислокационных петель, для коэффициента аннигиляции, принимая во внимание схему [17], получаем соотношение

$$k_a = \frac{\omega_s^{5/2}}{2\pi^2 p \alpha_f} \left(\frac{\mu}{\tau_c}\right),\tag{19}$$

где $\omega_s \approx 0.5$ — доля винтовых составляющих дислокационных петель, $\alpha_f \approx 0.5$ — постоянная взаимодействия дислокаций в законе Тейлора $\tau = \alpha_f \mu b \rho^{1/2}, p$ — число действующих систем скольжения. Оценка показывает, что при p = 2 и снижении ЭДУ с 60 до 6 mJ/m^2 коэффициент k_a возрастает с 0.2 до 2.0. Подставляя (19) в условие (14) перехода от ячеистого к однородному распределению плотности дислокаций за фронтом ударной волны, находим, что зависимость критического давления для рассматриваемого перехода зависит от величины ЭДУ согласно закону $\sigma_c = K_D (\gamma_D / \mu b)^{2/3}$, где $K_D \approx 500$ GPa. На рис. 4 кривая 2 демонстрирует зависимость давления σ_c от энергии γ_D при $\beta = 1.75$ и указанных выше параметрах. Видно, что в противоположность кривой 1 и в согласии с данными [9] для сплава Cu-Al критическое давление снижается с уменьшением ЭДУ. Интересно в связи с этим отметить, что в условиях квазистатической деформации напряжение начала двойникования в различных сплавах изменяется с энергией ДУ в соответствии с эмпирическим соотношением $\sigma_{tw} = K_{tw} (\gamma_D / \mu b)^{1/2}$, близким по форме к найденному в настоящей работе, $K_{tw} = 6$ GPa [9,25].

5. Выводы

1. В рамках известного механизма синергетического взаимодействия двух кинетических процессов типа "активатор–ингибитор" сформулированы уравнения реакционно-диффузионного типа для плотностей, соответственно, подвижных ("активатор") и образующих неподвижные диполи ("ингибитор") дислокаций.

2. Анализ уравнений позволил выявить параметры β и ξ , определяющие тип формирующихся в ударной волне дислокационных структур, а также позволил найти критические условия перехода от одного типа структуры к другому ее типу в зависимости от величины давления в волне и энергии дефектов упаковки.

3. Переход от ячеистого характера распределения плотности дислокаций к однородному распределению дислокаций с дефектами упаковки зависит от энергии дефектов упаковки γ_D , чем ниже величина этой энергии, тем меньше величина давления в ударной волне σ_c , при котором происходит переход от первого типа дислокационной структуры ко второму ее типу. Зависимость критического давления от энергии γ_D подчиняется закону $\sigma_c \sim (\gamma_D/\mu b)^{2/3}$.

4. Поскольку границы дислокационных ячеек являются местами локализации деформации и источником возникновения микро- и нанопор в волне расширения

при отражении волны сжатия от тыльной поверхности образца, то переход к равномерному распределению плотности дислокаций при более низких давлениях является преимущественным фактором для сплавов с низкими значениями энергии ДУ.

Список литературы

- M.A. Meyers, H. Jarmakani, E.M. Bringa, B.A. Remington. Dislocation in Solids. V. 15 / Ed. J.P. Hirth, L. Kubin, B.V. Elsevier (2009). Ch. 89. P. 96.
- [2] Г.И. Канель, В.Е. Фортов, С.В. Разоренов. УФН 177, 809 (2007).
- [3] L.E. Murr. In: Shock waves and high-strain-rate phenomena in metals / Ed. M.A. Meyers, L.E. Murr. Plenum Press, NY-London (1981). P. 202.
- [4] M.A. Meyers, F. Gregory, B.K. Kad, M.S. Schneider, D.H. Kalantar, B.A. Remington, G. Ravichandran, T. Boehly, J.S. Wark. Acta Mater. 51, 1211 (2003).
- [5] C.H. Lu, B.A. Remington, B.R. Maddox, B. Kad, H.S. Park, M. Kawasaki, T.G. Langdon, M.A. Meyers. Acta Mater. 56, 5584 (2008).
- [6] H. Jarmakani, E.M. Bringa, P. Erhart, B.A. Remington, Y.M. Wang, N.Q. Vo, M.A. Meyers. Acta Mater. 61, 7767 (2013).
- [7] Г.А. Малыгин, С.Л. Огарков, А.В. Андрияш. ФТТ 56, 11, 2168 (2014).
- [8] Y. Liao, Ch. Ye, H. Gao, B-J. Kim, S. Suslov, E.A. Stach, G.J. Cheng. J. Appl. Phys. 110, 023 518 (2011).
- [9] M.A. Meyers, M.S. Schneider, H. Jarmakani, B.K. Kad, B.A. Remington, D.H. Kalantar, J. McNaney, B. Cao, J. Wark. Met. Mater. Trans. A 39, 304 (2008).
- [10] C.H. Lu, B.A. Remington, B.R. Maddox, B. Kad, H.S. Park, S.T. Prisbrey, M.A. Meyers. Acta Mater. 60, 6601 (2012).
- [11] П.А. Жиляев, А.Ю. Куксин, В.В. Стегайлов, А.В. Янилкин. ФТТ 52, 1508 (2010).
- [12] M.A. Shehadeh, E.M. Bringa, H.M. Zbib, J.M. McNaney, B.A. Remington. Appl. Phys. Lett. 89, 171 918 (2006).
- [13] A.G. Froseth, P.M. Derlet, H. Van Swygenhoven. Acta Mater. 52, 5870 (2004).
- [14] Г.А. Малыгин, С.Л. Огарков, А.В. Андрияш. ФТТ 56, 1123 (2014).
- [15] Г.А. Малыгин. УФН 169, 979 (1999).
- [16] Г.А. Малыгин. ФТТ 37, 3 (1995).
- [17] Г.А. Малыгин. ФТТ **34**, 2882 (1992).
- [18] Б.С. Кернер, В.В. Осипов. УФН 160, 1 (1990).
- [19] B.L. Holian. Phys. Rev. A 37, 2562 (1988).
- [20] R.A. Austin, D.L. McDowell. Int. J. Plasticity 32/33, 134 (2012).
- [21] Г.А. Малыгин, С.Л. Огарков, А.В. Андрияш. ФТТ 55, 2168 (2013).
- [22] R.J. de Angelis, J.B. Cohen. J. Met. 15, 681 (1963).
- [23] A. Seeger, R. Berner, H. Wolf. Zs. Phys. 155, 247 (1959).
- [24] Дж. Хирт, И. Лоте. Теория дислокаций. Атомиздат, М. (1972). 599 с.
- [25] O. Vöringer. Zs. Metallkd. 11, 1119 (1972).