06,11

Сегнетоэлектрические свойства RbNbO₃ и RbTaO₃

© А.И. Лебедев

Московский государственный университет им. М.В. Ломоносова, Москва, Россия E-mail: swan@scon155.phys.msu.ru

(Поступила в Редакцию 30 июля 2014 г.)

Из первых принципов методом функционала плотности рассчитаны фононные спектры кубических ниобата и танталата рубидия со структурой перовскита. На основе анализа неустойчивых мод в фононных спектрах определена симметрия возможных искаженных фаз, рассчитана их энергия и показано, что основным состоянием в RbNbO₃ является структура *R3m*. В RbTaO₃ сегнетоэлектрическая неустойчивость подавляется нулевыми колебаниями решетки. Для сегнетоэлектрических фаз RbNbO₃ рассчитаны спонтанная поляризация, пьезоэлектрические, нелинейно-оптические, электрооптические и другие свойства, а также ширина запрещенной зоны в приближениях LDA и *GW*. Свойства ромбоэдрического RbNbO₃ сопоставляются со свойствами ромбоэдрических KNbO₃, LiNbO₃ и BaTiO₃.

Работа выполнена при финансовой поддержке РФФИ (проект № 13-02-00724).

Возможность появления сегнетоэлектричества в ниобате и танталате рубидия со структурой перовскита обсуждалась в работах Смоленского и Кожевниковой [1] и затем Megaw [2] еще в начале 50-х годов прошлого века. При этом авторы [1] ссылались на неопубликованные данные В.Г. Прохватилова, который обнаружил тетрагональную фазу RbTaO₃ с a = 3.92 Å, c = 4.51 Å, испытывающую фазовый переход около 520 К, а в работе [2] эти данные были просто процитированы. В последующих исследованиях, однако, было установлено, что в отличие от ниобатов лития, натрия и калия при синтезе RbNbO3 и RbTaO3 при атмосферном давлении они кристаллизуются не в структуре перовскита, а в индивидуальных кристаллических структурах с триклинной (Р1) для RbNbO₃ и моноклинной (C2/m) для RbTaO₃ симметрией [3-5]. Чтобы получить эти материалы со структурой перовскита, их синтез необходимо проводить при высоких давлениях (65-90 kbar) [6]. Из-за сложности получения RbNbO₃ и RbTaO₃ со структурой перовскита свойства этих кристаллов изучены очень слабо.

Фазовые диаграммы систем $Rb_2O-Nb_2O_5$ И Rb₂O-Ta₂O₅ исследовались в работах [7,8]. RbNbO₃ образуется по перитектической реакции, разлагаясь выше 964°C [7]. RbTaO₃ разлагается выше 600° C, по-видимому также в результате перитектической реакции [8]. Рубидийсодержащие сегнетоэлектрические материалы в системе BaNb2O6-NaNbO3-RbNbO3 со структурой вольфрамовой бронзы обладают высокими электрооптическими характеристиками, которые заметно превышают характеристики ниобата лития [9,10]. В работе [11] обсуждалась возможность использования ниобата и танталата рубидия для фотоэлектрохимического разложения воды. В [12] было предложено использовать деламинацию структуры RbTaO₃ для получения пористых наномембран ТаО3 с размерами пор 1.3×0.6 и 1.1×1.1 Å, которые могут быть использованы для селективной фильтрации ионов лития.

Недостаточность знаний свойств обсуждаемых соединений проявляется, в частности, в противоречивости данных о сегнетоэлектрических свойствах RbTaO₃. Так, в работе [1] указывалось на существование фазового перехода в тетрагональной фазе при 520 K, а по данным [6] синтезированный под давлением RbTaO₃ имеет кубическую или близкую к ней структуру перовскита. RbNbO₃ при 300 K имеет структуру, аналогичную орторомбическому BaTiO₃, а данные дифференциальнотермического анализа указывают на происходящие в нем фазовые переходы при 15, 155 и 300°C [6].

В настоящей работе на основе расчетов из первых принципов найдена равновесная структура $RbNbO_3$ и $RbTaO_3$ и рассчитаны спонтанная поляризация, диэлектрическая проницаемость, пьезоэлектрические и упругие модули, нелинейно-оптические и электрооптические свойства, а также ширина запрещенной зоны в приближениях LDA и *GW* в этих кристаллах.

Расчеты из первых принципов проводились в рамках метода функционала плотности с помощью программы ABINIT [13]. Обменно-корреляционное взаимодействие описывалось в приближении локальной плотности (LDA). Оптимизированные сохраняющие норму псевдопотенциалы для атомов Nb, Ta и O, использованные в расчетах, заимствованы из работы [14]. Нерелятивистский псевдопотенциал для атома Rb (электронная конфигурация $4s^24p^65s^0$) был построен по схеме [15] с помощью программы OPIUM [16]. Для построения псевдопотенциала были использованы следующие параметры: $r_s = 1.68$, $r_p = 1.72$, $r_d = 1.68$, $q_s = 7.07$, $q_p = 7.27$, $q_d = 7.07, r_{\min} = 0.01, r_{\max} = 1.52, V_{loc} = 1.58$ a.u. (обозначения параметров см. в работе [17]). Тестирование псевдопотенциала Rb на примере стабильных при атмосферном давлении фаз P1 для RbNbO3 и C2/m для RbTaO₃ показало его достаточно высокое качество: расчетные параметры решетки и координаты атомов в этих фазах (табл. 1 и 2) хорошо согласуются с **Таблица 1.** Расчетные параметры решетки и координаты атомов в изученных структурах RbNbO₃

Атом	Позиция	x	у	z		
	Фаза Р1					
a = 5.0816 Å, $b = 8.3047$ Å, $c = 8.7916$ Å,						
	$\alpha = 114.062$	$5^{\circ}, \beta = 93.38$	$91^{\circ}, \gamma = 95.1$	160°		
Rb2	1 <i>a</i>	+0.00000	+0.00000	+0.00000		
Rb1	1 <i>b</i>	+0.00000	+0.00000	+0.50000		
Rb3	2i	+0.41251	+0.70257	+0.09488		
Nb1	2 <i>i</i>	+0.49674	+0.28138	+0.35602		
Nb2	2i	+0.02746	+0.51037	+0.30988		
01	2 <i>i</i>	+0.10125	+0.39078	+0.82160		
O2	2 <i>i</i>	+0.23664	+0.42747	+0.50994		
O3	2i	+0.28650	+0.71922	+0.45293		
O4	2 <i>i</i>	+0.29777	+0.37205	+0.19910		
O5	2 <i>i</i>	+0.33951	+0.05579	+0.27137		
O6	2 <i>i</i>	+0.78420	+0.27571	+0.22313		
	Φ asa $Pm3m$					
		a = 4.0291	Å			
Rb	1 <i>a</i>	+0.00000	+0.00000	+0.00000		
Nb	1 <i>b</i>	+0.50000	+0.50000	+0.50000		
0	3 <i>c</i>	+0.00000	+0.50000	+0.50000		
	Φορο Ρ/μημ					
	<i>a</i> =	4.0037 Å, c =	4.1592 Å			
Rb	1 <i>a</i>	+0.00000	+0.00000	-0.00336		
Nb	1b	+0.50000	+0.50000	+0.51818		
01	2c	+0.50000	+0.00000	+0.47446		
O2	1 <i>b</i>	+0.50000	+0.50000	-0.03654		
	•	Фаза Атп	12			
	a = 3.9928	Å, $b = 5.7742$	2Å, $c = 5.796$	0 Å		
Rb	2 <i>a</i>	+0.00000	+0.00000	-0.00341		
Nb	2b	+0.50000	+0.00000	+0.51447		
01	4e	+0.50000	+0.25496	+0.22842		
02	2a	+0.00000	+0.00000	+0.47735		
Фаза R3m						
$a = 4.0571 \text{ Å}, \alpha = 89.8945^{\circ}$						
Rb	1 <i>a</i>	-0.00308	-0.00308	-0.00308		
Nb	1a	+0.51193	+0.51193	+0.51193		
0	3 <i>b</i>	-0.02115	+0.48415	+0.48415		

экспериментальными данными [3,5]; небольшое занижение расчетных параметров решетки характерно для использованного приближения LDA.

Параметры решетки и равновесные положения атомов в элементарных ячейках находились из условия уменьшения остаточных сил, действующих на атомы, до значений менее $5 \cdot 10^{-6}$ Ha/Bohr (0.25 meV/Å) при самосогласованном расчете полной энергии с точностью лучше 10^{-10} Ha. Максимальная энергия плоских волн составляла 30 Ha для RbNbO₃ и 40 Ha для RbTaO₃. Интегрирование по зоне Бриллюэна проводилось на сетке Монхорста—Пака $8 \times 8 \times 8$. Спонтанная поляризация в сегнетоэлектрических фазах рассчитывалась методом

Рис. 1. Фононный спектр RbNbO₃ в кубической фазе *Рm3m*. Цифры около кривых указывают симметрию неустойчивых мод.

фазы Берри. Расчеты фононного спектра, диэлектрической проницаемости, пьезоэлектрических и упругих модулей проводились в рамках теории возмущений аналогично [17]. Нелинейно-оптические и электрооптические свойства рассчитывались по методике [18]. Все приводимые физические свойства рассчитывались для теоретического параметра решетки.

Фононный спектр RbNbO₃ в кубической фазе Pm3m показан на рис. 1. В этом спектре наблюдается полоса неустойчивых мод, характерная для цепочечной сегнетоэлектрической неустойчивости, которая была впервые обнаружена в KNbO₃ [19]. В центре зоны Бриллюэна эта мода имеет симметрию Γ_{15} , трехкратно вырождена и описывает сегнетоэлектрическое искажение структуры. Структуры, возникающие при конденсации мод X_5

Таблица 2. Расчетные параметры решетки и координаты атомов в изученных структурах RbTaO₃

Атом	Позиция	x	у	z	
Фаза С2/т					
	a = b	= 6.3396 Å, <i>c</i>	= 8.0171 Å,		
$\alpha = 86.1031^{\circ}, \beta = 93.8969^{\circ}, \gamma = 96.8997^{\circ}$					
Rb1	4i	+0.16000	-0.16000	+0.73758	
Rb2	4g	+0.26494	+0.26494	+0.00000	
Ta1	4h	+0.31104	+0.31104	+0.50000	
Ta2	4 <i>i</i>	+0.23924	-0.23924	+0.30214	
O3	8 <i>j</i>	+0.27303	+0.04639	+0.39643	
01	8 <i>j</i>	+0.54749	-0.21209	+0.28704	
O2	4 <i>i</i>	+0.16752	-0.16752	+0.08653	
O4	4 <i>i</i>	+0.37705	-0.37705	+0.55235	
Φ asa $Pm3m$					
a = 3.9846 Å					
Rb	1 <i>a</i>	+0.00000	+0.00000	+0.00000	
Та	1 <i>b</i>	+0.50000	+0.50000	+0.50000	
0	3 <i>c</i>	+0.00000	+0.50000	+0.50000	

и M'_3 , характеризуются антипараллельной ориентацией поляризации в соседних цепочках ... – O–Nb–O–....

В табл. 3 приведены энергии всех фаз RbNbO₃, получающихся при конденсации найденных выше неустойчивых мод. Наименьшую энергию среди них имеет фаза R3m. Расчеты фононного спектра в фазе R3m показывают, что частоты всех оптических фононов в центре зоны Бриллюэна и в высокосимметричных точках на ее границе положительны; детерминант и все угловые миноры, построенные из компонент тензора упругих модулей, также положительны. Это означает, что структурой основного состояния RbNbO₃ является фаза R3m. Расчетные параметры решетки и координаты атомов в этой фазе приведены в табл. 1. Поскольку в

Таблица 3. Относительные энергии низкосимметричных фаз RbNbO₃, получающихся из кубической фазы перовскита при конденсации неустойчивых фононов, фаз со структурами 6*H*, 4*H*, 9*R* и 2*H*, а также фазы $P\overline{1}$, получающейся при синтезе при атмосферном давлении (жирным шрифтом выделена энергия наиболее устойчивой фазы)

Фаза	Неустойчивая мода	Энергия, meV	
Pm3m	—	0	
P4/nmm	M'_3	-31.3	
Pmma	X_5	-34.8	
Cmcm	X_5	-38.7	
P4mm	Γ_{15}	-46.5	
Amm2	Γ_{15}	-57.0	
R3m	Γ_{15}	-58.6	
$P\overline{1}$	_	+27.4	
$P6_3/mmc$ (6H)	_	+121.4	
$P6_3/mmc$ (4H)	_	+334.0	
$R\overline{3}m$ (9R)	—	+568.1	
$P6_3/mmc$ (2H)	_	+1752	

Таблица 4. Относительные энергии низкосимметричных фаз RbTaO₃, получающихся из кубической фазы перовскита при конденсации неустойчивых фононов, фаз со структурами 6*H*, 4*H*, 9*R* и 2*H*, а также фазы C2/m, получающейся при синтезе при атмосферном давлении (жирным шрифтом выделена энергия наиболее устойчивой фазы)

Фаза	Неустойчивая мода	Энергия, meV	
Pm3m P4mm Amm2 R3m	- Γ_{15} Γ_{15} Γ_{15}	0 -1.80 -1.87 - 1.90	
$C2/mP6_3/mmc (6H)P6_3/mmc (4H)R\overline{3}m (9R)P6_3/mmc (2H)$		+38.5 +113.3 +352.2 +589.0 +1839	

Рис. 2. Фононный спектр RbTaO₃ в кубической фазе *Pm3m*. Цифры около кривых указывают симметрию неустойчивых мод.

ниобате рубидия со структурой перовскита предполагается та же последовательность фаз, что и в BaTiO₃ [6], параметры решетки и координаты атомов в двух других сегнетоэлектрических фазах также представлены в этой таблице. Расчетные параметры решетки для орторомбического RbNbO₃ хорошо согласуются с экспериментальными данными, полученными при 300 K (a = 3.9965 Å, b = 5.8360 Å, c = 5.8698 Å [6]).

В RbTaO₃ частота колебаний неустойчивого фонона Г₁₅ в фононном спектре (рис. 2) и выигрыш энергии при переходе в сегнетоэлектрические фазы (табл. 4) достаточно малы, поэтому необходимо дополнительно проверить устойчивость сегнетоэлектрического искажения относительно нулевых колебаний решетки. Для этого мы воспользовались методикой, предложенной в [20]. Выигрыш энергии при переходе из фазы Рт3т в фазу R3m равен $E_0 = 1.90$ meV, а частота неустойчивого фонона в точке Γ в фазе $Pm3m v = 84 \, \text{cm}^{-1}$. Поскольку отношение энергий $h\nu/E_0 \approx 5.51$ превышает критическое значение 2.419, полученное в работе [20], энергия наинизшего колебательного уровня в двухъямном потенциале оказывается выше верхней точки энергетического барьера, разделяющего потенциальные ямы, и сегнетоэлектрическое упорядочение разрушается нулевыми колебаниями. Поэтому единственной устойчивой фазой RbTaO₃ со структурой перовскита является кубическая фаза. Расчетный параметр решетки этой фазы приведен в табл. 2; его значение удовлетворительно согласуется с данными эксперимента (a = 4.035 Å [6]).

Известно, что для перовскитов ABO_3 с фактором толерантности t > 1, к которым относятся исследуемые соединения, характерно появление фаз со структурами гексагонального BaNiO₃ (политип 2*H*), гексагонального BaMnO₃ (политип 4*H*), гексагонального BaTiO₃ (политип 6*H*) и ромбоэдрического BaRuO₃ (политип 9*R*). Наши расчеты показали, что для обоих соединений рубидия энергия этих фаз заметно выше энергии кубической фазы (табл. 3 и 4). Эти результаты объясняют,

Таблица 5. Ненулевые компоненты тензора пьезоэлектрических коэффициентов $e_{i\nu}$ (в C/m²), а также тензоров квадратичной нелинейно-оптической восприимчивости $d_{i\nu}$ и линейного электрооптического эффекта $r_{i\nu}$ (в pm/V) в ромбоэдрических фазах RbNbO₃, KNbO₃, LiNbO₃ и BaTiO₃

Коэффициент	RbNbO ₃	KNbO ₃	LiNbO ₃	BaTiO ₃
<i>e</i> ₁₁	-3.0	-4.2	-2.4	-4.0
e ₁₅	+4.8	+6.8	+3.5	+7.3
<i>e</i> ₃₁	+2.4	+2.3	+0.1	+3.5
<i>e</i> 33	+2.9	+3.1	+1.1	+5.1
d_{11}	+12.7	+11.9	+2.3	+4.4
d_{15}	-23.6	-21.9	-11.5	-16.1
d_{31}	-23.6	-21.9	-11.5	-16.1
d_{33}	-29.4	-27.3	-37.4	-31.1
<i>r</i> ₁₁	-12.8	-17.7	-5.6	-13.7
<i>r</i> ₁₅	+27.6	+39.2	+17.1	+43.3
r ₃₁	+18.0	+23.9	+10.1	+25.3
<i>r</i> 33	+30.1	+40.6	+27.3	+48.9

почему при нагревании RbNbO₃ не удавалось наблюдать переход в гексагональную структуру [6], аналогичный происходящему в BaTiO₃. Высокие энергии этих фаз и, в особенности, фазы 2H, по-видимому, связаны с большим размером и сильным электростатическим отталкиванием ионов Nb⁵⁺, которые в этих структурах располагаются в октаэдрах, объединенных общей гранью.

Рассмотрим некоторые свойства сегнетоэлектрического RbNbO₃. Расчетная поляризация в RbNbO₃ равна 0.46 C/m² в фазе Р4тт и 0.50 C/m² в фазах Атт2 и R3m; эти значения несколько превышают расчетную поляризацию в тех же фазах KNbO₃ (0.37, 0.42 и 0.42 C/m² соответственно). Тензор статической диэлектрической проницаемости в фазе R3m характеризуется двумя собственными значениями: $\epsilon_{\parallel}^0 = 21.1$ и $\epsilon_{\perp}^0 = 35.8;$ собственные значения тензора высокочастотной диэлектрической проницаемости равны $\epsilon_{\parallel}^{\infty}=5.31$ и $\epsilon_{\perp}^{\infty}=5.91.$ В кубической фазе упругие модули равны $C_{11} = 412$ GPa, $C_{12} = 84$ GPa, $C_{44} = 102$ GPa; модуль всестороннего сжатия равен B = 193.5 GPa. Ненулевые компоненты тензоров пьезоэлектрических коэффициентов еіи, квадратичной нелинейно-оптической восприимчивости d_{iv} и линейного электрооптического эффекта (эффекта Поккельса) r_{iv} в фазе R3m ниобата рубидия сравниваются с соответствующими характеристиками других ромбоэдрических сегнетоэлектриков в табл. 5. Видно, что в ромбоэдрическом RbNbO₃ (как и в других его полярных фазах) пьезоэлектрические модули несколько ниже, чем в KNbO₃. Значения нелинейно-оптических коэффициентов в RbNbO₃ превышают соответствующие значения в $KNbO_3$, хотя по величине d_{33} ниобат рубидия немного не дотягивает до ниобата лития. По электрооптическим свойствам ромбоэдрический RbNbO3 немного уступает KNbO₃, но тем не менее заметно превосходит ниобат лития. В орторомбической фазе RbNbO3 (фазе, устойчивой при 300 К) нелинейно-оптические свойства не

В кубическом RbTaO₃ высокочастотная диэлектрическая проницаемость равна $\epsilon_{\infty} = 5.58$. Статическая диэлектрическая проницаемость может быть оценена только в ромбоэдрической фазе и равна ~ 140 . Упругие модули в кубическом танталате рубидия равны $C_{11} = 466$ GPa, $C_{12} = 91.5$ GPa, $C_{44} = 120$ GPa; B = 216 GPa. Пьезоэлектрические модули, квадратичная нелинейно-оптическая восприимчивость и электрооптические коэффициенты в кубической фазе равны нулю.

Неожиданным результатом расчетов, проведенных в настоящей работе, оказалось то, что в обоих исследованных соединениях фазы $P\overline{1}$ и C2/m, получающиеся при синтезе при атмосферном давлении, являются метастабильными. Этот результат, по-видимому, связан с эффективным сжатием решетки, всегда присутствующим в расчетах с использованием приближения LDA. То, что удельный объем фазы РтЗт заметно меньше удельного объема фаз $P\overline{1}$, C2/m, $P6_3/mmc$ и $R\overline{3}m$, позволяет ожидать, что под давлением наиболее устойчивой фазой будет фаза кубического перовскита. Для оценки максимальной величины этого давления были рассчитаны параметры решетки и положения атомов в структуре С2/т танталата рубидия при различных давлениях и было показано, что объем ячейки, равный экспериментальному при 300 К, получается при изотропном давлении -24.7 kbar. При этом энтальпия фазы C2/m становится на $\sim 230 \text{ meV}$ ниже энтальпии фазы *Pm3m*, т.е. приходит в соответствие с экспериментальными данными. При указанном выше отрицательном давлении отношение hv/E_0 , определяющее устойчивость сегнетоэлектрической фазы в RbTaO₃, становится равным 1.90, т.е. чуть меньше порогового значения 2.419. Однако если учесть, что найденная выше величина отрицательного давления явно завышена, поскольку она включает эффект теплового расширения, можно предположить, что и с учетом систематической ошибки в определении параметра решетки в приближении LDA танталат рубидия будет оставаться кубическим вплоть до самых низких температур.

Наш вывод о том, что RbTaO₃ является виртуальным сегнетоэлектриком, в котором сегнетоэлектрическое упорядочение разрушено нулевыми колебаниями решетки, согласуется с данными [6], но противоречит данным работы [1], в которой указывается на фазовый переход около 520 К. Мы предполагаем, что из-за невысокой температуры перитектической реакции в образцах танталата рубидия, обсуждаемых в [1], могли возникать обогащенные танталом фазы (в частности, фаза со структурой вольфрамовой бронзы [8]), которые и могли приводить к наблюдаемой аномалии.

В работе [11] обсуждалась возможность использования различных оксидов со структурой перовскита, в частности RbNbO₃ и RbTaO₃, для создания фотоэлектрохимических ячеек, активируемых солнечным излучением. Мы провели расчеты ширины запрещенной зоны E_g в этих соединениях как в рамках использованного в настоящей работе приближения LDA, так и с учетом многочастичных эффектов в рамках GW-приближения (техника последних расчетов была аналогична технике, применявшейся нами в [21-23]). В приближении LDA в кубическом RbNbO3 без учета спин-орбитального взаимодействия $E_{g}^{\text{LDA}} = 1.275 \text{ eV};$ в фазах P4mm, Amm2 и R3m значения E_g^{LDA} составляют 1.314, 1.869 и 2.137 eV соответственно. В кубическом RbTaO3 без учета спинорбитального взаимодействия $E_g^{\text{LDA}} = 2.175 \text{ eV}$. Экстремумы валентной зоны в кубической фазе обоих соединений располагаются в точке R, а экстремумы зоны проводимости — в точке Г зоны Бриллюэна. Расчеты с помощью методики [23] дают величину спинорбитального расщепления края зоны проводимости, равную $\Delta_{SO} = 0.111 \text{ eV}$ для RbNbO₃ и $\Delta_{SO} = 0.400 \text{ eV}$ для RbTaO₃; спин-орбитальное расщепление края валентной зоны отсутствует. После коррекции на величину сдвига края зоны проводимости ($\Delta_{SO}/3$) значения E_g с учетом спин-орбитального взаимодействия в приближении LDA составляют 1.238, 1.277, 1.832, 2.100 и 2.042 eV в четырех фазах RbNbO₃ и в кубическом RbTaO₃ соответственно.

В приближении *GW* ширина запрещенной зоны без учета спин-орбитального взаимодействия составляет $E_g^{GW} = 2.403$, 2.616, 3.291 и 3.609 eV соответственно в кубическом, тетрагональном, орторомбическом и ромбоэдрическом RbNbO₃ и 3.302 eV в кубическом RbTaO₃. При учете спин-орбитального взаимодействия эти значения уменьшаются соответственно до 2.366, 2.579, 3.254, 3.572 и 3.169 eV. Найденные значения E_g заметно меньше значений, рассчитанных в [11] для кубических фаз (3.4 eV для RbNbO₃ и 4.3 eV для RbTaO₃).

Ряд авторов, исследовавших ниобат и танталат рубидия, указывает на их чувствительность к присутствию влаги. Безусловно, это может быть серьезным препятствием при практическом использовании этих материалов. Однако хотелось бы отметить, что этими свойствами обладают фазы, полученные при атмосферном давлении и имеющие "рыхлые" структуры, удельный объем которых на 26-28% больше удельного объема фазы перовскита. В работе [8] было высказано предположение, что в действительности речь идет не о гидролизе этих соединений, а об интеркаляции молекул воды в "рыхлую" структуру. Об этом же свидетельствуют возможность получения RbTaO₃ методом гидротермального синтеза [24] и низкая скорость ионного обмена RbTaO₃ в HCl при его деламинации [12]. Из этого следует, что обсуждаемые соединения со структурой перовскита могут быть вполне устойчивы к влаге.

Таким образом, проведенные в настоящей работе расчеты свойств RbNbO₃ и RbTaO₃ и их сравнение со свойствами других сегнетоэлектриков показывают, что ниобат рубидия является интересным сегнетоэлектрическим материалом с высокими нелинейно-оптическими и электрооптическими свойствами, а танталат рубидия является виртуальным сегнетоэлектриком.

Представленные в настоящей работе расчеты были проведены на лабораторном вычислительном кластере (16 ядер).

Список литературы

- Г.А. Смоленский, Н.В. Кожевникова. ДАН СССР 76, 519 (1951).
- [2] H.D. Megaw. Acta Cryst. 5, 739 (1952).
- [3] M. Serafin, R. Hoppe. J. Less-Common Met. 76, 299 (1980).
- [4] M. Serafin, R. Hoppe. Angew. Chem. 90, 387 (1978).
- [5] M. Serafin, R. Hoppe. Z. Anorg. Allg. Chem. 464, 240 (1980).
- [6] J.A. Kafalas. In: Proc. of 5th Mater. Res. Symp. National
- Bureau of Standards Special Publ. (1972). N 364. P. 287–292.
- [7] A. Reisman, F. Holtzberg. J. Phys. Chem. **64**, 748 (1960).
- [8] H. Brusset, H. Gillier-Pandraud, M. Chubb, R. Mahé. Mater. Res. Bull. 11, 299 (1976).
- [9] D.F. O'Kane, G. Burns, E.A. Giess, B.A. Scott, A.W. Smith, B. Olson. J. Electrochem. Soc. 116, 1555 (1969).
- [10] G. Burns, E.A. Giess, D.F. O'Kane. New ferroelectric materials and process of preparation. U.S. Patent No 3,640,865 (1972).
- [11] I.E. Castelli, D.D. Landis, K.S. Thygesen, S. Dahl, I. Chorkendorff, T.F. Jaramillo, K.W. Jacobsen. Energy Environ. Sci. 5, 9034 (2012).
- [12] K. Fukuda, I. Nakai, Y. Ebina, R. Ma, T. Sasaki. Inorg. Chem. 46, 4787 (2007).
- [13] The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated and other contributions; http://www.abinit.org/
- [14] А.И. Лебедев. ФТТ **52**, 1351 (2010).
- [15] A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos. Phys. Rev. B 41, 1227 (1990).
- [16] Opium pseudopotential generation project; http://opium.sourceforge.net/
- [17] А.И. Лебедев. ФТТ 51, 341 (2009).
- [18] M. Veithen, X. Gonze, P. Ghosez. Phys. Rev. B 71, 125107 (2005).
- [19] R. Yu, H. Krakauer. Phys. Rev. Lett. 74, 4067 (1995).
- [20] А.И. Лебедев. ФТТ 51, 757 (2009).
- [21] А.И. Лебедев. ФТТ 54, 1559 (2012).
- [22] A.I. Lebedev. J. Alloys Comp. 580, 487 (2013).
- [23] А.И. Лебедев. ФТТ 56, 1000 (2014).
- [24] D. Gompel, M.N. Tahir, M. Panthofer, E. Mugnaioli, R. Brandscheid, U. Kolb, W. Tremel. J. Mater. Chem. A 2, 8033 (2014).