13

Структурные трансформации в гомо- и гетерогенных системах на основе GaAs, обусловленные СВЧ-облучением

© Н.С. Заяц, Р.В. Конакова, В.В. Миленин, Г.В. Миленин, Р.А. Редько, С.Н. Редько

Институт физики полупроводников им. В.Е. Лашкарева НАН Украины, 03028 Киев, Украина e-mail: redko.rom@gmail.com

(Поступило в Редакцию 16 января 2014 г. В окончательной редакции 9 июля 2014 г.)

Проведены исследования влияния CBЧ-обработки (f = 2.45 GHz, 1.5 W/cm², t = 1, 2 min) на спектры оптического отражения и фотолюминесценции эпитаксиальных структур $n-n^+$ -GaAs и Au- $n-n^+$ -GaAs. Получено, что кратковременная CBЧ-обработка приводит к длинновременным немонотонным изменениям изучаемых характеристик, что может быть следствием модификации структуры приповерхностных областей эпитаксиальных пленок. Предложено объяснение длинновременых изменений оптических спектров исследуемых объектов после микроволновой обработки.

Введение

Изменение микроструктуры, химического и фазового составов полупроводниковых материалов при воздействии на них электромагнитных полей является одним из перспективных направлений модификации их физических характеристик. До последнего времени основные исследования в этом направлении были выполнены при использовании статических или сравнительно низкочастотных полей. Изучение свойств полупроводниковых материалов и приборных структур на их основе в электромагнитных полях сверхвысокочастотного (СВЧ) диапазона носят ограниченный характер и в основном относятся к исследованиям микроэлектронных приборов различных типов [1]. Было показано, что при воздействии мощных высокочастотных электромагнитных полей на полупроводниковые приборные структуры возникают электрические и тепловые пробои, эффекты диффузионного перемешивания и химические реакции на межфазных границах, что в конечном счете приводит к деградации микроэлектронных изделий.

Однако в ряде случаев при определенных режимах облучения наблюдалось повышение структурной однородности и устранения нежелательных дефектов в полупроводниковых материалах и изготовленных на их основе приборных структурах [2–5]. Эти эффекты связывали со стимулированными СВЧ-облучением процессами геттерирования и перестройки структурно-примесных дефектов в полупроводниках. Причем процессы структурной релаксации продолжались и после прекращения СВЧвоздействия [6]. Механизмы обнаруженных эффектов не ясны и не могут быть объяснены только с позиций термического действия электромагнитного поля, так как в вышеотмеченных исследованиях не наблюдалось существенного повышения температуры исследуемых материалов при СВЧ-обработках.

В настоящей работе приведены исследования оптических характеристик полупроводниковых структур на основе GaAs с целью выявления особенностей трансформации дефектов установленной природы, обусловленных нетепловым действием СВЧ-излучения.

1. Методика эксперимента

Исследования были проведены на эпитаксиальных структурах $n-n^+$ -GaAs с толщиной эпитаксиального *n*-слоя ~ 3μ и n^+ -подложки $300\,\mu$, легированных Те. Концентрации свободных носителей в эпитаксиальной пленке и подложке составляли ~ $5 \cdot 10^{16}$ cm⁻³ и ~ $1 \cdot 10^{18}$ cm⁻³ соответственно. На часть структур при температуре ~ 250° С электронно-лучевым испарением в вакууме 10^{-4} Ра напылялась тонкая пленка золота, толщина которой составляла ~ 10 nm.

Изучались спектры фотолюминесценции при 77 К и оптического отражения при комнатной температуре. Автоматизированная экспериментальная установка для исследований спектров ФЛ позволяла проводить измерения в спектральном интервале 0.6-2.0 eV при возбуждении светом с $h\nu \ge 2 \text{ eV}$. Коэффициент поглощения света при заданной энергии фотона составлял 10^5 cm^{-1} [7].

Спектральные зависимости коэффициентов отражения были измерены на модернизированном спектрометре КСВУ-23 с приставкой на отражение ИПО-76 в диапазоне 800–1150 nm.

Обработка образцов проводилась на воздухе в рабочей камере CBЧ-генератора на частоте 2.45 GHz, при выходной мощности 1.5 W/cm². Длительность облучения составляла 60 и 120 s. Для предотвращения нагрева образца набор дозы облучения проводился ступенчато, время облучения 3 s, интервалы между обработками 5 s.

Спектральные зависимости коэффициента отражения исследовались на структурах $n-n^+$ -GaAs. Спектры ФЛ измерялись на структурах Au- $n-n^+$ -GaAs при возбуждении как со стороны тонкого металлического слоя, так и тыльной стороны сильно легированной подложки GaAs. Спектральные зависимости ФЛ и природа полос излучательной рекомбинации анализировались с учетом данных исследований, систематизированных в [7].

2. Результаты экспериментальных исследований и их обсуждение

2.1. Влияние СВЧ-облучения на оптические свойства эпитаксиальных структур $n-n^+$ -GaAs

На рис. 1 представлены спектральные зависимости коэффициента отражения (R) до и после СВЧ-облучения в течение 1 min. Спектральная зависимость R имеет типичный вид для пленки GaAs, выращенной на подложке GaAs с отличными от пленки оптическими постоянными. Отметим осциллирующий характер величины R в области спектра за краем собственного поглощения. Наблюдаемая интерференционная картина возникает при отражении падающего излучения от поверхности эпитаксиальной пленки и ниже лежащих слоев (в том числе переходной области), а следовательно, ее параметры (плотность и размах экстремумов, контрастность интерференционной картины) отражают степень структурно-морфологической однородности отражающих слоев, формирующих результирующий спектр отражения.

На начальном этапе после выключения СВЧ-воздействия, существенных изменений в спектральных зависимостях R не наблюдалось. Наиболее заметные изменения в оптических спектрах эпитаксиальных структур проявляются в эффектах последействия после выключения СВЧ-облучения. Они проявляются как в изменении коэффициента отражения, так и вида интерференционной картины. Было обнаружено (рис. 1), что стимулированные СВЧ-обработкой перестройки микроструктуры эпитаксиальных слоев завершаются за времена выдержки ~ 30 min после выключения электромагнитного излу-

0.6 still 0.5 0.4 900 1000 1100 Wavelength, nm

Рис. 1. Спектры оптического отражения эпитаксиальных структур $n-n^+$ арсенида галлия до и после микроволновой обработки: I — исходный, 2 — сразу после СВЧ-обработки, 3 — через 30 min, 4 — через 1.5 h после обработки и через 24 h.

Значения d, полученные из выражения (1)

Толщина пленки, µ	Время, h
5	Исходный
7	0.1
3	1.5
3	24

чения, и в дальнейшем при больших временах выдержки образцов, ни величина R, ни вид интерференционной картины не изменялись.

Анализ спектральных кривых отражения позволяет определить эффективную толщину (d) эпитаксиального слоя, используя уравнение [8]:

$$d = \frac{Mn\lambda_1\lambda_2(\lambda_2 - \lambda_1)}{2},\tag{1}$$

где M — число осцилляций между двумя интерференционными экстремумами, соответствующими длинам волн λ_1 и λ_2 , n — показатель преломления GaAs, равный 3.4 [9]. Результаты расчетов d для различных временных интервалов после СВЧ-обработки представлены в таблице.

На основании полученных результатов можно констатировать, что толщина пленки по мере выдержки структуры после СВЧ-обработки уменьшается. Этот неожиданный результат, по-видимому, указывает на то, что предположение о резкой отражающей границе пленкаподложка в реальных эпитаксиальных структурах не реализуется, т.е. на границах раздела формируются протяженные переходные области, отличающиеся по своему химическому составу и структуре от контактирующих слоев. В результате вид интерференционной картины определяется двумя факторами: толщиной эпитаксиального слоя и параметрами переходной области на границе раздела. Для больших времен выдержки спектр отражения приобретает форму, соответствующую однослойной модели интерференции (влиянием переходных областей можно пренебречь), и спектральное положение экстремумов позволяет оценить "истинную" толщину эпитаксиальной пленки $\sim 3 \, \mu$.

Таким образом, можно допустить, что в результате СВЧ-облучения изменяются параметры переходной области, а следовательно, и условие отражения света на межфазной границе. Этот вывод подтверждает и работа [10], в которой отмечалось, что кратковременные СВЧ-обработки индуцируют долговременные процессы перераспределения дефектов и примесей, особенно интенсивно протекающих в областях с высокой степенью структурных нарушений (вблизи поверхностей кристаллов и границ раздела фаз).

2.2. Влияние СВЧ-излучения на спектры фотолюминесценции приконтактных областей структур Au–*n*–*n*⁺-GaAs

В разд. 2.1 было показано, что воздействие микроволнового излучения изменяет параметры межфазной границы гомоэпитаксиальной структуры $n-n^+$ -GaAs. Можно допустить, что в композиционно неоднородных термодинамически неравновесных структурах металл-полупроводник (МП) эффекты структурной эволюции, индуцированные микроволновыми полями на межфазных границах МП, также должны проявляться.

В качестве индикатора изменений дефектной структуры приконтактных областей после СВЧ-обработки были использованы спектральные зависимости фотолюминесценции, возбуждаемые сильно поглощающим светом. Спектры ФЛ снимались как со стороны тонкого металлизированного слоя, так и с тыльной стороны сильно легированной подложки.

Спектры ФЛ исходных образцов, измеренные со стороны металлизации близки по своей структуре к спектрам ФЛ эпитаксиальных слоев GaAs [11] и находились в полном соответствии с ранее проведенными исследованиями ФЛ на таких же объектах, представленными в [12]. В спектрах ФЛ эпитаксиальных пленок наблюдались: краевая полоса с $hv_{\rm max} \approx 1.52 \, {\rm eV}$ и широкие полосы, обусловленные локальными состояниями в запрещенной зоне с $hv_{\rm max} \approx 1.02$ и 1.21 eV. Будем, как и в [12], эти полосы связывать с излучательной рекомбинацией на донорно-акцепторных (ДА) парах, образованных вакансиями галлия и примесями.

С тыльной стороны подложки в области примесной $\Phi \Pi$ наблюдалось две полосы с $hv_{\rm max} \approx 1.06$ и 1.27 eV, природа которых обусловлена комплексами, возникающими при взаимодействии структурных дефектов с примесями [13]. Краевая полоса излучения не наблюдалась, что, по-видимому, связано с большой дефектностью приповерхностного слоя вследствии особенностей технологии приготовления подложек для эпитаксиального роста, так как поверхность тыльной стороны подложек менее тщательно обрабатывается, чем фронтальная (ростовая), и содержит высокий уровень структурных нарушений, выполняющих роль внутреннего геттера для структурных дефектов и примесей в ростовых процессах.

Вначале рассмотрим какие изменения происходят в структуре спектров ФЛ эпитаксиальной пленки после СВЧ-обработки различной длительности. Было обнаружено, что СВЧ-обработка не приводит к возникновению новых центров излучательной рекомбинации, но влияет на интенсивности как краевой, так и примесных полос, исходно существующих в кристалле (рис. 2). Эти изменения наблюдаются через определенный интервал времени (несколько минут) после СВЧ-обработки и носят длинновременной осциллирующий характер. Отметим селективность воздействия СВЧ-поля на примесные полосы (наиболее сильно изменяется полоса

Рис. 2. Зависимости интенсивности полос ФЛ Au–GaAs от времени выдержки образцов.

с $hv_{\text{max}} \approx 1.21 \,\text{eV}$, природу которой связывают с ДА парами V_{Ga} - D_{As} [7]).

Изменение интенсивностей примесных полос сопровождается небольшими частотными смещениями их максимумов на начальном этапе длинновременной релаксации (рис. 3).

Повторная экспозиция в СВЧ-поле (рис. 2) приводит к качественно таким же длинновременным изменениям интенсивности полос излучательной рекомбинации, как и первичная. Отметим некоторое возрастание интенсивностей краевой и примесной ($hv_{max} \approx 1.21 \text{ eV}$) полос и ослабление полосы с $hv_{max} \approx 1.02 \text{ eV}$, связанной с неконтролируемой примесью меди [7]. При этом наблюдается немонотонный сдвиг частотного положения максимумов примесных полос ФЛ (рис. 3).

Таким образом, кратковременные СВЧ-обработки приводят к длиновременным (в течении нескольких суток) изменениям структурных характеристик приповерхностных областей эпитаксиальных пленок. До сих пор не удалось предложить всесторонне обоснован-

Рис. 3. Изменение частотного положения пиков ФЛ после прекращения СВЧ-обработки.

ную модель наблюдаемого явления. Можно допустить, что причины наблюдаемых структурных трансформаций связаны с тем, что в процессе роста эпитаксиальных слоев некоторая часть примесей и собственных дефектов находятся в состоянии, не отвечающем термодинамическому равновесию. СВЧ-обработка является фактором, способствующим структурно-примесным перестройкам за счет стимулирования процессов геттерирования и комплексообразования, обусловленных действием СВЧполя на дефектную подсистему кристалла [13,14].

Некоррелированные непропорциональные изменения интенсивности примесных полос указывают на то, что при используемых режимах СВЧ-облучения изменяются каналы как излучательной, так и безызлучательной рекомбинации. Изменения в спектрах ФЛ после повторной экспозиции указывают на то, что энергетические параметры структурных перестроек (энергии распада дефектных комплексов в том числе ДА пар, энергия активации диффузии дефектов и примесей и др.) достаточно высоки, чтобы дефектная структура кристалла отвечала равновесному состоянию после проведенных обработок. Последнее подтверждают и данные исследований, выполненные на подложечном материале (рис. 4, 5).

Рассмотрим более детально особенности влияния СВЧ-обработки на изменение излучательной рекомбинации сильнолегированных подложек. Как и в случае эпитаксиальных пленок, СВЧ-обработка приводит к длинновременной релаксации интенсивности примесных полос после прекращения облучения. Причем рост интенсивности примесных полос носит симбатный характер. На интенсивность близкраевой полосы ($hv_{\rm max} \approx 1.48 \, {\rm eV}$) такая обработка не оказывает существенного влияния, а ее интенсивность значительно слабее, чем в эпитаксиальной пленке.

Симбатное изменение интенсивности примесных полос, скорее всего, является следствием изменений концентрации центров безызлучательной рекомбинации.

Рис. 4. Зависимости интенсивности полос ФЛ положки GaAs от времени выдержки образцов.

Рис. 5. Изменение частотного положения пиков ФЛ положки GaAs после прекращения СВЧ обработки.

Однако изменения потоков рекомбинирующих носителей через локальные центры разной природы непропорционально, что может быть следствием селективного воздействия СВЧ-обработки на эти центры, в частности, усилением комплексообразования структурных дефектов с примесью Сu, геттерируемой механически нарушенным приповерхностным слоем тыльной стороны подложки.

Наблюдаемые небольшие сдвиги максимумов полос излучательной рекомбинации (рис. 4) в рассматриваемом случае можно связать с различными расстояниями между донорами и акцепторами в комплексах, а также с возможными не эквивалентными расположениями доноров и акцепторов в решетке из-за наличия в их ближайшем окружении повышенной концентрации точечных и протяженных дефектов, обусловленных действием СВЧоблучения.

После повторной СВЧ-обработки длинновременные изменения интенсивности полос ФЛ отличны от первичных (рис. 3). Во-первых, наблюдается скачкообразное симбатное изменение интенсивности примесных полос при временах выдержки образцов \sim 7 day. Во-вторых, сам процесс длинновременной релаксации носит ярко выраженный осциллирующий характер. Кроме того, более четко проявляется полоса с $hv_{max} \approx 1.48$ eV.

Таким образом, можно допустить, что в результате СВЧ-обработки в приповерхностных областях полупроводников устанавливается высокий уровень пересыщения по примесям и неравновесным точечным структурным дефектам. Концентрация дефектов и их распределение зависят от исходного структурного состояния приповерхностных областей и, следовательно, могут существенно отличаться в эпитаксиальном слое и подложке, что приводит к отличиям в спектрах ФЛ. Со временем концентрация избыточных дефектов релаксирует вследствие захвата стоками или объединения в комплексы. Учитывая, что ход дефектных и примесных перестроек, как это отмечалось в [15], обеспечивается диффузионными процессами, а также процессами прямо-

Журнал технической физики, 2015, том 85, вып. 3

го взаимодействия со структурными дефектами, интенсивности полос ФЛ после выключения СВЧ-поля изменяются на протяжении длительного времени (рис. 2, 3).

Для качественного объяснения длинновременной релаксации рассмотрим следующую упрощенную модель. Проведенные экспериментальные исследования показали, что СВЧ-облучение не приводит к возникновению новых центров излучательной рекомбинации, а лишь изменяет концентрацию исходно существующих. Причем изменение их концентрации сопряжено с изменением центров безызлучательной рекомбинации.

Если допустить, что трансформация дефектно-примесной структуры полупроводника после выключения СВЧ-излучения изменяет скорости излучательной и безызлучательной рекомбинаций таким образом, что увеличение вклада излучательной рекомбинации происходит в основном за счет уменьшения эффективности безызлучательного канала, и наоборот, то должен иметь место периодический незатухающий процесс изменения концентрации центров как излучательной, так и безызлучательной рекомбинаций. Однако, как следует из экспериментальных данных, переход системы к квазиравновесному (стационарному) состоянию происходит посредством затухающих колебаний, т.е. временные изменения концентрации центров рекомбинации представляют собой непериодические колебания и могут быть описаны дифференциальным уравнением колебаний с диссипативным членом [15]. Для предельных значений параметра затухания (величина, обратная времени релаксации), обусловленного изменениями концентрации центров безызлучательной рекомбинации как за счет геттерирования, так и комплексообразования примесей со структурными точечными дефектами, изменение концентрации безызлучательных центров могут быть [15]:

a) при больших временах релаксации затухающими непериодическими;

б) при малых временах релаксации имеет место асимптотическое апериодическое затухание к исходному стационарному состоянию.

Так как временные изменения интенсивностей примесных полос зависят не только от концентрации центров излучательной рекомбинации, но и от концентрации центров безызлучательной рекомбинации, то затухающий колебательный характер изменения последних приведет к осциллирующим изменениям примесных полос ФЛ, что и наблюдается в эксперименте.

Заключение

Таким образом, выполненные оптические исследования позволяют сделать вывод, что СВЧ-излучение приводит к изменениям примесно-дефектного состава приповерхностных областей и межфазных границ, которые носят долговременный осциллирующий характер. Наблюдаемые структурные изменения, как отмечалось в [16], могут быть следствием проявления специфического нетермического механизма активации процессов диффузии, вызванных СВЧ-полем. Как отмечалось в [16], СВЧ-воздействие на кристалл создает дополнительную движущую силу, увеличивающую массоперенос в кристалле, что приводит к накоплению структурных дефектов и примесей в приграничных областях кристалла. Это состояние неравновесно и дальнейшая его эволюция определяется взаимодействием дефектов и примесей друг с другом и поглощением на стоках.

Список литературы

- [1] Антитин В.В., Годовицин В.А., Громов Д.В. и др. // Зарубежная радиоэлектроника. 1995. Вып. 1. С. 38–53.
- [2] Ермолович И.Б., Миленин Г.В., Миленин В.В. и др. // ЖТФ. 2007. Т. 77. Вып. 9. С. 71–75.
- [3] Беляев А.А., Беляев А.Е., Ермолович И.Б. и др. // ЖТФ. 1998. Т. 68. Вып. 12. С. 49–53.
- [4] Беляев А.Е., Болтовец Н.С., Иванов В.Н. и др. // Изв. вузов. Физика. 2011. Вып. 1/2. С. 74–77.
- [5] Беляев А.Е., Саченко А.В., Болтовец Н.С. и др. // ФТП. 2012. Т. 46. Вып. 4. С. 358–561.
- [6] Belyaev A.E., Venger E.F., Ermolovich I.B. and all. Effect of microwave and Laser radiations on the parameters of Semiconductor Structures. Kiev: IHTac, 2002. 192 p.
- [7] Гавриленко В.М., Грехов А.М., Корбутяк Д.В. и др. Оптические свойства полупроводников. Справочник. Киев: Наукова думка, 1987. 607 с.
- [8] Кларк А. Оптические свойства поликристаллических полупроводниковых пленок / В кн. Тонкие поликристаллические и аморфные пленки. Под ред. А. Казмерски. М.: Мир, 1983. 304 с.
- [9] Шуберт Ф.Е. Светодиоды. 2-е издание. М.: Физматлит, 2008. 496 с. / Пер. с англ.: F.E. Schubert, Light-Emitting Diodes. (Cambridge University Press, 2ed. 2006).
- [10] Rybakov K.I., Semenov V.E. // Phys. Rev. B. 1994. Vol. 49. P. 64–68.
- [11] Алфёров Ж.И., Гарбузов Д.З., Жиляев Ю.В., Морозов Е.П., Портной Е.Л. // ФТП. 1968. Т. 2. Вып. 10. С. 1441–1447.
- [12] Ермолович И.Б., Миленин В.В., Конакова Р.В. и др. // ФТП. 1997. Т. 31. Вып. 4. С. 503–507.
- [13] Bykov Yu.V., Rybakov K.I., Semenov V.E. // J. Phys. D.: Appl. Phys. 2001. Vol. 34. P. R55–R75.
- [14] Быков Ю.В., Еремеев А.Г., Пашков В.И., Перевощиков В.А., Скупов В.А. Геттерирование примесей и дефектов в кремнии при обработке в СВЧ-поле. Деп. ВИНИТИ. 1991. № 2322–1931. С. 12.
- [15] *Быков Ю.В., Еремеев А.Г., Жарова Н.А.* и др. // Изв. вузов. Радиофизика. 2003. Т. XLVI. Вып. 8–9. С. 836–843.
- [16] Автореф. канд. дис. Рыбаков К.И. Эффекты воздействия электромагнитного поля в процессах высокотемпературной микроволновой обработки материалов. Нижний Новгород. 2013. 37 с.