05,12

Особенности поведения электродуговых наночастиц CuO в магнитном поле

© А.В. Ушаков^{1,2}, И.В. Карпов³, А.А. Лепешев^{1,3}, М.И. Петров³, Л.Ю. Федоров¹

¹ Сибирский федеральный университет, Красноярск, Россия

² Сибирский государственный аэрокосмический университет им. акад. М.Ф. Решетнева,

Красноярск, Россия

³Красноярский научный центр СО РАН,

Красноярск, Россия

E-mail: sfu-unesco@mail.ru

(Поступила в Редакцию 20 октября 2014 г.)

Изучены температурные и временные зависимости намагниченности наночастиц оксида меди размером 8, 13 и 18 nm. Выявлены особенности поведения наночастиц CuO, полученных в результате вакуумного плазменно-дугового синтеза, по сравнению с другими антиферромагнитными частицами. Показано, что бифуркация кривых намагничивания при охлаждении в нулевом (ZFC) и ненулевом (FC) магнитном поле происходит выше температуры Нееля, а обычный пик кривой намагниченности в режиме ZFC отсутствует. Обсуждаются вопросы, связанные с неравновесным поведением полученных наночастиц CuO.

Работа выполнена в рамках государственного задания Министерства образования и науки РФ Сибирскому федеральному университету на выполнение НИР в 2014 г. (задание № 11.370.2014/К).

1. Введение

В последние несколько десятилетий магнетизм нанодисперсных систем является одним из наиболее приоритетных направлений исследований в связи с возможностью многочисленных технологических приложений, а также объяснением некоторых свойств объемных материалов [1]. Магнитные свойства наночастиц (в отличие от свойств макрочастиц) определяются в основном поверхностным распределением спинов. Обычно такие системы обнаруживают неравновесное поведение при низких температурах. В частности, наблюдаются бифуркация восприимчивости в режимах охлаждения в магнитном поле (FC) и без поля (ZFC), аномальная релаксация намагниченности, эффект "памяти" [2-4]. Согласно проведенным исследованиям, такое неравновесное поведение обусловлено главным образом тремя механизмами. Первый — суперпарамагнетизм системы невзаимодействующих однодоменных наночастиц обусловлен анизотропией (анизотропия формы, кристаллографическая анизотропия и т.п.) [1,2,5,6]. Второй неравновесное взаимодействие наносистем — может быть описан в модели суперспинового стекла, возникающего в результате фрустрации, вызванной конкурентным дипольным взаимодействием соседних частиц в сочетании со случайным распределением частиц и ориентации осей анизотропии [1-3,5]. Третий механизм основан на поведении спинового стекла, возникающего из-за флуктуационных неоднородностей спинов на поверхности наночастиц, замороженных при быстром охлаждении [7,8].

Монооксиды переходных металлов, такие как NiO, MnO, CoO, CuO, являются антиферромагнетиками, а

наночастицы находятся в суперпарамагнитном состоянии или состоянии спинового стекла [8,9]. Оксид меди (CuO) отличается от других переходных монооксидов металлов, и его магнетизм является наименее изученным среди них.

Объемный CuO привлек внимание исследователей благодаря его структурному сходству с высокотемпературным сверхпроводником. В [10,11] методом рассеяния нейтронов, а также с помощью исследования удельной теплоемкости и магнитной восприимчивости было показано, что переход из несоизмеримого в соизмеримое антиферромагнитное состояние происходит при 213 К. В [12] было обнаружено, что магнитная восприимчивость имеет широкий максимум при температуре 520 К. Такое поведение объясняется проявлением квазиодномерной природы CuO выше температуры Нееля [13]. CuO может находиться в спин-жидком состоянии выше температуры Нееля, где спины динамически коррелированы на расстоянии в несколько параметров решетки. Для низкотемпературной восприимчивости CuO были получены разнообразные результаты [14], что объяснялось наличием парамагнитных дефектов, таких как кислородные вакансии. В [15] изучалось обменное взаимодействие в наночастицах CuO различных размеров. Было показано, что частицы размером 6.6 nm проявляют слабый ферромагнетизм ниже 40 К, а частицы размером более 10 нм при снижении температуры Нееля ведут себя почти так же, как объемные. В [16] исследовались бифуркации в режимах FC и ZFC, намагничивание и гистерезис в наночастицах CuO, но систематического изучения таких неравновесных явлений не проводилось.

Целью настоящей работы является изучение неравновесного состояния наночастиц CuO, полученных в плазме дугового разряда низкого давления, в частности исследование магнитной релаксации, эффектов "памяти", суперпарамагнетизма, состояния спинового стекла.

2. Методика эксперимента

Экспериментальная установка и зависимость свойств порошка от условий распыления подробно обсуждаются в [17-19]. Дуговой испаритель имел следующие характеристики: ток разряда 500 А, напряженность продольного магнитного поля на поверхности катода, создаваемого фокусирующей катушкой, составляла 80 Ое. В качестве распыляемого катода была использована медь чистотой 99.99%. Для протекания плазмохимических реакций в камеру после предварительной откачки до остаточного давления 1 mPa напускался газ О2. Для получения образцов оксида меди разной дисперсности испарение производилось при давлениях кислорода 10, 40 и 70 Ра. Перед испарением катод нагревался до 500 К. Порошки оксида меди при указанных давлениях формировались в течение 10 min. Исследование фазового состава полученных образцов проводилось с помощью рентгеновского дифрактометра Advance D8 в монохроматизированном СиКа-излучении. Сканирование проводилось при комнатной температуре в интервале углов $2\theta = 30 - 120^{\circ}$ с шагом 0.04°. Микроструктурные характеристики и параметры элементарной ячейки определялись с помощью полнопрофильного анализа рентгенограмм по методу Ритвельда [20]. Использовался комплекс программ, основанный на модифицированной и исправленной версии программы для уточнения структур по методу Ритвельда DBWS-9006PC [21]. При моделировании профиля рентгенограммы использовалась функция TCH-pseudo-Voigt [22], которая позволяет учитывать влияние на форму пиков приборной составляющей, микронапряжений и размера кристаллитов. Размер кристаллитов составил 18, 13 и 8 nm при давлении кислорода 10, 40 и 70 Ра соответственно. Образцы имели моноклинную фазу CuO с параметрами решетки a = 0.4632 nm, b = 0.3401 nm, c = 0.5045 nm, которые существенно меньше параметра стандартного CuO.

В качестве эталонного использовался спеченный порошок СиО чистотой 99.999%. Морфологический состав исследуемых образцов изучался на просвечивающем электронном микроскопе JEOL JEM-2100. На рис. 1 представлена типичная фотография образца. Порошок представлял собой ансамбль сильно агломерированных частиц неправильной формы размером от 7 до 11 nm. Форма частиц, как правило, была близка к сферической. Исследование гранулометрического состава показало, что полученный нанопорошок имеет логарифмически нормальный характер распределения и средний размер частиц 8 nm. Отклонение от среднего размера составляло не более 30%.

Полевые и температурные зависимости намагниченности измерены на приборе MPMS-XL7 EC (на основе

Рис. 1. Типичная микрофотография ниночастиц CuO, полученных в плазме дугового разряда низкого давления. Давление в плазмохимическом реакторе 10 Ра. Для частиц характерна сильная агломерация.

СКВИД). Измерения намагниченности в режимах FC и ZFC проводились в температурном диапазоне от 10 до 300 К. FC-измерения проводились как в режиме охлаждения, так и в режиме нагревания. Измерение магнитных петель гистерезиса выполнялось при 10, 100 и 300 К. Временная зависимость термоостаточной намагниченности изучалась при температурах 10, 50, 100, 150, 200, 225 и 300 К для всех образцов. Образцы помещались в магнитное поле 1 kOe и охлаждались до необходимой температуры. Затем магнитное поле отключалось и измерялось намагничивание как функция времени. Эффекты "памяти" исследовались в режимах FC и ZFC в поле 250 Oe.

3. Результаты и обсуждение

Исследована температурная зависимость намагниченности образцов в режимах FC и ZFC в поле 100 Ое. Из рис. 2 видно, что бифуркация кривых намагничивания в режимах ZFC и FC начинается выше 300 К для всех образцов наночастиц, кроме эталона. Намагничивание для образца наночастиц размером 18 nm существенно больше, чем для остальных. Причина такого аномального поведения заключается в развитой поверхности наночастиц. Удельная поверхность порошка достигает 400 m²/g. Поэтому зависимость от размера частиц перестает быть линейной [23].

Большинство наночастиц из антиферромагнетиков при температурах ниже точки Нееля проявляет свойство спинового стекла или суперпарамагнетизма с характерным пиком на кривых намагничивания в режиме ZFC и

Рис. 2. FC- и ZFC-температурные зависимости намагничивания эталонного образца (a) и образцов с частицами размером 13 (b), 8 (c) и 18 nm (d).

Рис. 3. Дифференциальная восприимчивость FC- и ZFC-намагничивания для образцов с наночастицами размером 18 nm в различных магнитных полях.

без пиков на FC-кривых [24,25]. На рис. 2 соответствующих пиков ZFC-кривых намагничивания нет.

Хотя в идеальных ферромагнитных или антиферромагнитных материалах максимумы на кривых ZFC-восприимчивости не должны наблюдаться, разупорядоченность и фрустрация, присущая наночастицам (особенно в приповерхностных областях), обычно приводят к нарушению магнитной связи и формированию состояний типа спинового стекла, а также к магнитной кластеризации и т.п. в комбинации с суперпарамагнетизмом [23]. Из рис. 2 видно, что для всех образцов при понижении температуры намагничивание сначала уменьшается, а затем увеличивается, обнаруживая явный минимум. Для уточнения полученных данных были проведены исследования намагничивания в режимах ZFC и FC при различных полях (100, 500, 1000 Ое и 1 Т) в образце с наночастицами размером 18 nm. В [26,27] представлены эмпирические зависимости температуры пиков Т_р ZFC-кривых. У нанопорошков CuO соответствующих пиков ZFC-кривых намагничивания нет. В суперпарамагнитных системах температура бифуркации кривых намагничивания в режимах ZFC и FC $T_{bf} \ge T_p$. Температуру $T_{\rm bf}$ можно интерпретировать как точку начала формирования намагничивания наночастиц для состояний типа спинового стекла и суперпарамагнетизма. Для суперпарамагнитных систем $T_p^{1/2}$ линейно зависит от поля H, в то время как для систем спиновых стекол T_p уменьшается пропорционально H^{2/3}. Для электродуговых однодоменных систем со свойствами суперпарамагнетизма или спинового стекла можно ожидать, что T_{bf} ведет себя так же, как Т_р [13]. Таким образом, в нашем случае вместо T_p можно анализировать поведение $T_{\rm bf}$. На рис. 3 показана дифференциальная восприимчивость χ_{FC-ZFC} для образцов с наночастицами размером 18 nm в различных магнитных полях. Из рисунка следует, что дифференциальная восприимчивость резко уменьшается с увеличением приложенного поля, а характер зависимости не соответствует ни суперпарамагнетизму, ни спиновому стеклу.

В таблице представлены данные измерения коэрцитивной силы и остаточной намагниченности для всех образцов при температурах 10, 100 и 300 К. Образцы показывают гистерезис при температуре как ниже, так и выше температуры Нееля, обусловленный ферромагнитным вкладом нескомпенсированных поверхностных спинов.

Размерный фактор и структурные дефекты могут привести к разрыву обменных связей между ближайшими магнитными ионами и нарушению дальнего магнитного порядка. В наночастицах NiO наблюдалось увеличение восприимчивости при понижении температуры в области $T < T_N$, что связывалось с появлением парамагнитных ионов Ni³⁺ [12]. Однако в работе [15] показано, что присутствие ионов Ni³⁺ играет минимальную роль в формировании магнитных свойств наночастиц NiO и не объясняет аномальные магнитные свойства наночастиц.

Параметры намагниченности образцов при различных температурах

Размер нано- частиц, nm	Темпе- ратура, К	Коэрцитив- ная сила, Ое	Остаточная намагни- ченность, 10 ⁻⁴ emu/g
8	10	74	2.02
8	100	86	2.06
8	300	112	3.2
13	10	64	1.8
13	100	78	2.04
13	300	70	1.2
18	10	56	1.6
18	100	124	3.4
18	300	44	1.02

Рис. 4. Временная зависимость остаточной намагниченности для образцов с размером частиц 8 nm при различных температурах.

На рис. 4 представлены результаты исследования остаточной намагниченности для образцов с размером частиц 8 nm. Необходимо отметить, что остаточная намагниченность фиксировалась для всех образцов. Полученные данные свидетельствуют о ферромагнитной составляющей всех образцов, появляющейся благодаря неравновесному состоянию наночастиц, связанному, скорее всего, с особенностями синтеза. Любые нарушения однородности увеличивают внутреннюю энергию. Магнитная энергия материалов состоит из обменной энергии, энергии анизотропии, магнитоупругой и магнитостатической энергий. Изменения этих вкладов могут заметно менять основное магнитное состояние [2]. При уменьшении размера частиц уменьшается степень симметрии для поверхностных спинов Cu²⁺. В неравновесном состоянии расположение ионов как на поверхности, так и в объеме кристаллитов становится нестрого периодическим. Локальное уменьшение симметрии приводит к увеличению энергии магнитной анизотропии. Внутренние упругие напряжения за счет искажений решетки и увеличения объема элементарной ячейки влияют на магнитоупругую энергию и изменение обменной энергии. Магнитный порядок в CuO определяется конкуренцией различных видов магнитных взаимодействий.

Величина сверхобмена зависит от перекрытия 3*d*- и 2*p*-волновых функций меди и кислорода соответственно, поэтому увеличение расстояния Cu–O–Cu должно привести к ослаблению обменного взаимодействия. Приближение угла связи к 90° может усилить ферромагнитный вклад в сверхобмен. В неравновесном состоянии могут измениться углы связи и расстояния между ближайшими магнитными ионами, от которых сильно зависят обменные параметры. В CuO при смещении ионов кислорода изменяется угол обменной связи Cu–O–Cu, а расстояние между ионами Cu²⁺ сохраняется. При смещении ионов меди изменяются как углы обменной связи, так и расстояния Cu–Cu [28].

В электродуговых наночастицах CuO из-за структурных искажений спонтанный магнитный момент может возникнуть при скосе ферромагнитных подрешеток, при раскомпенсации намагниченностей коллинеарных магнитных подрешеток или при переходе к неколлинеарной магнитной структуре. Наиболее вероятная причина появления ферромагнетизма в образцах CuO — образование вблизи дефектов ферромагнитных кластеров в матрице. Неоднородное магнитное состояние является характерной особенностью магнитных полупроводников. Локальные изменения обменных параметров могут способствовать образованию кластеров со спонтанным магнитным моментом вблизи кислородных вакансий аналогично модели связанных магнитных поляронов [28]. В настоящее время остается открытым вопрос о существовании критического размера наночастиц, при котором резко изменяются свойства объемных материалов. Размер наночастиц не является единственным фактором, влияющим на свойства наноматериалов. В зависимости от технологических условий свойства наночастиц для одного и того же соединения начинают проявляться при разных значениях размера частиц. В случае электродуговых наночастиц этот порог составляет 18 нм.

Таким образом, изменение магнитных свойств образцов электродуговых наночастиц CuO не связано с присутствием парамагнитных ионов Cu²⁺, Cu³⁺, суперпарамагнетизмом и состоянием спинового стекла. Причиной появления аномального магнитного момента и гистерезиса может быть влияние структурных дефектов на локальные обменные взаимодействия и образование ферромагнитных кластеров в матрице.

4. Заключение

Магнитные свойства наночастиц CuO, полученных в плазме дугового разряда низкого давления, полностью отличаются от свойств других антиферромагнитных наночастиц, так как характерный пик на ZFC-кривых намагничивания отсутствует. Бифуркация кривых намагничивания в режимах ZFC и FC начинается выше температуры Нееля для всех образцов наночастиц. Кроме того, наблюдаются петли гистерезиса даже при комнатных температурах. Показано, что эта бифуркация также не связана ни с суперпарамагнетизмом, ни с состоянием спинового стекла. Тем не менее поведение кривых остаточной намагниченности и характерный пик типичны для наночастиц.

Список литературы

- [1] X. Batlle, A. Labarta. J. Phys. D 35, R15 (2002).
- [2] V. Bisht, K.P. Rajeev. J. Phys.: Cond. Matter **22**, 016003 (2010).
- [3] M. Bandyopadhyay, S. Dattagupta. Phys. Rev. B **74**, 214410 (2006).
- [4] R.K. Zheng, H.W. Gu, B. Xu, X.X. Zhang. Phys. Rev. B 72, 014416 (2005).

- [5] L. Néel, Ann. Geophys C.N.R.S. 5, 99 (1949).
- [6] W.F. Brown, Jr. Phys. Rev. 130, 1677 (1963).
- [7] R.H. Kodama, A.E. Berkowitz, E.J. McNiff, Jr., S. Foner. Phys. Rev. Lett. 77, 394 (1996).
- [8] S.D. Tiwari, K.P. Rajeev. Phys. Rev. B 72, 104433 (2005).
- [9] M. Gruyters. Phys. Rev. Lett. 95, 077 204 (2005).
- [10] S.B. Ota, E. Gmelin. Phys. Rev. B 46, 11632 (1992).
- [11] A. Junod, D. Eckert, G. Triscone, J. Muller, W. Reichardt. J. Phys.: Cond. Matter 1, 8021 (1989).
- [12] M.O. Keeffe, F.S. Stone. J. Phys. Chem. Solids 23, 261 (1962).
- [13] T.I. Arbuzova, A.A. Samokhvalov, I.B. Smolyak, B.V. Karpenko, N.M. Chebotaev, S.V. Naumov. J. Magn. Magn. Mater. 95, 168 (1991).
- [14] K. Muraleedharan, T.K. Gundu Rao. J. Magn. Magn. Mater. 89, L277 (1990).
- [15] G. Narsinga Rao, Y.D. Yao, J.W. Chen. IEEE Transact. Magn. 41, 3409 (2005).
- [16] S.J. Stewart, M. Multigner, J.F. Marco, F.J. Berry, A. Hernando, J.M. Gonzaleza. Solid State Commun. 130, 247 (2004).
- [17] А.В. Ушаков, И.В. Карпов, А.А. Лепешев, Л.Ю. Федоров. Ремонт, восстановление, модернизация 9, 41 (2012).
- [18] I.V. Karpov, A.V. Ushakov, L.Yu. Fedorov, A.A. Lepeshev. Technical Phys. 59, 559 (2014).
- [19] А.В. Ушаков, И.В. Карпов, А.А. Лепешев, Л.Ю. Федоров, А.А. Шайхадинов. Материаловедение 7, 29 (2013).
- [20] H.M. Rietveld. J. Appl. Cryst. 2, 65 (1969).
- [21] D.B. Wiles, R.A. Young. J. Appl. Cryst. 14, 149 (1981).
- [22] P. Thompson, D.E. Cox, J.B. Hastings. J. Appl. Cryst. 20, 79 (1987).
- [23] S.K. Mishra, V. Subrahmanyam. arXiv:0806.1262v3 [condmat.mes-hall].
- [24] S.A. Makhlouf, J. Magn. Magn. Mater. 246, 184 (2002).
- [25] S.A. Makhlouf. J. Magn. Magn. Mater. 272–276, 1530 (2004).
- [26] T. Bitoh, K. Ohba, M. Takamatsu, T. Shirane, S. Chikazawa. J. Phys. Soc. Jpn. 64, 1305 (1995).
- [27] R.K. Zheng, H.W. Gu, B. Xu, X.X. Zhang. J. Phys.: Cond. Matter 18, 5905 (2006).
- [28] Т.И. Арбузова, С.В. Наумов, В.Л. Арбузов, А.П. Дружков. ФТТ **51**, 904 (2009).