10,04

Динамика решетки редкоземельных титанатов со структурой пирохлора R_2 Ti₂O₇ (R = Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu): *ab initio* расчет

© В.А. Чернышев, В.П. Петров, А.Е. Никифоров

Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия E-mail: vchern@inbox.ru

(Поступила в Редакцию 5 июня 2014 г. В окончательной редакции 26 ноября 2014 г.)

Проведен *ab initio* расчет кристаллической структуры и фононного спектра титанатов со структурой пирохлора $R_2 \text{Ti}_2 \text{O}_7$ (R = Gd - Lu). Определены частоты и типы фундаментальных колебаний. Для R = Tb, Tm, Yb подобный расчет выполнен впервые, причем для Tm и Yb в печати отсутствует информация об экспериментальных исследованиях фононного спектра.

Исследовано влияние гидростатического давления до 35 GPa на структуру, динамику и упругие свойства решетки $Gd_2Ti_2O_7$. Получена зависимость частот фононов от давления. Расчеты предсказывают, что в диапазоне до 35 GPa относительное изменение объема структуры пирохлора при сжатии хорошо описывается уравнением состояния Берча–Мурнагана 3-го порядка. Результаты расчетов согласуются с имеющимися экспериментальными данными. Показано, что можно получить хорошее описание структурных, динамических и упругих свойств кристаллической решетки $R_2Ti_2O_7$, заменив внутренние оболочки РЗ-иона, по 4f включительно, на псевдопотенциал.

Работа выполнена при финансовой поддержке УрФУ в рамках реализации Программы развития УрФУ для победителей конкурса "Молодые ученые УрФУ".

1. Введение

Интерес к редкоземельным титанатам R₂Ti₂O₇ не ослабевает благодаря многообразию оптических и магнитных свойств этих материалов [1,2]. Оптический спектр f - f-переходов РЗ-ионов содержит большое количество фононных повторений [3], для его интерпретации и выделения электронных переходов необходима информация о частотах и типах колебаний решетки. Наиболее адекватно фононный спектр воспроизводится из современных ab initio расчетов периодических структур [4,5], что позволяет воспроизвести все моды данной структуры. В данной работе расчет фононного спектра в редкоземельных титанатах R₂Ti₂O₇ был выполнен в рамках МО ЛКАО подхода в программе CRYSTAL09 [4] с использованием гибридных функционалов DFT B3LYP [6] и РВЕО [7]. Титанаты R2Ti2O7 с РЗ-ионами из второй половины ряда имеют высокосимметричную структуру пирохлора $Fd\bar{3}m$ [8], фононные спектры некоторых из них исследованы экспериментально [1,9–16]. Количество линий КР-спектра в работе [10] превосходило допустимое симметрией пирохлора, причем, некоторые низкочастотные линии исчезали с увеличением давления. Поэтому представляется актуальным исследовать из ab initio влияние давления на частоты фононного спектра R_2 Ti₂O₇.

В работах [10,17,18] экспериментально было исследовано влияние давления на упругие свойства $Gd_2Ti_2O_7$, что делает актуальным соответствующий *ab initio* расчет.

Использование полноэлектронных базисов для РЗ-ионов приводит к непозволительно большим затратам машинного времени. Для описания структуры и динамики решетки представляется возможной замена внутренних орбиталей, в том числе 4f, на псевдопотенциал, при этом внешние 5s- и 5p-оболочки, определяющие химическую связь, описываются базисными наборами.

2. Методы расчета

Расчеты были выполнены в приближении МО ЛКАО в программе CRYSTAL09 [4], предназначенной для периодических структур, методом функционала плотности (DFT B3LYP и DFT PBE0). Использовались валентнорасщепленные базисы кислорода и титана [19,20]. Для редкоземельных ионов — квазирелятивистские псевдопотенциалы [21,22] с валентными базисными наборами [23], полученные для оксидов, в которых РЗ-ион находился в кислородном окружении так же, как и в исследуемых пирохлорах. Псевдопотенциалы и соответствующие им валентные базисные наборы доступны на сайте [24]. Были использованы псевдопотенциалы ЕСРnMWB, где n = Z - 11, таким образом, внутренние оболочки и в том числе 4f заменялись на псевдопотенциал. В ВЗЦУР-расчетах использовались валентные базисные наборы ECPnMWB-I, включающие поляризационные *d*-орбитали, в РВЕО-валентные базисные наборы ЕСР*п*МWB-II, включающие поляризационные d-и f-орбитали.

На примере $Gd_2Ti_2O_7$ был дополнительно проведен расчет, когда 4f-оболочка входила в валентный базис-

Рис. 1. Смещения атомов в ИК- и КР-модах (1 — кислород, 2 — титан, 3 — гадолиний).

ный набор, причем для ее описания использовалось несколько контракторов (ECP28MWB SEG [24]). Расчет показал, что описание 4f-оболочки базисными функциями незначительно влияет на геометрию решетки, что также было отмечено в работе [18].

3. Обсуждение результатов

При описании кристаллической структуры координаты ионов в элементарной ячейке $R_2 Ti_2 O_7$ ($Fd\bar{3}m$) соответственно задавались: $R(0.5 \ 0.5 \ 0.5)$, $Ti(0 \ 0 \ 0)$, O1(x, 0.125, 0.125), O2(0.375, 0.375, 0.375), типы колебаний в Г-точке: $\Gamma = A_{1g} + E_g + 2F_{1g} + 4F_{2g} + 3A_{2u} + 3E_u + 8F_{1u} + 4F_{2u}$. Из них в ИК активны $7F_{1u}$ мод, в КР активны: A_g , E_g , $4F_{2g}$. Смещения атомов в некоторых ИК- и КР-модах приведены на рис. 1.

Расчет кристаллической структуры (табл. 1) показал, что смещение кислорода x фактически не меняется в R_2 Ti₂O₇ (R =Gd-Lu). Постоянная решетки при этом уменьшается в соответствии с ионным радиусом R. Отметим, что добавление в валентный базисный набор РЗ-иона поляризационных f-орбиталей улучшает описание кристаллической структуры, причем метод DFT PBE0 дает лучшее согласие с экспериментом, чем DFT B3LYP.

Для оптимизированной кристаллической структуры был рассчитан фононный спектр в Г-точке, определены типы мод и частоты колебаний (табл. 2-4). Анализ собственных векторов показал, что в КР-активных модах смещаются только ионы кислорода, ионы титана и гадолиния остаются в узлах решетки, что согласуется с результатами работы [26]. При этом в модах A_g и E_g участвуют только ионы кислорода О1, а в четырех *F*_{2g}-модах — и О1, и О2. В высокочастотной *F*_{2g}-моде смещения ионов O2 на порядок меньше, чем O1. Таким образом, Ag-, Eg- и высокочастотная F2g-моды несут информацию о поведении ионов кислорода О1, характеризуемых смещением х. Расчеты, проведенные для Gd₂Ti₂O₇, предсказали, что частоты КР-активных мод линейно увеличиваются с давлением. На рис. 2 приведены результаты РВЕО-расчета. Анализ собственных векторов семи ИК-активных F_{1и}-мод показал следующее. В этих модах участвуют все типы ионов (табл. 2). РЗ-ион значительно смещается только в первых трех по

cmerkn = Gu Li [b], Lu [i], ememerine x = Gu, Dy, Li, Lu [i])										
	R	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
Постоянная решетки	B3LYP PBE0 Exp.	10.355 10.200 10.196	10.278 10.171 10.155	10.250 10.144 10.127	10.222 10.118 10.105	10.195 10.093 10.072	10.172 10.072 —	10.150 10.048 10.033	10.122 10.037 10.018	
x	B3LYP PBE0 Exp.	0.326 0.327 0.322	0.327 0.328 -	0.328 0.329 0.323	0.328 0.329 -	0.329 0.330 0.331	0.330 0.330 -	0.330 0.331 -	0.331 0.331 0.330	
Ионный радиус по Шеннону, Å		1.053	1.04	1.027	1.015	1.004	0.994	0.985	0.977	

Таблица 1. Постоянная решетки R_2 Ti₂O₇ (Å), смещение кислорода, x (отн. ед.) (экспериментальные данные: постоянная решетки — Gd–Er [8], Lu [1], смещение x — Gd, Dy, Er, Lu [1])

Таблица 2. ИК-активные моды (F_{1u}) , частоты (TO) в сm⁻¹, B3LYP/PBE0 (в скобках приведены экспериментальные данные: Dy, Ho, Er [1], Gd [16])

Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Ионы-участники
79/99	89/99	91/99	91/98	90/97	89/95	95/101	98/92	R, Ti, O1, O2
119/124 (136)	113/125	113/125 (123)	114/125 (121)	116/125 (121)	116/124	116/126	121/122	R, Ti, O1, O2
182/190 (242)	175/191	177/193 (245)	178/194 (245)	179/194 (247)	179/194	180/198	194/192	R, Ti, O1, O2
269/264 (293)	259/264	258/262 (297)	253/261 (292)	251/258 (292)	249/256	253/259	260/251	\mathbb{R}^s , \mathbb{Ti}^s , $\mathbb{O}1$, $\mathbb{O}2^s$
349/369 (408)	357/372	361/377 (420)	365/381 (424)	369/385 (427)	372/388	374/391	371/394	\mathbb{R}^s , Ti, O1, O2 ^s
452/441 (456)	438/440	437/441 (450)	436/442 (445)	432/442 (452)	435/442	447/448	450/446	R ^s , Ti, O1, O2
540/546 (552)	537/550	540/555 (550)	545/559 (558)	548/563 (560)	552/566	558/570	560/572	R ^s , Ti ^s , O1, O2

Примечание. В последнем столбце символом *s* обозначены ионы, смещение которых мало.

Таблица 3. КР-активные моды в R_2 Ti₂O₇ (B3LYP/PBE0), частоты в сm⁻¹ (в скобках приведены экспериментальные данные: Gd-Ho [9], Er [13], Lu [12])

Неприводимое представлене	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Ионы- участники
F_{2g}	309/309 (310)	301/310 (303)	301/310 (308)	299/310 (311)	299/310 (311)	298/309	299/315	306/308 (313)	01, 02
	453/450 (450)	446/452 (450)	447/453 (451)	447/453 (452)	447/454 (450)	447/454	450/459	453/455 (458)	01, 02
	616/587 (554)	580/587 (557)	580/586 (550)	578/585 (562)	577/584 (565)	575/583	575/589	596/583 (609)	01, 02
	756/791	771/797	777/802	782/808	787/812	792/817	796/821	788/825 (800)	O1, O2 ^s
E_g	324/322 (325)	316/325 (313)	317/326 (328)	316/328 (329)	318/329 (331)	318/330	320/336	324/332 (336)	01
A_g	524/523 (517)	516/526 (518)	518/528 (519)	517/530 (522)	518/532 (525)	519/533	522/536	529/535 (520)	01

Примечание. В последнем столбце символом *s* обозначены ионы, смещение которых мало.

		•				<i>,</i> , ,	,		
Неприводимое представление	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Ионы- участники
A_{2u}	254/260	252/258	247/253	244/250	241/247	237/243	235/246	229/237	R, Ti, O1
	345/359	349/363	352/366	353/370	356/373	359/376	364/381	366/380	R, Ti, O1
	454/460	456/459	456/458	456/458	456/458	456/458	455/457	454/456	R, Ti, O1
E_u	74/80	74/80	71/78	69/76	67/74	64/72	71/77	57/68	R, Ti, O1
	193/192	192/191	190/189	186/188	185/186	183/184	189/187	181/182	R ^s , Ti, O1
	469/483	472/489	476/493	479/497	483/500	486/503	493/507	494/509	R, Ti, O1
F_{1g}	266/271	264/270	263/269	261/268	259/266	258/264	256/269	251/261	01
	507/533	514/541	522/548	529/554	536/560	541/565	545/570	553/574	01
F _{2u}	29/35	31/37	30/36	29/36	29/36	27/35	38/41	17/32	R, Ti, O1
	72/86	78/96	84/100	89/103	94/105	97/108	99/111	106/113	R, Ti, O1
	279/287	281/290	283/293	286/295	288/298	290/300	296/306	293/303	R ^s , Ti, O1
	551/575	560/583	568/591	576/599	584/606	590/612	596/618	604/623	R ^s , Ti ^s , O1

Таблица 4. "Молчащие" моды в $R_2 Ti_2 O_7$ (B3LYP/PBE0) (частоты в ст⁻¹)

Примечание. В последнем столбце символом *s* обозначены ионы, смещение которых мало.

Рис. 2. Зависимость частот КР-активных мод от давления.

частоте модах. В высокочастотных ИК-модах смещения РЗ-ионов малы. Зависимость частот ИК-мод от давления (РВЕ0-расчет) приведена на рис. 3.

Результаты расчета динамики решетки хорошо согласуются с имеющимися результатами измерений ИК- и КР-спектров, при этом РВЕО обеспечивает лучшее согласие с экспериментом, что согласуется с результатами работы [26]. Согласно расчетам (табл. 2, 3), наиболее меняются вдоль ряда Gd–Lu частоты КР-активных F_{2g} -мод (в пределах ~ 40 cm⁻¹). Частоты ИК-активных F_{1u} -мод меняются меньше (в пределах ~ 20 cm⁻¹). В результате расчета также были определены частоты и типы "молчащих" мод (табл. 4).

Влияние гидростатического сжатия на фононный спектр и кристаллическую решетку было исследовано на примере $Gd_2Ti_2O_7$. Расчеты для структуры пирохлора показали, что зависимость относительного объема

элементарной ячейки от давления хорошо описывается уравнением состояния Берча–Мурнагана [27] 3-го порядка (1), с параметрами $B_0 = 204$ GPa, B' = 4.2 и $V_0 = 1.06 \cdot 10^3$ Å³ (рис. 4, расчет PBE0).

$$P = \frac{3}{2} B_0 \left(\nu^{-\frac{7}{3}} - \nu^{-\frac{5}{3}} \right) \left[1 + \frac{3}{4} \left(B' - 4 \right) \left(\nu^{-\frac{2}{3}} - 1 \right) \right] \quad (1),$$

где ν — относительное изменение объема, V/V_0 .

Расчет методом B3LYP дает близкое значение параметров $B_0 = 202$ GPa, B' = 3.9 и $V_0 = 1.11 \cdot 10^3$ Å³.

Экспериментальные работы, в которых был определен модуль объемного сжатия B_0 , дают различные результаты. В работе [10] зависимость объема от давления

Рис. 3. Зависимость частот ИК-активных *F*_{1*u*}-мод от давления.

была аппроксимирована уравнением Берча–Мурнагана 3-го порядка, однако до 8.5 GPa использовался один набор параметров с $B_0 = 176 \pm 4$ GPa, а при давлении от 8.5 до 35 GPa — другой с $B_0 = 208 \pm 8$ GPa. В работе [17] приводится значение модуля объемного сжатия $B = 198 \pm 8$ (ссылка на неопубликованный эксперимент).

В результате расчетов также была получена зависимость модуля объемного сжатия и упругих постоянных от давления. Условия устойчивости решетки к гидростатическому сжатию для кубических кристаллов [28]

$$C_{11} + 2C_{12} + P > 0,$$

 $C_{11} - C_{12} - 2P > 0,$
 $C_{44} - P > 0$ (2)

выполняются во всем диапазоне давлений (табл. 5). Упругие постоянные и модуль объемного сжатия с увеличением давления возрастают, их зависимости от давления описываются прямыми с угловым коэффициентом a (табл. 5). Смещение кислорода x с увеличением давления практически не изменяется. Таким образом, расчеты влияния давления до 35 GPa, проведенные для Gd₂Ti₂O₇, предсказывают, что структура пирохлора остается устойчивой.

Фононный спектр $Gd_2Ti_2O_7$ был дополнительно рассчитан методами Хартри–Фока (HF) и DFT WC1LYP [29] (табл. 6). Все методы дают близкие результаты и достаточно хорошо согласуются с экспериментом и предыдущими DFT-расчетами [25] (результаты для КР-мод приведены в табл. 6). Расчет фононного спектра под давлением, как методом B3LYP, так и PBE0 предсказывает, что частоты фононного спектра $Gd_2Ti_2O_7$ при увеличении давления остаются положительными. В наших расчетах так же, как и в предыдущей работе [25], предполагающей идеальную структуру пирохлора $Gd_2Ti_2O_7$, не воспроизводятся КР-активные моды с частотами

Рис. 4. Зависимость объема ячейки от давления, интерполированная уравнением состояния Берча–Мурнагана.

Таблица 5. Модуль объемного сжатия и упругие постоянные (GPa) $Gd_2Ti_2O_7$ (величины *B*, C_{11} , C_{22} , C_{33} при давлении (GPa) возрастают линейно с коэффициентом *a*)

Метод	C_{11}	C_{12}	C_{44}	В
B3LYP	345.7	129.6	103.6	201.6
PBE0	356.8	130.3	110.9	205.8
a B3LYP	4.134	2.585	1.793	3.086
PBE0	4.654	2.679	1.962	3.333

Таблица 6. КР-активные моды $Gd_2Ti_2O_7$ (частоты в сm⁻¹)

Неприводимое представление	HF	WC1LYP	B3LYP	PBE0	DFT [25]	Экспери- мент [8]
F_{2g}	348	313	309	309	321	310
	501	455	453	450	452	450
	654	622	616	588	596	554
	821	761	756	791	782	-
E_g	364	329	324	323	335	325
A_g	584	524	524	524	505	517

 $100-200 \text{ cm}^{-1}$, наблюдаемые на эксперименте [9,30,31]. В работе [14] было сделано предположение, что эти моды относятся к "родительским" фазам TiO₂ и Gd₂O₃, из которых получен образец. В работе [10] был измерен KP-спектр при гидростатическом сжатии и обнаружены моды ~ 215 и 547 cm⁻¹, которые исчезали при увеличении давления до 8 GPa. *Ab initio* расчеты влияния давления на фононный спектр вплоть до 24 GPa, выполненные в данной работе, предсказывают, что все моды, соответствующие структуре пирохлора, сохраняются. Можно предположить, что исчезающие вблизи 8 GPa и Gd₂O₃. В пользу этого указывает и тот факт, что в TiO₂ и Gd₂O₃ наблюдаются структурные фазовые переходы в интервале 7–15 GPa [32–34].

4. Заключение

Проведены *ab initio* расчеты кристаллической структуры и фононного спектра $R_2 Ti_2 O_7$ (R = Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) в рамках подхода MO ЛКАО методами DFT B3LYP и DFT PBE0 с использованием псевдопотенциалов. Показано, что в КР-активных модах $R_2 Ti_2 O_7$ участвуют только ионы кислорода, причем в A_g и E_g — только ионы О, находящиеся в низкосимметричной позиции. В ИК-активных модах участвуют все ионы решетки. Низкочастотные ИК-моды характеризуются значительными смещениями P3-ионов.

Исследовано влияние гидростатического сжатия на фононный спектр и упругие свойства решетки Gd₂Ti₂O₇. Расчеты с учетом давления до 35 GPa предсказывают

устойчивость структуры пирохлора. Смещение кислорода x с увеличением давления фактически не изменяется. Влияние давления на Gd₂Ti₂O₇ хорошо описывается уравнением состояния Берча–Мурнагана 3-го порядка. Модуль объемного сжатия и упругие постоянные линейно возрастают с увеличением давления.

Расчеты фононного спектра $Gd_2Ti_2O_7$, проведенные с учетом давления, показали, что набор мод, соответствующий структуре пирохлора, сохраняется. Можно предположить, что наблюдаемые на эксперименте КР-активные моды, исчезающие при ~ 8.5 GPa, не обусловлены структурой пирохлора $Gd_2Ti_2O_7$, а относятся к "родительским" фазам Gd_2O_3 и TiO_2 .

Показано, что замена внутренних оболочек РЗ-иона, по 4f включительно, на псевдопотенциал, и описание базисным набором только внешних 5s- и 5p-электронов позволяет хорошо описывать структуру, динамику и упругие свойства решетки редкоземельных титанатов R_2 Ti₂O₇. Наилучшие результаты дает гибридный функционал DFT PBE0 с использованием в валентном базисном наборе поляризационных f-орбиталей.

Список литературы

- M.A. Subramanian, G. Aravamudan, G.V. Subba Rao. Prog. Solid State Chem. 15, 2, 55 (1983).
- [2] Kuo-Min Lin, Chih-Cheng Lin, Yuan-Yao Li. Nanotechnology 17, 6 1745 (2006).
- [3] С.А. Климин, М.Н. Попова, Е.П. Чукалина, Б.З. Малкин, А.Р. Закиров, Е. Antic-Fidancev, Ph. Goldner, P. Aschehoug, G. Dhalenne. ФТТ 47, 8, 1376 (2005).
- [4] R. Dovesi, V.R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N.M. Harrison, I.J. Bush, Ph. D'Arco, M. Llunell. CRYSTAL09 User's Manual. University of Torino, Torino, Italy (2009). http://www.crystal.unito.it/index.php
- [5] G. Kresse, M. Marsman, J. Furthmuller. Computational Physics. Faculty of Physics, University of Vienna. VASP the GUIDE (2013).
- https://www.vasp.at/index.php/documentation
- [6] A.D. Becke. J. Chem. Phys. 98, 5648 (1993).
- [7] J.P. Perdew, M. Ernzerhof, K. Burke. J. Chem. Phys. 105, 9982 (1996).
- [8] Q.J. Li, L.M. Xu, C. Fan, F.B. Zhang, Y.Y. Lv, B. Ni, Z.Y. Zhao, X.F. Sun. J. Cryst. Growth 377, 96 (2013).
- [9] T.T.A. Lummen, I.P. Handayani, M.C. Donker, D. Fausti, G. Dhalenne, P. Berthet, A. Revcolevschi, P.H.M. van Loosdrecht. Phys. Rev. B 77, 214 310 (2008).
- [10] S. Saha, D.V.S. Muthu, C. Pascanut, N. Dragoe, R. Suryanarayanan, G. Dhalenne, A. Revcolevschi, S. Karmakar, S.M. Sharma, A.K. Sood. Phys. Rev. B 74, 064 109, (2006).
- [11] M. Maczka, M.L. Sanjuan, A.F. Fuentes, L. Macalik, J. Hanuza, K. Matsuhira, Z. Hiroi. Phys. Rev. B 79, 214437 (2009).
- [12] S. Saha, S. Singh, B. Dkhil, S. Dhar, R. Suryanarayanan, G. Dhalenne, A. Revcolevschi, A.K. Sood. Phys. Rev. B 78, 214 102 (2008).

- [13] M. Maczka, J. Hanuza, K. Hermanowicz, A.F. Fuentes, K. Matsuhira, Z. Hiroi. J. Raman Spectroscop. 39, 537, (2008).
- [14] M. Moria, G.M. Tompsett, N.M. Sammesc, E. Sudad, Y. Takeda. Solid State Ionics 158, 79 (2003).
- [15] F.X. Zhang, S.K. Saxena. Chemical Phys. Lett. 413, 248 (2005).
- [16] A.F. Fuentes, K. Boulahya, M. Maczka, J. Hanuza, U. Amador. Solid State Sci. 7, 343 (2005).
- [17] W.R. Panero, L. Stixrude. Phys. Rev. B 70, 054110 (2004).
- [18] H.Y. Xiao, W.J. Weber. J. Phys.: Cond. Matter. 23, 035 501 (2011).
- [19] L. Valenzano, F.J. Torres, K. Doll, F. Pascale, C.M. Zicovich-Wilson, R. Dovesi, Z. Phys. Chem. 220, 893 (2006).
- [20] F. Cora. Mol. Phys. 103, 2483 (2005).
- [21] M. Dolg, H. Stoll, A. Savin, H. Preuss. Theor. Chim. Acta 75, 173 (1989).
- [22] M. Dolg, H. Stoll, H. Preuss. Theor. Chim. Acta 85, 441 (1993).
- [23] J. Yang, M. Dolg. Theor. Chem. Acc. 113, 212 (2005).
- [24] Energy-consistent Pseudopotentials of the Stuttgart, http://www.tc.uni-koeln.de/PP/clickpse.en.html
- [25] S. Kumar, H.C. Gupta. Vibrational Spectroscopy 62, 180 (2012).
- [26] D. Gryaznov, E. Blokhin, A. Sorokine, E.A. Kotomin, R.A. Evarestov, A. Bussmann-Holder, J. Mai, J. Chem. C. J. Phys. Chem. C 117, 13776 (2013).
- [27] F. Birch. Phys. Rev. 71, 11, 809 (1947).
- [28] Ю.Х. Векилов, О.М. Красильников. УФН 179, 8, 883 (2009).
- [29] R. Demichelis, B. Civalleri, M. Ferrabone, R. Dovesi. Int. J. Quant. Chem. 110, 406 (2010).
- [30] M. Mori, G.M. Tompsett, N.M. Sammes, E. Suda, Y. Takeda. Solid State Ionics 158, 79 (2003).
- [31] M.T. Vandenborre, E. Husson. J. Solid State Chem. 50, 362 (1983).
- [32] F.X. Zhang, M. Lang, J.W. Wang, U. Becker, R.C. Ewing. Phys. Rev. B 78, 064 114 (2008).
- [33] Quanjun Li, Benyuan Cheng, Xue Yang, Ran Liu, Bo Liu, Jing Liu, Zhiqiang Chen, Bo Zou, Tian Cui, Bingbing Liu. J. Phys. Chem. C 117, 8516 (2013).
- [34] H. Arashi. J. Phys. Chem. Solids 53, 3, W-359 (1992).