07

Неупругость и выпадение германия из твердого раствора в бинарных сплавах AI–Ge

© Б.К. Кардашев, Б.Н. Корчунов, С.П. Никаноров, В.Н. Осипов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: s.nikanorov@mail.ioffe.ru

(Поступила в Редакцию 21 января 2015 г.)

Исследовано влияние выпадения атомов германия в твердом растворе на зависимость характеристик неупругости от содержания германия в сплавах алюминия с германием, полученных направленной кристаллизацией. Показано, что дефект модуля Юнга, амплитудно-зависимый декремент и напряжение микропластического течения при заданной амплитуде колебательных деформаций имеют экстремальные значения при эвтектическом содержании германия в сплаве. При эвтектическом составе сплава наблюдается вязкохрупкий переход. Установлена корреляция между зависимостями дефекта модуля Юнга, амплитудно-зависимого декремента, напряжения микропластического течения и удельной энтропии экзотермического процесса выделения германия от содержания германия в доэвтектическом сплаве. Концентрационные зависимости характеристик неупругости и их изменения после отжига объясняются изменением сопротивления движению внутризеренных дислокаций за счет разной структуры зон Гинье–Престона, образующихся при выпадении атомов германия.

1. Введение

Важными характеристиками металлических материалов при колебательном знакопеременном нагружении являются дислокационный дефект модуля упругости, внутреннее трение и условный предел микротекучести при заданной амплитуде. Эти характеристики для сплава Al-Ge, полученного направленной кристаллизацией, исследовались в [1] при частоте колебаний около 100 kHz. Было отмечено, что неупругие явления в этих сплавах определяются торможением дислокаций внутри зерна и для понимания микромеханизмов деформирования необходимы исследования влияния кластеров и зон Гинье-Престона, возникающих при выпадении атомов германия из твердого раствора при затвердевании или старении сплавов. Такие исследования проводились ранее, но преимущественно на коммерческих алюминиевых сплавах [2-5]. Динамика процессов выпадения в направленно закристаллизованном сплаве Al-Ge была изучена нами в [6]. Целью настоящей работы является исследование влияния содержания германия и отжига на дислокационный дефект модуля Юнга и внутреннее трение, а также на микропластическую деформацию в бинарном сплаве Al-Ge с учетом влияния процесса выпадения атомов германия из твердого раствора в алюминии.

2. Образцы и методика эксперимента

В работе использовались алюминий и германий высокой чистоты (99.99 wt.%). Из исходных материалов были приготовлены расплавы с содержанием 64, 57, 53, 43 и 35 wt.% германия в алюминии. Для получения гомогенного состава расплав выдерживался при температуре 800°С в течение 5 h с периодическим перемешиванием. Приготовленный таким образом сплав использовался в дальнейших опытах по выращиванию лент направленной кристаллизацией способом Степанова. Непосредственно перед получением ленты расплав также предварительно прогревался при 800° в течение 2 h. Ленты длиной до 2 m с поперечным сечением 10 × 2 mm вытягивались из расплава через прямоугольное отверстие формообразователя с воздушным охлаждением. Скорость вытягивания была около 100 µm/s, скорость охлаждения около 1.2 К/s (см. [7]) Из лент электроискровым методом вырезались образцы длиной 27 mm с поперечным сечением 6 mm². Образцы отжигались при температуре около 200°С в течение 10 h и после длительного естественного старения около четырех месяцев отжигались повторно в течение 1 h.

Измерения модуля Юнга E и внутреннего трения δ образцов с разным содержанием германия проводились резонансным методом составного пьезоэлектрического вибратора на частоте продольных колебаний около 100 kHz при амплитудах колебательных деформаций $5 \cdot 10^{-7} - 2 \cdot 10^{-3}$. С помощью амплитудных зависимостей находились амплитудно-зависимый дефект модуля Юнга ($\Delta E/E$)_h и амплитудно-зависимая часть логарифмического декремента δ_h при определенной амплитуде колебательных деформаций образца, а также напряжения течения при заданной неупругой деформации σ_y (см. [1]). Неупругие характеристики измерялись после первого отжига и после второго отжига естественно состаренных образцов.

Информация о выпадении германия в твердом растворе при затвердевании и при старении исследуемых образцов была получена из специально выполненного нами исследования. В этом исследовании [6] динамика процесса выпадения изучалась на образцах, полученных

Рис. 1. Микроструктура образцов сплава Al-Ge, содержащих 35 (a), 43 (b), 53 (c), 57 (d), 64 wt.% (e) германия.

из материалов и при помощи технологии, которые использованы в настоящей работе.

3. Экспериментальные результаты и обсуждение

Микроструктура продольных сечений образцов показана на рис. 1. Матрица всех образцов состоит из механической смеси искривленных иглоподобных кристаллов германия толщиной менее 1 μ т (черный цвет) и твердого раствора германия в α -Al (светло серый цвет). В матрице доэвтектических образцов (35 и 43 wt.% Ge) имеются первичные кристаллы α -Al дендритной структуры светло серого цвета. Структура образца Al-53 wt.% Ge близка к эвтектической. В ней встречаются отдельные небольшие дендриты α -Al. В матрице заэвтектических образцов (57 и 64 wt.% Ge) наблюдаются объемные кристаллы германия (черный цвет). Вокруг первичных кристаллов германия наблюдается тонкий

Рис. 2. Зависимости модуля Юнга *E* от содержания германия в сплаве. *1* — после первого отжига, *2* — после естественного старения и второго отжига.

слой фазы α-Al дендритной структуры. Возникновение вторичной дендритной структуры можно объяснить недостаточным диффузионным выравниванием состава расплава по границе раздела двух фаз.

Результаты исследования структуры согласуются с выводом работы [8] о том, что состав и структура матрицы не меняются с изменением содержания германия. Матрица сохраняет структуру эвтектики. При увеличении содержания германия в доэвтектических сплавах происходит увеличение относительной доли эвтектики и уменьшение доли первичных кристаллов α -Al, а в заэвтектических сплавах — уменьшение доли эвтектики и увеличение доли первичных кристаллов германия.

На рис. 2 показаны зависимости модуля Юнга E, измеренного при амплитуде колебательных деформаций $2 \cdot 10^{-6}$, т.е. в амплитудно-независимой области, от содержания германия в сплаве. Модуль Юнга доэвтектических образцов растет с увеличением содержания германия. Для эвтектического состава наблюдается излом зависимости E от содержания германия в сплаве.

На рис. 3 показаны концентрационные зависимости $(\Delta E/E)_h, \delta_h, \sigma_v$ и часть равновесной фазовой диаграммы системы Al-Ge. Из нее следует, что характеристики неупругости $(\Delta E/E)_h$, δ_h при $\varepsilon = 2 \cdot 10^{-4}$ и напряжения микропластического течения σ_v при неупругой деформации 2.4 10⁻⁸ образцов имеют экстремум при содержании германия, близком к эвтектическому, — около 53 wt.% (за исключением кривой 2 на рис. 3, d). Около этой точки наблюдается вязкохрупкий переход [1]. Этот переход можно объяснить изменением структуры сплава. Объемная доля крупнозернистых пластичных первичных кристаллов твердого раствора *α*-А1 дендритной структуры уменьшается с ростом содержания германия в доэвтектическом сплаве. При 53 wt.% Ge сплав имеет более жесткую мелкозернистую структуру эвтектики. При дальнейшем увеличении содержания германия в сплаве образуются объемные жесткие первичные кристаллы германия. В хрупких заэвтектических сплавах возникают микропоры и микротрещины. Это объясняет рост Е, предела текучести, временной прочности при растяжении [8] и σ_v доэвтектических и падение этих

величин для заэвтектических сплавов при увеличении содержания германия в сплаве. В то же время в доэвтектических кристаллах $(\Delta E/E)_h$ и δ_h уменьшаются с ростом содержания германия. Эти характеристики неупругости определяются сопротивлением колебательному движению дислокаций внутри зерна. Это сопротивление может увеличиваться с уменьшением среднего размера зерна *α*-Al за счет увеличения эвтектики и приближения амплитуды колебаний дислокаций к размеру зерна. В то же время свойства сплава Al-Ge зависят от отжига или старения при комнатной температуре из-за выпадения атомов германия из пересыщенного твердого раствора α -Al. Уменьшение $(\Delta E/E)_h$, δ_h и увеличение σ_v с ростом содержания германия доэвтектических сплавов (кривые 1 на рис. 3), вероятно, связано со снижением сопротивления движению внутризеренных дислокаций за счет ослабления процесса выпадения атомов германия в твердом растворе α -Al. Это подтверждается зависимостью удельной энергии, высвобождающейся при выделении атомов германия из твердого раствора *α*-Al, от содержания германия в сплаве, показанной на рис. 4. Зависимость удельной энтальпии от содержания германия построена по данным работы [6]. Видно, что энтальпия

Рис. 3. Равновесная фазовая диаграмма исследуемой области сплава Al-Ge (*a*), амплитудно-зависимые дефект модуля Юнга $(\Delta E/E)_h$ (*b*) и декремент δ_h (при амплитуде колебательной деформации $\varepsilon = 2 \cdot 10^{-4}$) (*c*), напряжение микропластического течения σ_y (при неупругой деформации $\varepsilon_d = 2.4 \cdot 10^{-8}$) (*d*) в зависимости от содержания германия. *I* — после первого отжига, *2* — после естественного старения и вторичного отжига.

Рис. 4. Зависимость удельной энергии Q, высвобождающейся при выделении атомов германия из твердого раствора α -Al (I), и средней поверхностной плотности d первичных дендритных кристаллов α -Al в продольном сечении образца (2) от содержания германия в сплаве.

уменьшается приблизительно в 4.5 раза с ростом содержания германия в сплаве от 35 до 53 wt.%. На рис. 4 показана также зависимость усредненной поверхностной плотности первичных дендритных кристаллов α -Al в продольном сечении образца от содержания германия в сплаве. При эвтектическом составе сплава наблюдается резкое уменьшение производной энтальпии по содержанию германия. Это совпадает с исчезновением первичных кристаллов α -Al. Незначительный процесс выпадения атомов германия происходит и в α -Al заэвтектического кристалла. Дополнительный отжиг кристалла приводит к снижению ($\Delta E/E$)_h, σ_h (ср. кривые 2 с кривыми 1 на рис. 3). Вероятно, это вызвано увеличением размеров и уменьшением концентрации скоплений выделившегося германия.

4. Заключение

Амплитудно-зависимые дефект модуля Юнга и внутреннее трение уменьшаются, а микропластическое напряжение текучести возрастает в области содержания германия от 35 до 53 wt.%. Такое поведение неупругих свойств объясняется уменьшением объемной доли пластичных первичных кристаллов твердого раствора α -Al дендритной структуры за счет увеличения эвтектической компоненты сплава. Влияние отжига на характеристики неупругости определяется интенсивностью процесса выпадения и характером выпадения германия в твердом растворе α -Al.

Экстремум неупругих характеристик наблюдается при эвтектическом составе сплава (в точке хрупкопластичного перехода).

Список литературы

- [1] Б.К. Кардашев, Б.Н. Корчунов, С.П. Никаноров, В.Н. Осипов, В.Ю. Федоров. ФТТ **56**, 1312 (2014).
- [2] A.H.M. Hammad, K.A. Padmanabhan, G. Van Tendeloo, T.R. Anantharaman. Z. Metallkunde 78, 103 (1987).

- [3] B.J. Douin, U. Dahmen, K.H. Westmacott. Phil. Mag. B, 63, 867 (1991).
- [4] T. Yamazaki, I. Hashimoto. Phys. Status Solidi A 161, 45 (1997).
- [5] H.R.M. Semnani, A. Falahati, H.P. Degischer. Kovove Mater. 49, 101 (2011).
- [6] Л.М. Егорова, Б.Н. Корчунов, В.Н. Осипов, В.А. Берштейн, С.П. Никаноров. ФТТ 57, 219 (2015).
- [7] П.И. Антонов, Л.М. Затуловский, А.С. Костыгов, Д.И. Левинзон, С.П. Никаноров, В.В. Пеллер, В.А. Татарченко, В.С. Юферев. Получение профилированных монокристаллов и изделий способом Степанова. Наука, Л. (1981). С. 200–202.
- [8] Л.И. Деркаченко, Б.Н. Корчунов, С.П. Никаноров, В.Н. Осипов, В.В. Шпейзман. ФТТ, 56, 512 (2014).