04

Электрический разряд в воздухе в глубоко подкритическом поле квазиоптического СВЧ-пучка

© К.В. Александров, Л.П. Грачев, И.И. Есаков, А.А. Раваев, Л.Г. Северинов, А.Ю. Яковлев

OAO ≪Московский радиотехнический институт РАН», 117519 Москва, Россия e-mali: grachev@mrtiran.ru

(Поступило в Редакцию 5 июня 2015 г.)

Описаны результаты экспериментов по зажиганию укрепленным над экраном электромагнитным вибратором электрического разряда в воздухе в квазиоптическом СВЧ-пучке. Используемый способ инициации электрического пробоя позволил реализовывать разряд при уровне электрической составляющей поля в СВЧ-волне, в сотни раз меньшем минимального критического поля безэлектродного пробоя воздуха. При этом в опытах в зависимости от уровня поля было определено граничное давление воздуха, отделяющее низкотемпературные и высокотемпературные виды СВЧ-разряда.

Введение

В восьмидесятые годы двадцатого века началось изучение свободно локализованного безэлектродного электрического разряда в воздухе в квазиоптическом электромагнитном (ЭМ) пучке СВЧ-диапазона длин волн [1–4].

В описанных в работе [1] опытах такой разряд зажигался в линейно поляризованном СВЧ-пучке с длиной волны $\lambda \approx 10$ cm, в одиночных импульсах длительностью $\tau_{\rm pul} = 40\,\mu{
m s}$ и при мощности пучка $P_{\rm beam} \approx 10^6\,{
m W}$. При этом разрядная область была существенно удалена как от формирующих ЭМ-пучок антенных элементов, так и от окружающих ее элементов конструкции. Опыты показали, что по мере роста давления воздуха р вид разряда и его свойства существенно меняются. Так, при значениях *p*, меньших граничного давления $p_{\text{thres}} \approx 30$ Torr, разряд является диффузным и низкотемпературным. При $p > p_{\text{thres}}$ по мере роста давления сначала отдельные плазменные участки разряда становятся высокотемпературными, а затем разрядная область принимает вид объемно-развитой структуры высокотемпературных плазменных каналов-шнуров. Последнее позволяет рассматривать различные варианты практического применения СВЧ-разряда такого вида. Однако используемый в описанных в [1] опытах мощный мегаваттный СВЧпучок позволял зажигать разряд только до p = 150 Torr. В них предельно сфокусированный пучок имел в разрядной области максимальную амплитуду электрической составляющей ЭМ-волны E₀ = 6.5 kV/cm. Для пробоя же воздуха требуется минимальное, критическое поле пробоя [5]

$$E_{\rm cr} = 42p\sqrt{1 + (\omega/\nu_c)^2} \, [{\rm V/cm}],$$
 (1)

где ω — круговая частота СВЧ-поля, а

$$v_c = 4 \cdot 10^9 p \,[1/s] \tag{2}$$

— частота столкновений рождающихся плазменных электронов с молекулами воздуха. В (1) и (2), как

и во всех дальнейших оценочных формулах, p имеет размерность Тогг. Положив $E_{\rm cr} = E_0 = 6.5 \cdot 10^3 \,\text{V/cm}$, и получим $p = 155 \,\text{Torr}$.

Изучение на этой же установке динамики развития шнурового вида разряда [6] показало, что он зарождается в виде вытянутого вдоль вектора E_0 цилиндрического плазменного образования с длиной, несколько меньшей $\lambda/2$. Это дало основание авторам работы [7] поместить в разрядную область СВЧ-пучка вдоль вектора E_0 металлический линейный ЭМ-вибратор, что обеспечило пробой воздуха уже до атмосферного давления $p \approx 760$ Тогг, т. е. при подкритичности поля $\psi = E_{\rm cr}/E_0 \approx 4.6$. При этом разряд сохранил высокотемпературную объемноразвитую шнуровую структуру, характерную для свободно локализованного неинициированного разряда, зажигаемого при $p > p_{\rm thres}$.

В опытах на данной установке была возможность уменьшать мощность СВЧ-пучка P_{beam}. При этом при наличии в разрядной области ЭМ-инициатора и уменьшении уровня поля Е0 было зафиксировано граничное значение поля Ethres, ниже которого разрядные каналы уже теряли способность формировать объемно-развитую структуру. В течение всего $\tau_{\rm pul}$ они находились только в малых областях, примыкающих к концам-полюсам инициирующего пробой воздуха ЭМ-вибратора, контактируя с его поверхностью. Изучение этого вида разряда показало, что эффективная площадь его энергетического взаимодействия с возбуждающим разряд полем существенно превышает площадь поперечного сечения приполярных областей инициатора, занятых разрядными каналами. В результате воздух в них имеет высокую газовую температуру Т.

Высокая газовая T в разрядных каналах подкритического СВЧ-разряда с объемно-развитой шнуровой структурой при $E_0 < E_{\rm cr}$ и в привязанных к концам ЭМ-инициатора каналах глубоко подкритического СВЧ-разряда при $E_0 \ll E_{\rm cr}$ была оценена экспериментально. В описанных в работе [8] опытах область СВЧ-разряда продувалась пропан-воздушной горючей смесью, тем-

пература поджига которой равна примерно 10³ °C [9]. В опытах разрядная плазма поджигала эту смесь.

Описанные экспериментальные результаты показали, что для зажигания глубоко подкритических разрядов может быть существенно снижена мощность ЭМ-пучка P_{beam}, а следовательно, аппаратурно реализован и непрерывный режим их горения. В работе [10] описаны эксперименты по изучению такого разряда при $P_{\text{beam}} \approx 1 \text{ kW}$, исходном поле в разрядной области $E_0 \approx 100 \, {
m V/cm}$ и $\tau_{\rm pul} = 0.3$ s. В этих опытах инициирующий пробой воздуха параллельный вектору Е₀ ЭМ-вибратор первоначально располагался в поле бегущей ЭМ-волны, а затем над помещенным перпендикулярно вектору Пойнтинга П ЭМ-волны металлическим экраном в ближайшей к нему пучности поля, т.е. на расстоянии от плоскости экрана $h = \lambda/4$. При этом численное моделирование такой ситуации показало, что поле на полюсах цилиндрического вибратора со сферически закругленными концами E_{pol} при приближении его к экрану, т.е. при размерах $h < \lambda/4$, начинает существенно возрастать, несмотря на то что возбуждающее его поле уменьшается. Этот вывод был подтвержден и экспериментально. В описанных в этой работе опытах ЭМ-излучение распространялось сверху вниз, а размер *h* задавался расположенной на горизонтальном экране прямоугольной пенопластовой стойкой. На нее параллельно Е0 и помещался ЭМ-вибратор. В работе [11] на этой же установке эти выводы были подтверждены и при механо-гальваническом закреплении вибратора на экране. При этом задающая размер h перпендикулярная вибратору крепящая металлическая стойка располагалась посредине вибратора. В опытах использование резонансных свойств ЭМ-вибраторов позволяло зажигать разряды при подкритичности исходного поля, достигающей нескольких сотен.

Целью описываемых в настоящей работе опытов было определение возможности в такой экспериментальной постановке реализации инициированного СВЧ-разряда в квазиоптическом СВЧ-пучке при существенно меньшем уровне его мощности P_{beam} , а следовательно, и поля E_0 . Кроме того, в опытах в возможном диапазоне варьирования E_0 определялись граничные давления p_{thres} , разделяющие низкотемпературные и высокотемпературные виды разряда.

1. Экспериментальная установка

Эксперименты выполнялись на описанной в работе [10] установке. Схема ее основных элементов приведена на рис. 1.

В установке генерируемая магнетроном ЭМ-волна с $\lambda = 12.3$ сm, мощностью P = 1.6 kW и длительностью $\tau_{pul} = 0.2$ s распространяется по прямоугольному волноводу с внутренним сечением $m \times n = 9 \times 4.5$ сm. Волноводный тракт оканчивается рупорной антенной в форме обелиска длиной 15 сm. Ее излучающий раскрыв имеет размер 9×9 сm. Для распространяющейся по тракту

Рис. 1. Схема экспериментальной установки.

TE₁₀-волны максимальная амплитуда ее электрической составляющей на входе рупора

$$E_{\max in} = 2\sqrt{(PZ_0)/[mn\sqrt{1-[\lambda/(2m)]^2}]} \approx 290 \,\text{V/cm}$$

и в излучающем раскрыве рупора при $m = n - E_{max out} \approx 200 \text{ V/cm}$. Линейно поляризованный ЭМ-пучок, сформированный этой антенной, излучается вертикально вниз в центральную область герметичной "СВЧ-безэховой" рабочей камеры.

Давление воздуха в камере p_c может устанавливаться в диапазоне от атмосферного $p_c \approx 760$ Тогг до $p_c = 3$ Тогг и измеряться с точностью ± 1.5 Тогг. Давление воздуха в излучающем ЭМ-волну рупоре отслеживает давление в камере, а в пристыкованном к его входу волноводе остается атмосферным. Конструктивно это обеспечивается поперечной сечению волновода герметизирующей радиопрозрачной стеклотекстолитовой перегородкой толщиной 1.5 mm. В опытах при уменьшении давления в камере при $p_c \leq 10$ Тогг по поверхности этой перегородки со стороны камеры загорался СВЧ-разряд. Это не противоречит выполненной по формулам (1) и (2) для поля $E_{\rm cr}$ при $E_{\rm cr} = E_{\rm max in} = 290$ V/cm оценке $p_{\rm cr} \approx 7$ Тогг. В связи с этим описываемые ниже эксперименты при $p_c < 10$ Тогг не проводились.

В рабочей камере на расстоянии $H_1 = 95 \text{ mm}$ от раскрыва рупора симметрично оси ЭМ-пучка и перпендикулярно его вектору П располагается алюминиевая пластина-экран с размерами $15 \times 15 \text{ cm}$. На ней симметрично оси пучка и вдоль его вектора *E* может располагаться ЭМ-вибратор. На расстоянии $H_2 = 43 \text{ mm}$ от плоскости экрана укреплена радиопрозрачная стеклотекстолитовая пластина толщиной 1.5 mm. На ней, как показано на рис. 1, может помещаться керамический поглотитель. На расстоянии $H_3 = 34$ mm от плоскости экрана укреплена дополнительная радиопрозрачная стеклотекстолитовая пластина толщиной 1.5 mm. На ней может помещаться дополнительный СВЧ-поглощающий лист толщиной 5 mm. В опытах вдоль поверхности экрана может реализоваться поток воздуха или его горючей смеси с пропаном C_3H_8 . Скорость потока v_{fl} имеет масштаб нескольких m/s. Выходное сечение формирующего поток сопла имеет вертикальный размер, равный 10 mm. Этот размер над поверхностью экрана в области СВЧ-пучка задает лист из оргстекла толщиной 1 mm.

Для реализации электрического пробоя газа, кроме того, что в заданной области должен быть обеспечен требуемый уровень поля $E > E_{\rm br}$, в ней необходимо и наличие некоторого числа начальных "свободных" электронов. Лавинно-временной рост их числа, собственно, и определяет явление газового электрического пробоя. В рассматриваемом случае инициации ЭМ-вибратором пробоя воздуха в ЭМ-пучке с глубоко подкритическим уровнем исходного поля $E_0 \ll E_{\rm cr}$ условие $E > E_{\rm br}$ соблюдается лишь в весьма малых областях вблизи полюсных концевых поверхностей вибратора. При длительностях СВЧ-импульсов в десятые доли секунды фоновых электронов в этих областях, как правило, нет. В связи с этим в экспериментах в течение $\tau_{\rm pul}$ на расстоянии 10 cm от оси ЭМ-пучка на плоскости экрана в двухмиллиметровом зазоре реализуется вспомогательный электрический разряд. Он является источником ультрафиолетового (УФ) излучения, которое, облучая поверхность ЭМ-вибратора, за счет фотоэффекта обеспечивает наличие около нее начальных электронов.

Измерение величины поля в ЭМ-пучке

В опытах первоначально была измерена амплитуда электрической составляющей СВЧ-поля E_0 на расстоянии от поверхности экрана $h = \lambda/4 = 31$ mm, т.е. в ближайшей к ней пучности поля. Измерения проводились без поглотителей, только с керамическим поглотителем и с двумя поглотителями.

В этих измерениях без перегородки из оргстекла на поверхность экрана по оси ЭМ-пучка устанавливалась пенопластовая стойка, и на нее вдоль вектора E_0 помещался ЭМ-вибратор.

Первоначально в опытах без СВЧ-поглотителей на стойку помещался алюминиевый ЭМ-вибратор со сферически закругленными концами с 2a = 5.6 mm и 2L = 22.4 mm, т.е. при отношении $\vartheta = 2L/2a = 4$. В соответствии с работой [12] этому значению ϑ соответствует отношение $\chi = E_{\text{pol}}/E_0 = 10$, где E_{pol} — величина поля на вершинах вибратора. Этот вибратор при вклю-

Рис. 2. Зависимость уровня превышения поля E_{pol} над E_{cr} при заданном давлении воздуха p от радиуса закругления конца вибратора a.

чении СВЧ-импульсов и по мере уменьшения давления p_c инициировал пробой воздуха при максимальном граничном значении $p_c = p_{br} = 15$ Torr. Величины χ и p_{br} позволяют рассчитать поле E_0 :

$$E_0 = \frac{42p_{\rm br}}{chi}\xi; \,\mathrm{V/cm.} \tag{3}$$

В этой формуле коэффициент ξ учитывает влияние диффузионного ухода электронов из пробойной области с $E > E_{cr}$ на поверхность инициатора и за границу области с $E = E_{cr}$. На рис. 2 приведен заимствованный из работы [13] график зависимости коэффициента ξ от радиуса сферического закругления торцевого конца вибратора *a* и определенного в эксперименте давления p_{br} . При расчете значения абсциссы в приведенной на рис. 2 формуле величину *a* надо подставлять в сm, а *p* — в Тогг. По графику в рассматриваемом случае при *a* = 0.28cm и $p_{br} = 15$ Тогг коэффициент $\xi = 2.2$. В результате формула (3) дает $E_0 = 140$ V/cm.

Очевидно, что при помещении в ЭМ-пучок поглотителей давление $p_{\rm br}$ будет падать. В то же время, как указывалось, на используемой установке проводить эксперименты можно было только при $p \ge 10$ Тогг. Учитывая это, в следующих измерениях первоначальный вибратор с $\vartheta = 4$ заменялся вибратором с 2a = 1.8 mm и 2L = 51.5 mm, т.е. с $\vartheta \approx 28.6$. Он инициировал пробой воздуха уже при граничном $p_{\rm br0} = 630$ Torr.

При помещении керамического поглотителя данный вибратор инициировал пробой уже при $p_{br1} = 30$ Тогг, а при наличии обоих поглотителей — $p_{br2} = 20$ Тогг. Эти значения p_{br} позволяют рассчитать соответствующие им уровни поля в пучности ЭМ-пучка. Так при помещении в ЭМ-пучок только керамического поглотителя поле $E_{01} = E_0(p_{br1}/p_{br0}) \cdot (\xi_1/\xi_0) = 14$ V/сm, где коэффициенты $\xi_0 = 1.1$ и $\xi_1 = 2.3$ определены по приведенному на рис. 2 графику. Соответственно при наличии в ЭМ-пучке обоих поглотителей $E_{02} = E_0(p_{br2}/p_{br0})(\xi_2/\xi_0) = 11$ V/сm при $\xi_0 = 1.1$ и $\xi_2 = 2.7$. Величина $(E_{02}/E_0)^2 = 6.2 \cdot 10^{-3}$ показывает, что помещение в ЭМ-пучко обоих поглотителей снижает его мощность до 10 W.

3. Результаты основных экспериментов

Основные эксперименты с ЭМ-вибратором — инициатором СВЧ-пробоя воздуха в глубоко подкритическом поле проводились при размере h = 5 mm. При этом вибратор представлял собой алюминиевый пруток со сферически закругленными концами диаметром 2a = 1.8 mm. В опытах его длина 2L последовательно уменьшалась от максимального значения $2L_{\rm max} \approx 65\,{\rm mm}$ с шагом, не превышающим 0.5 mm, и при каждом размере 2L определялось максимальное давление $p_c = p_{br}$, при котором вибратор инициировал СВЧ-пробой воздуха. Размер h задавался или установленной на экран пенопластовой прямоугольной пластиной с размером вдоль вибратора, равным 20 mm, на которую вибратор и помещался, или, как показано на рис. 1, перпендикулярной вибратору алюминиевой пластиной с размером вдоль вибратора $\delta = 10 \, {\rm mm}$ и толщиной 1.5 mm. Она припаивалась к вибратору в его центральной области. При этом "плечи" вибратора выдерживались равными с точностью 0.1-0.2 mm. Экран по оси ЭМ-пучка имеет отверстие с размерами 10 × 1.5 mm. В него плотно вставлялась припаянная к вибратору пластина. При этом при каждой установке вибратора с точностью до 0.1 mm выдерживалось расстояние от концевой поверхности плеч вибратора до поверхности экрана.

На рис. 3 кривые 1 и 2 показывают экспериментальные зависимости $p_{\rm br}(2L)$ при помещении вибратора на пенопластовую опору. При этом кривая 1 снята в ЭМ-пучке без поглотителей, а кривая 2 — при помещении в него обоих поглотителей.

Кривая *1* показывает, что при поле $E_0 = 140$ V/cm используемый ЭМ-вибратор в диапазоне его длины 2L = 56.5 - 55 mm инициирует пробой воздуха и при атмосферном давлении. Она позволяет оценить добротность *Q* ЭМ-вибратора как эквивалентного колебательного контура, используя известную аппроксимацию резонансной кривой в районе ее максимума [10]:

$$\frac{p_{\rm br}}{p_{\rm br\,max}} = \frac{1}{\sqrt{1+Q^2(\Delta 2L_{\rm res})^2}}. \tag{4}$$

В этом выражении Δ — полная ширина резонансной кривой при конкретном значении $p_{\rm br}$. Приняв по кривой *1* при $p_{\rm br} = 760$ Torr размер $\Delta = 1.5$ mm, при $p_{\rm br} = 500$ Torr — $\Delta \approx 2.6$ mm и $2L_{\rm res} = 55.75$ mm, по (4) получим $Q \approx 50$.

При таком значении Q формула (4) констатирует, что при отклонении длины вибратора от $2L_{\rm res}$ всего на $\Delta/2 \approx 0.15$ mm величина $p_{\rm br}$ уменьшится по отношению к $p_{\rm br\,max}$ уже на 10%. В связи с этим в экспериментах по "снятию" кривой 2 при уровне поля $E_{02} = 11$ V/cm размер 2L в районе резонансной длины вибратора уменьшался с шагом, не превышающим 0.2 mm. Из кривой 2 следует, что этот вибратор при сохранении резонансной длины $2L_{\rm res} \approx 55.75$ mm инициирует пробой воздуха

Рис. 3. Зависимость пробойного давления воздуха от длины инициирующего пробой ЭМ-вибратора.

при $p_{\rm br\,max} \approx 150$ Тогг. Следовательно, индуцированное поле на полюсах такого вибратора $E_{\rm pol} \approx E_{\rm cr}(p_{\rm br\,max})$ не менее чем в $5.7 \cdot 10^2$ раз превышает поле E_{02} . Эта кривая уточняет и величину его добротности — $Q = 2L_{\rm res}/\Delta \approx 70$, где $\Delta \approx 0.8$ mm — полная ширина резонансной кривой по уровню $p_{\rm br} = p_{\rm br\,max}/\sqrt{2}$.

Кривые 3 и 4 на рис. 3 показывают экспериментальные зависимости $p_{\rm br}(2L)$ для вибратора, закрепленного над экраном. При этом кривая 3 снята в ЭМ-пучке без поглотителей, а кривая 4 — при помещении в него обоих поглотителей. Из них следует, что резонансная длина такого вибратора $2L_{\rm res} = 62.25$ mm сместилась по оси 2L в большую сторону на размер 6.5 mm, что несколько меньше ширины крепящей вибратор стойки $\delta = 10$ mm.

Кривая 3 показывает, что при поле $E_0 = 140$ V/cm закрепленный на экране вибратор инициирует пробой воздуха при атмосферном давлении в диапазоне 2L = 62.5 - 62 mm. Оцененная по ней с использованием формулы (4) его добротность $Q \approx 50$.

Это значение Q также вынуждало при "снятии" кривой 4 в районе $2L_{\rm res}$ варьировать размер 2L с шагом, не превышающим 0.2 mm. Из кривой 4 следует, что такой вибратор при резонансной длине и уровне поля $E_{02} = 11$ V/ст инициирует пробой воздуха при $p_{\rm br\,max} = 135$ Torr. Этому давлению соответствует

Рис. 4. Внешний вид инициированного ЭМ-вибратором электрического разряда в СВЧ-пучке с глубоко подкритическим уровнем поля в потоке воздуха (a) и в потоке горючей смеси воздуха с пропаном (b).

 $E_{\rm cr} = 5.67 \cdot 10^3$ V/cm, что примерно в $5.1 \cdot 10^2$ раза превышает поле E_{02} . Оцененная по кривой 4 добротность такого вида инициатора $Q \approx 60$.

Сравнение параметров кривой 1 с кривой 3 и кривых 2 и 4 ставит конкретный вопрос. Почему при практически равных значениях Q и совпадающих величинах возбуждающих вибраторы исходных полей значение $p_{\rm br \ max}$ у кривой 4 меньше, чем значение $p_{\rm br \ max}$ у кривой 2. Очевидно, что и у кривой 3 оно будет меньше, чем у кривой 1. Можно предположить, что ответ на этот вопрос заключается в следующем.

Для незакрепленного вибратора как колебательного контура включенное в контур эквивалентное возбуждающее его напряжение $U = Eh_{\rm ac}$, где E — величина возбуждающего вибратор исходного поля, а действующая длина вибратора $h_{\rm ac} \approx 2L/2$ [10]. Закрепленный же на экране вибратор представляет собой два индуктивно связанных несимметричных Г-образных антенно-вибратора. Для каждого из них величина поля E сохраняется, а $h_{\rm ac}$ уменьшается. Аналитический расчет такой системы достаточно сложен. Современные численные методы позволяют его выполнить, и в этом случае представленные на рис. 3 данные могут явиться опорными.

В опытах закрепленный вибратор обдувался газовым потоком. На рис. 4, *а* приведена фотография инициированного СВЧ-разряда, обдуваемого потоком воздуха, а на рис. 4, *b* — потоком смеси воздуха с пропаном примерно в стехиометрическом соотношении [9]. На них направление потока — слева направо. С левой стороны изображений находится вертикальная крепящая вибратор стойка с $\delta = 10$ mm, а за ней — дальнее по потоку плечо вибратора. Общая длина вибратора $2L = 2L_{\rm res} = 62.25$ mm, а его диаметр 2a = 1.8 mm. Фотографии выполнены при давлении воздуха в камере $p_c = 135$ Torr и скорости потока $v_{fl} = 1.5$ m/s. В обоих случаях область разряда находилась около кормового конца вибратора.

Из рис. 4, *а* следует, что разрядная область вытянута вдоль потока воздуха, а рис. 4, *b* констатирует, что разряд поджигает поток горючей смеси. На этой фотографии угол верхнего конуса распространения пламени дает при известном v_{fl} и размере от оси вибратора до пластины, ограничивающей сверху область потока, равном 5 mm, дает оценку для скорости распространения пламени, лежащей в диапазоне $v_{flame} = 0.5-1$ m/s. Это значение соответствует справочным данным для пропан-воздушной смеси, а факт ее поджига констатирует, что температура отдельных участков разряда больше температуры поджига этой смеси, примерно равной 1000°C [9].

В следующей опытной серии закрепленный вибратор резонансной длины продолжал обдуваться пропанвоздушной смесью с неизменной v_{fl} , но газовое давление в рабочей камере p_c постепенно уменьшалось. Эксперименты проводились при всех возможных опытных величинах полей в СВЧ-пучке. Они показали, что при каждом из них есть минимальное пороговое давление p_{thres} , ниже которого продолжающий гореть инициированный глубоко подкритический СВЧ-разряд перестает поджигать горючую смесь, т.е. разрядная плазма становится низкотемпературной. С уменьшением поля фиксируемое граничное p_{thres} смещается в большую сторону. Так, при $E_0 = 140$ V/ст давление $p_{\text{thres}} = 50$ Torr, при $E_{01} = 14$ V/ст — $p_{\text{thres}} = 80$ Torr и при $E_{02} = 11$ V/ст — $p_{\text{thres}} = 90$ Torr.

Заключение

Таким образом, выполненные эксперименты продемонстрировали возможный способ зажигания газового электрического разряда в квазиоптическом СВЧ-пучке с глубоко подкритическим уровнем поля. При этом мощность СВЧ-пучка может быть порядка 1 W. Для формирования пучка с такой P beam необязательно применение магнетронных и клистронных СВЧ-генераторов, а возможно использование так называемых твердотельных генераторов. Исследованная схема зажигания СВЧ-разряда может быть применена для поджига потоков горючих смесей в реальных установках. При этом в описанных опытах выявлены граничные уровни газового давления p_{thres} в зависимости от уровней возбуждающих инициатор полей Е₀, меньше которых разрядная СВЧ-плазма становится низкотемпературной и в этих целях не может быть использована. В то же время глубоко подкритические разряды, зажженные в СВЧ-пучке при *p* < *p*_{thres}, могут быть использованы, например, в плазмохимических реакторах.

В заключение на рис. 5 в координатах E_0-p приведены определенные в экспериментах области реализации различных видов электрического разряда в воздухе в квазиоптическом СВЧ-пучке.

На рис. 5 области I и II — это области надкритических СВЧ-разрядов соответственно диффузного и объемно-развитого стримерно-шнурового видов. Область III —

Рис. 5. Виды электрического разряда в воздухе в поле квазиоптического СВЧ-пучка.

область подкритических инициированных СВЧ-разрядов с объемно-развитой стримерно-шнуровой структурой. Область IV — область глубоко подкритических высокотемпературных привязанных к инициатору СВЧ-разрядов. При этом на ней верхние фотографии демонстрируют разряд, инициированный свободно подвешенным в СВЧ-пучок ЭМ-инициатором, а нижние — обдуваемый газовой струей разряд, инициированный закрепленным над экраном ЭМ-вибратором. В областях III и IV приведены фотографии разрядов в чистом воздухе и в потоке его горючей смеси с пропаном. При этом фотографии в областях I-III и верхняя серия фотографий в области IV заимствованы из работ [7,8]. И наконец, область V это область низкотемпературных подкритических СВЧразрядов диффузного вида. Отметим также, что разряды в областях I, II и III могут быть реализованы только в импульсных режимах при τ_{pul} порядка нескольких десятков μ s и мощности пучка $P_{\rm beam} \approx 10^5 - 10^6$ W. Разряды в областях IV и V при уровне поля E0 порядка 100 V на практике можно реализовать и в непрерывном режиме горения при $P_{\text{beam}} \approx 10^3$ W. И наконец, разряды в этих областях при E₀ в десятки V/cm также могут быть реализованы в непрерывном режиме горения и при P_{beam} порядка 10 V.

Рис. 5 соответствует $\lambda \approx 10$ сm. При других значениях λ виды разрядов сохраняются, но зависимости $p_{\text{thres}}(E_0)$ и $E_{\text{thres}}(p)$, разделяющие E_0-p области их реализации, смещаются. Так, при меньших λ зависимость $p_{\text{thres}}(E_0)$ смещается в сторону больших p, а зависимость $E_{\text{thres}}(p)$ — в сторону больших E_0 [7].

Список литературы

- Грачев Л.П., Есаков И.И., Мишин Г.И., Никитин М.Ю., Ходатаев К.В. // ЖТФ. 1985. Т. 55. Вып. 2. С. 389–391.
- [2] Борисов Н.Д., Гуревич А.В., Милих Г.М. Искусственная ионизированная область в атмосфере. М.: Институт земного магнетизма, ионосферы и распространения радиоволн АН СССР, 1986. 184 с.
- [3] Сборник научных трудов "Высокочастотный разряд в волновых полях". Горький: Институт прикладной физики АН СССР, 1988. 298 с.
- [4] Зарин А.С., Кузовников А.А., Шибков В.М. Свободно локализованный СВЧ-разряд в воздухе. М.: Нефть и газ, 1996. 202 с.
- [5] Гуревич А.В. // УФН. 1980. Т. 132. Вып. 4. С. 685-690.
- [6] Грачев Л.П., Есаков И.И., Мишин Г.И., Ходатаев К.В. // ЖТФ. 1996. Т. 66. Вып. 7. С. 32–45.
- [7] Александров К.В., Грачев Л.П., Есаков И.И., Федоров В.В., Ходатаев К.В. // ЖТФ. 2006. Т. 76. Вып. 11. С. 52–60.
- [8] Esakov I.I., Grachev L.P., Khodataev K.V., Van Wie D.M. // Proc. of the 32nd AIAA Plasmadynamics and Lasers Conference and the 4th Weakly Ionized Gases Workshop Anaheim, CA, USA, 2001. AIAA-2001-2939.
- [9] Сэйитиро Кумагаи. Горение. М.: Химия, 1979. 256 с.
- [10] Грачев Л.П., Есаков И.И., Лавров П.Б., Раваев А.А. // ЖТФ. 2012. Т. 82. Вып. 2. С. 73–78.
- [11] Александров К.В., Грачев Л.П., Есаков И.И., Северинов Л.Г. // Письма в ЖТФ. 2014. Т. 40. Вып. 6. С. 89–94.
- [12] Александров К.В., Грачев Л.П., Есаков И.И. // ЖТФ. 2007.
 Т. 77. Вып. 12. С. 26–30.
- [13] Грачев Л.П., Есаков И.И., Ходатаев К.В., Цыпленков В.В. // Физика плазмы. 1992. Т. 18. Вып. 3. С. 411–415.