09,08

Кристаллическая структура, магнитные свойства и спектры рамановского рассеяния света твердых растворов BaFe_{12-x}Al_xO₁₉

© А.В. Труханов^{1,2}, Н.Т. Данг³, С.В. Труханов¹, С.Г. Джабаров^{4,5}, И.С. Казакевич¹, А.И. Маммадов⁵, Р.З. Мехдиева⁵, В.А. Турченко⁶, Р.Е. Гусейнов⁵

¹ НПЦ НАН Беларуси по материаловедению, Минск, Беларусь
² Национальный исследовательский технологический университет "МИСиС", Москва, Россия
³ Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
⁴ Bayerisches Geoinstitute, University Bayreuth, Bayreuth, Germany
⁵ Институт физики НАН Азербайджана, Баку, Азербайджан
⁶ Объединенный институт ядерных исследований, Дубна, Россия
E-mail: truhanov86@mail.ru
(Поступила в Редакцию 29 апреля 2015 г.)

Проведены исследования кристаллической структуры твердых растворов гексагональных ферритов ВаFe_{12-x}Al_xO₁₉ (x = 0.1 - 1.2) методом рентгеновской дифракции. Установлено, что при нормальных условиях образцы характеризуются пространственной группой $P6_3/mmc$. Отмечено, что диамагнитное замещение Fe³⁺ ионами Al³⁺ ведет к снижению параметров элементарной ячейки, что обусловлено меньшим радиусом ионов алюминия. Исследованы полевые зависимости удельного магнитного момента в диапазоне полей ± 2 T при 5 и 300 K методом вибрационной магнитого момента снижается с 49.6 emu/g (x = 0.1) до 32 emu/g (x = 1.2). Микроструктура исследована методом растровой электронной микроскопии. Представлены спектры рамановского рассеяния в диапазоне 200–800 cm⁻¹.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ по программе повышения конкурентоспособности НИТУ "МИСиС" среди ведущих мировых научно-образовательных центров (№ К4-2015-040), также авторы благодарят за финансовую поддержку "Исламский банк развития".

1. Введение

Интерес к исследованию бариевых ферритов с гексагональной структурой (BaFe₁₂O₁₉) и твердых растворов на их основе, допированных различными концентрациями ионов (Co, Sc, Ti, Nb и др.) [1,2], обусловлен их высокими функциональными характеристиками. Превосходная химическая стабильность и коррозионная стойкость [3] делают их экологически безопасными и годными к применению практически без ограничений во времени. Сочетание высокой коэрцитивной силы $(H_c \sim 160-55 \,\text{kA/m})$ [4-6] с достаточно высокой остаточной индукцией позволяет получать магниты с удовлетворительной удельной магнитной энергией, низкая электропроводность ($\rho \sim 108 \,\Omega \cdot \mathrm{cm}$) позволяет применять ферритовые магниты при наличии высокочастотных магнитных полей. Впервые бариевый гексаферрит, изоморфный магнетоплюмбиту PbO · 6Fe₂O₃, был получен фирмой Philips [7] еще в 1950-х годах. В настоящее время данные материалы получили практическое применение в устройствах магнитной записи информации [8,9], электрических двигателях [10], а также

9

в дециметровой и сантиметровой областях поглощения электромагнитного излучения [11,12], что обеспечивает электромагнитную совместимость устройств микроэлектроники и радиоаппаратуры. К несомненным преимуществам бариевых гексаферритов относятся также сильная кристаллическая и магнитная анизотропия и высокие значения температуры фазового перехода ферримагнетик—парамагнетик: вследствие сильного подрешеточного обмена в соединении формируется коллинеарное ферримагнитное упорядочение с температурой Кюри \sim 740 K [13]. Изменение числа магнитных связей ионов железа, например, при введении диамагнитных ионов Al, Co, Sc и др. позволяет управлять функциональными свойствами ферритов, в частности их магнитной анизотропией [14,15].

Все перечисленные выше особенности бариевых ферритов несомненно интересны как с научной, так и с практической точки зрения, однако относительно недавно выявленная особенность данных материалов позволяет рассматривать их как перспективные мультиферроики [16,17]. В зависимости от химического состава и температуры образующиеся твердые растворы могут

Рис. 1. Спектры рентгеновской дифракции твердых растворов $BaFe_{12-x}Al_xO_{19}$ (x = 0.1, 0.3, 0.6, 0.9 и 1.2).

обнаруживать коллинеарное ферримагнитное упорядочение вместе со значительной сегнетоэлектрической поляризацией в области комнатных температур, как, например, в $PbFe_{12}O_{19}$ и $BaFe_{12}O_{19}$. Однако, на наш взгляд, исследование связи распределения диамагнитных ионов в кристаллографических позициях твердых растворов бариевых ферритов с их магнитными свойствами было проведено в недостаточном объеме.

2. Описание эксперимента

Поликристаллические образцы $BaFe_{12-x}Al_xO_{19}$ (x = 0.1, 0.3, 0.6, 0.9 и 1.2) были получены из оксидов Fe_2O_3 , Al_2O_3 марки ЧДА и карбоната $BaCO_3$, взятых в соответствующих пропорциях:

$$BaCO_{3} + \left(6 - \frac{1}{2}x\right)Fe_{2}O_{3} + \left(\frac{1}{2}x\right)Al_{2}O_{3}$$
$$\rightarrow BaFe_{12-x}Al_{x}O_{19} + CO_{2}\uparrow.$$
(1)

Исходные составы подвергались синтезирующему обжигу на воздухе при 1473 K (6 h), а затем спекались при 1573 K (6 h). После спекания образцы медленно охлаждались (~ 100 K/h).

Рентгеновская дифракция образцов проведена на D8 Advance — порошковом дифрактометре (Bruker) со сле-

дующими параметрами: 40 kV, 40 mA, Cu K_{α} -излучение ($\lambda = 1.5406$ Å). Обработка рентгеновских дифракционных данных осуществлялась с помощью программы FullProf [18].

Спектры рамановского рассеяния света измерялись на спектрометре LabRam (NeHe-лазер с длиной волны 632 nm, конфокальная щель $110 \,\mu$ m, $\times 50$ объектив). Полевые зависимости удельной намагниченности образцов были измерены методом вибрационной магнитометрии с помощью универсальной измерительной системы "Helium Free Liquid" при температуре 300 K во внешних магнитных полях ± 2 T.

3. Результаты и их обсуждение

Спектры рентгеновской дифракции $BaFe_{12-x}Al_xO_{19}$, полученные при различных концентрациях Al при комнатной температуре, представлены на рис. 1. При нормальных условиях дифракционные спектры соответствуют гексагональной кристаллической структуре с пространственным типом симметрии $P6_3/mmc$, что хорошо согласуется с результатами, полученными ранее [19].

Концентрационные зависимости параметров элементарной ячейки приведены на рис. 2. С увеличением содержания ионов алюминия наблюдается уменьшение объема элементарной ячейки. Такое поведение объяс-

Рис. 2. Концентрационные зависимости параметров *a*, *c* и объема *V* элементарной ячейки твердых растворов $BaFe_{12-x}Al_xO_{19}$ (x = 0.1, 0.3, 0.6, 0.9 и 1.2).

няется замещением ионов Fe^{3+} с большим радиусом (r = 0.645 Å) ионами Al^{3+} , радиус которых меньше (r = 0.535 Å) [18].

На рис. 3 представлены изображения микроструктуры исследуемых составов, полученные с помощью растрового электронного микроскопа (РЭМ). Образцы представляют собой плотноупакованную поликристаллическую керамику (плотность выше 95%). Средний размер кристаллитов составляет до 200 nm. Разброс размеров зерен незначителен.

На рис. 4 представлены полевые зависимости удельного магнитного момента твердых растворов ВаFe_{12-x}Al_xO₁₉ (x = 0.1, 0.3, 0.6, 0.9 и 1.2), измеренные методом вибрационной магнитометрии при 5 и 300 К. Из предыдущих работ известно, что магнитный фазовый переход из ферримагнитного в парамагнитное состояние для данных составов зафиксирован в диапазоне температур 705-670 К [19], в то время как температура Кюри для незамещенного BaFe₁₂O₁₉ составляет 740 К. Увеличение концентрации ионов алюминия ведет к снижению удельного магнитного момента с 49.6 emu/g (x = 0.1) до 32 emu/g (x = 1.2) при комнатной температуре. Это обусловлено ослаблением обменных взаимодействий в дальнем порядке за счет фрустрации магнитной структуры при диамагнитном замещении. Практически для всех составов наблюдаются выход на насыщение во внешних магнитных полях до 0.2 Т и прямоугольная петля

Рис. 3. РЭМ-изображения микроструктуры твердых растворов $BaFe_{12-x}Al_xO_{19}$. x = 0.1 (*a*), 0.3 (*b*), 0.6 (*c*), 0.9 (*d*) и 1.2 (*e*).

Значение колебательной моды и рассчитанные коэффициенты линейной сжимаемости изгибающей колебательной моды $k_{\nu} = -(1/\nu_0)(d_{\nu}/d_x)_{T,P}$

	ν_1	ν_2	ν_3	ν_4	ν_5	ν_6	v_7	ν_8
x = 0.1	289.11	337.19	413.56	469.42	525.34	617.65	684.24	717.54
x = 0.3	288.77	339.23	416.41	471.85	528.15	621.33	687.47	721.31
x = 0.6	289.27	340.11	416.98	472.44	529.12	621.64	688.26	721.96
x = 0.9	289.61	340.88	417.29	472.83	529.69	621.78	688.75	722.52
x = 1.2	292.32	343.26	423.06	482.19	533.23	629.11	694.53	727.35
k_{v}	0.00908	0.01363	0.01816	0.02086	0.01141	0.01383	0.01092	0.01034

гистерезиса. Большие значения удельного магнитного момента, полученные при температуре 5 К, обусловлены снижением вклада тепловых флуктуаций.

Спектры рамановского рассеяния света ВаFe_{12-x}Al_xO₁₉, измеренные при комнатной температуре, показаны на рис. 5. В диапазоне 200-800 cm⁻¹ для ВаFe_{11.9}Al_{0.1}O₁₉ присутствуют восемь пиков при значениях $\nu \sim 289$, 337, 413, 469, 525, 617, 684 и 717 cm⁻¹, что хорошо согласуется с результатами, полученными ранее [20]. Моды $\nu \sim 289$ и 337 cm⁻¹ связаны с колебаниями O-Fe-O. Частота $\nu \sim 413$ cm⁻¹ связана с колебаниями октаэдров Fe(5)/Al(5)O₆, $\nu \sim 469$ и 525 cm⁻¹ — с колебаниями октаэдров Fe(1)/Al(1)O₆

Рис. 4. Полевые зависимости удельного магнитного момента твердых растворов BaFe_{12-x}Al_xO₁₉ (x = 0.1, 0.3, 0.6, 0.9 и 1.2). *T*, K: a = 300, b = 5.

Рис. 5. Спектры рамановского рассеяния света в твердых растворах $BaFe_{12-x}Al_xO_{19}$ (x = 0.1, 0.3, 0.6, 0.9 и 1.2).

Рис. 6. Концентрационные зависимости частот изгибающей (a) и симметричной растягивающей (b) колебательных мод в твердых растворах BaFe_{12-x}Al_xO₁₉ (x = 0.1, 0.3, 0.6, 0.9 и 1.2) и их линейная интерполяция.

и Fe(5)/Al(5)O₆, $\nu \sim 617 \, \mathrm{cm}^{-1}$ — с колебаниями октаэдров Fe(1)/Al(1)O₆, Fe(4)/Al(4)O₆ и Fe(5)/Al(5)O₆, $\nu \sim 684 \, \mathrm{cm}^{-1}$ — с колебаниями бипирамидальных анионных подрешеток Fe(2)/Al(2)O₅, $\nu \sim 717 \, \mathrm{cm}^{-1}$ — с колебаниями тетраэдрических анионных подрешеток

 $Fe(3)/Al(3)O_4$. Вклад от диамагнитных ионов Al^{3+} приводит к отличию полученных спектров рамановского рассеяния от спектра незамещенного гексагонального феррита [20].

Как видно из спектров, с увеличением количества Al происходит смещение мод вдоль оси x (рис. 6). Для составов с x = 0.3 - 1.2 также можно наблюдать эти моды.

Рассчитанные коэффициенты линейной сжимаемости изгибающей колебательной моды $k_{\nu} = -(1/\nu_0)(d_{\nu}/d_x)_{T,P}$ представлены в таблице.

4. Заключение

Проведены исследования кристаллической структуры твердых растворов гексагональных ферритов ВаFe_{12-x}Al_xO₁₉ (x = 0.1, 0.3, 0.6, 0.9 и 1.2). Установлено, что все исследуемые образцы описываются пространственной группой Р63/ттс. Уменьшение основных параметров элементарной ячейки в ряду твердых растворов с увеличением степени диамагнитного замещения ионами алюминия от x = 0.1 до 1.2 (параметр *a* уменьшается от 5.889 до 5.879 Å, параметр *с* — от 23.18 до 23.11 Å, объем элементарной ячейки снижается от 696.43 до 692.13 Å³) обусловлено различием ионных радиусов Fe³⁺ (r = 0.645 Å) и Al³⁺ (r = 0.535 Å). Все исследованные образцы представляют собой плотноупакованную поликристаллическую керамику (плотность выше 95%). Средний размер кристаллитов составляет до 200 nm. Увеличение концентрации ионов алюминия ведет к снижению температуры магнитного фазового перехода ферримагнетик-парамагнетик от 705 К (для x = 0.1) до 670 К (для x = 1.2) и снижению удельного магнитного момента с 49.6 emu/g (x = 0.1) до 32 emu/g (x = 1.2) при комнатной температуре. Это обусловлено ослаблением обменных взаимодействий в дальнем порядке за счет фрустрации магнитной структуры при диамагнитном замещении. В спектрах рамановского рассеяния отмечены восемь пиков, дано их объяснение. Представлены значения диамагнитного смещения для образцов различных концентраций. Рассчитаны значения коэффициентов линейной сжимаемости изгибающей колебательной моды $k_{\nu} = -(1/\nu_0)(d_{\nu}/d_x)_{T,P}$.

Список литературы

- [1] С. Крупичка. Физика ферритов и родственных им магнитных окислов. Мир, М. (1976). Т. 2. 504 с.
- [2] C. Robert. Pullar Progr. Mater. Sci. 57, 1191 (2012).
- [3] X. Liu, J. Wang, L.M. Gan, S.C. Ng, J. Ding. J. Magn. Magn. Mater. 184, 344 (1998).
- [4] Дж.В. Гуденаф. Магнетизм и химическая связь. Металлургия, М. (1968). 328 с.
- [5] S. Castro, M. Gayoso, J. Rivas, J.M. Greneche, J. Mira, C. Rodriguez. J. Magn. Magn. Mater. 152, 61 (1996).

- [6] M.H. Makled, T. Matsui, H. Tsuda, H. Mabuchi, M.K. El-Mansy, K. Morii. J. Mater. Proc. Technol. 160, 2, 229 (2005).
- [7] J.J. Went, G.W. Rathenau, E.W. Gorter, G.W. van Oosterhout. Philips Tech. Rev. **13**, 194 (1952).
- [8] M. Matsuoka, M. Naoe, Y. Hoshi. J. Appl. Phys. 57, 4040 (1985).
- [9] A. Morisako, M. Matsumoto, M. Naoe. IEEE Trans. Magn. 22, 1146 (1986).
- [10] E. Richter, T.J.E. Miller, T.W. Neumann, T.L. Hudson. IEEE Trans. Ind. Appl. 21, 644 (1985).
- [11] S.B. Narang, I.S. Hudiara. J. Ceram. Proc. Res. 7, 2, 113 (2006).
- [12] A. Kumar, V. Agarwala. D. Singh. Progr. Electromagn. Res. M 29, 223 (2013).
- [13] T. Tsutaoka, N. Koga. J. Magn. Magn. Mater. 325, 36 (2013).
- [14] V.N. Dhage, M.L. Mane, A.P. Keche, C.T. Birajdar, K.M. Jadhav. Physica B 406, 4, 789 (2011).
- [15] D. Chen, Y. Liu, Y. Li, K. Yang, H. Zhang. J. Magn. Magn. Mater. 337–338, 65 (2013).
- [16] T. Kimura, G. Lawes, A.P. Ramirez. Phys. Rev. Lett. 94, 137 201 (2005).
- [17] Y. Tokunaga, Y. Kaneko, D. Okuyama, S. Ishiwata, T. Arima, S. Wakimoto, K. Kakurai, Y. Taguchi, Y. Tokura. Phys. Rev. Lett. **105**, 257 201 (2010).
- [18] J. Rodriguez-Carvajal. Physica B 192, 55 (1993).
- [19] В.А. Турченко, А.В. Труханов, И.А. Бобриков, С.В. Труханов, А.М. Балагуров. Кристаллография **60**, *3*, 400 (2015).
- [20] R.D. Shannon. Acta Cryst. A 32, 751 (1976).