¹⁰ Акустическая эмиссия при образовании и срыве дислокационного скопления

© Д.С. Андрианов,² В.В. Благовещенский,¹ И.Г. Панин²

¹ Костромской государственный университет им. Н.А. Некрасова,

156000 Кострома, Россия

² Костромской государственный технологический университет,

156005 Кострома, Россия

e-mail: blagovvv@list.ru

(Поступило в Редакцию 21 сентября 2015 г.)

Построена модель образования дислокационного скопления и его эволдюции после открепления головной дислокации. По данным, полученным в результате работы модели, вычислен сигнал акустической эмиссии, сопровождающий стадию образования скопления и его срыва. Оценена величина упругих напряжений в излучаемом сигнале. Приведены данные по релаксации упругих напряжений в образце, содержащем скопление.

Введение

Явление акустической эмиссии происходит в кристаллических твердых телах при деформации, сопровождающейся образованием и эволюцией дислокационных ансамблей. Упругая энергия, излучаемая при этом, может регистрироваться диагностической аппаратурой, используемой для контроля над состоянием металлических конструкций [1,2]. Одним из возможных механизмов эмиссии является акустическое излучение, сопровождающее работу источника Франка-Рида (ФР). Начальная стадия этого процесса, начинающаяся задолго до момента блокировки образующегося скопления обратными напряжениями, и сопровождающего его излучения моделировалась в работах В.Д. Нацика и К.А. Чишко [3,4]. Теоретические расчеты акустической эмиссии при пластической деформации с коллективным движением дислокаций представлены в [5]. Они показывают, что релаксация напряжений начинается с момента максимального значения акустического импульса, который совпадает по времени с максимальным значением напряжений в кристалле. В то же время полученная при этом кривая напряжения не совсем точно описывает реальный процесс деформирования ни с точки зрения опытных данных [6], ни с точки зрения результатов моделирования [7]. В настоящей работе представлены результаты моделирования акустической эмиссии скопления вплоть до момента его блокировки, а также после его срыва.

Модель

При решении данной задачи образования источника ФР дислокационного скопления и движения его после срыва был использован разработанный авторами ранее метод численного решения уравнения движения дислокационного сегмента [8]. Для этого в правую часть уравнения движения дислокационного сегмента было добавлено слагаемое $q(\lambda, t)$, учитывающее взамодействие дислокаций в скоплении

$$p \frac{\partial U}{\partial t} - \frac{\partial^2 U}{\partial \lambda^2} = S - \frac{1}{R(\lambda)} + q(\lambda, t),$$
$$U(0, t) = U(L, t) = 0 \ \forall \ t, \quad U(\lambda, 0) = 0 \ \forall \ \lambda, \quad (1)$$

где $p = B/Gb^2$, $S = \sigma/Gb$, t — время, G — модуль сдвига, b — модуль вектора Бюргерса, B — коэффициент динамической вязкости, U — смещение точек дислокационного сегмента, $R(\lambda)$ — радиус кривизны сегмента в точке λ , σ — величина внешнего напряжения, λ — криволинейная координата вдоль сегмента, L — длина сегмента в криволинейных координатах, q — сила воздействия со стороны других дислокаций. Уравнение (1) справедливо для смещений U сегмента $U \ll L$ и решается численно методом сеток.

В образовании скоплений определяющую роль играет взаимодействие между дислокациями, для учета которого в правую часть уравнения (1) введено дополнительное слагаемое q, представляющее собой усилие, создаваемое в точке λ данного дислокационного сегмента со стороны всех уже испущенных источником дислокационных петель:

$$q(\lambda, t) = \sum (\sigma_{yz}) / \sigma_{cr}, \qquad (2)$$

где $\sigma_{\rm cr} = Gb/l_0$ — критическое напряжение, при котором дислокационная петля источника теряет устойчивость, l_0 — расстояние между точками закрепления, σ_{yz} — компонента поля напряжений, создаваемого отдельными отрезками дислокаций. Суммирование в (2) выполняется по всем прямолинейным отрезкам дислокаций, состовляющим все дислокационные скопления.

Поле напряжений в точке с координатами (x, y), создаваемое отрезком дислокации с координатами концов

Рис. 1. Образовавшееся скопление дислокаций из девяти дислокационных петель.

Рис. 2. Образец, деформируемый постоянным однородным напряжением.

 (x_1, y_1) и (x_2, y_2) , определяется как в [9]:

$$\sigma_{yz} = -\frac{Gb}{4\pi} \left(J_1 \left(ax + \frac{v}{v-1} \left(c - y \right) \right) + J_2 \frac{a}{v-1} \right), \quad (3)$$

где v — коэффициент Пуассона,

$$a = \frac{y_1 - y_2}{x_1 - x_2}, \quad c = \frac{x_1 y_1 - x_2 y_2}{x_1 - x_2},$$
$$J_1 = \int_{x_1}^{x_2} \frac{dx'}{R^3}, \quad J_2 = \int_{x_1}^{x_2} \frac{x' dx'}{R^3},$$
$$R = \sqrt{(x - x')^2 + (y - ax' - c)^2}.$$

Именно эта компонента σ_{yz} поля напряжений определяет взаимодействие дислокаций в плоскости скольжения. Головная дислокация, испущенная источником, закрепляется на некотором расстоянии от него, как бы встретив на своем пути непреодолимое препятствие. Следующая дислокация, приближаясь к первой, испытывает на себе ее воздействие, возрастающее по мере приближения к ней и препятствуя дальнейшему продвижению вплоть до полной остановки. Таким образом, начинает образовываться дислокационное скопление, в котором все дислокационные линии действуют друг на друга. Все последующие дислокации, испущенные источником, испытывают на себе воздействие со стороны скопления. Процесс генерации петель источником прекращается, когда сумма внешнего напряжения и напряжений от дислокаций скопления становится меньше $\sigma_{\rm cr}$ (рис. 1). В этот же момент вычисляется полная деформация ε образца по формуле

где

$$\varepsilon = \varepsilon_E + \varepsilon_M,$$
 (4)

$$\varepsilon_E = \sigma/G, \quad \varepsilon_M = bS_S/(ha^2).$$

Здесь ε_E — упругая деформация, ε_M — деформация, вызванная движением дислокаций, S_S — суммарная заметенная всеми дислокациями к этому моменту площадь, $a = 35 \cdot 10^{-6}$ m — сторона площадки моделирования, h = 0.1a — высота образца (рис. 2).

После блокировки источника и окончания процесса генерации новых петель производится искусственный срыв скопления за счет освобождения внешней дислокационной петли. Непосредственно перед срывом скопления фиксируется полная деформация образца, а заметаемая дислокациями площадь после срыва приводит к значительному увеличению дислокационной части деформации (4), при этом уменьшается упругая составляющая полной деформации ε_E и, как следствие, уменьшаются и упругие напряжения в образце $\sigma = G\varepsilon_E$.

Акустическое излучение, сопровождающее процесс образования скопления и его срыв, можно оценить формулой [4,10]

$$\sigma \approx G \, \frac{b}{r} \left(\frac{\rho b^2 c}{l_0 B} \right)^2 \frac{d^2 S}{d\tau^2},\tag{5}$$

где с — скорость звука, ρ — плотность кристалла, r — расстояние от источника до приемника сигнала, $\tau = tD/Bl_0^2$ — безразмерное время, $D = (Gb^2/4\pi) \ln(l_0b)$. Из выражения (5) видно, что величина упругих напряжений излучения пропорциональна второй производной от заметаемой дислокационной площади. На основе данного факта строятся дальнейшие эксперименты с моделью при вычислении акустического излучения.

Результаты

Далее представлены результаты двух экспериментов: зависимость акустического излучения от времени при образовании дислокационного скопления до и после срыва. На рис. 3 представлен график второй производной от заметаемой площади по времени до момента срыва скопления при образовании дислокационной конфигурации, представленной на рис. 1. Данный график представляет собой периодически повторяющиеся двуполярные

Рис. 3. Зависимость величины сигнала акустического излучения при образовании дислокационного скопления от времени до его срыва.

Рис. 4. Зависимость величины сигнала акустического излучения после срыва скопления от времени.

Рис. 5. Релаксация действующего в образце напряжения после срыва скопления.

импульсы, уменьшающиеся по амплитуде. Стрелками отмечены моменты аннигиляции с образованием замкнутой петли по ФР. Положительный импульс соответствует ускоренному движению после преодоления критического положения и потери устойчивости. Отрицательный импульс превосходит на порядок положительный и вызван резким торможением дислокаций при образовании скопления. Амплитуда импульсов уменьшается, а ширина увеличивается с ростом скопления, что обусловлено ростом числа дислокаций в скоплении. Полученный результат в основном согласуется с расчетами, приведенными в [3]. Отличие вызвано тем, что в [3] для образования скопления головная петля фиксировалась далеко от скопления, поэтому к моменту фиксации успевало образовываться несколько петель. В данном же случае момент фиксации головной петли происходил во время движения второй петли. Период импульсов порядка 10^{-6} s пропорционален коэффициенту динамической вязкости *B* и увеличивается из-за тормозящего воздействия образующегося скопления.

На рис. 4 представлен акустический сигнал, возникающий в момент открепления головной петли (срыва дислокационного скопления). Сигнал представляет собой двуполярный импульс значительной амплитуды. Положительный всплеск имеет величину порядка $1.6 \cdot 10^6 \text{ m}^2/\text{s}^2$, отрицательный — $0.6 \cdot 10^6 \text{ m}^2/\text{s}^2$. Положительный всплеск вызван "разбеганием" дислокаций в начальный момент после срыва, а отрицательный замедлением разбегания при удалении дислокаций друг от друга и уменьшением взаимодействия между ними, а также уменьшением внешнего напряжения из-за релаксации. Второй двуполярный импульс меньшей амплитуды возникает при возврате последней "неотшнуровавшейся" петли в исходное положение.

На рис. 5 изображено изменение внешнего напряжения вследствие релаксации. Пользуясь формулой (5), можно оценить упругие напряжения сигнала. Подставляя используемые параметры модели: $G = 1.8 \cdot 10^{10}$ Ра, $b = 4 \cdot 10^{-10}$ m, $\rho = 5 \cdot 10^3$ kg/m³, $r = 10^{-2}$ m, $B = 8 \cdot 10^{-4}$ Ра · s, $c = 5 \cdot 10^3$ m/s, $l_0 = 0.5 \cdot 10^{-6}$ m, получим оценку $\sigma \sim 10^3$ Ра.

Заключение

Амплитуда звукового импульса при срыве скопления значительно превышает амплитуду сигнала на всех этапах его образования. Например, амплитуда положительного импульса, образовавшегося сразу после открепления головной дислокационной петли, в 30 раз превышает амплитуду наибольшего отрицательного выброса при торможении дислокаций в образующемся скоплении. Следует отметить сходство этого процесса с образованием больших сдвиговых напряжений в земной коре перед землетрясением [9].

Учет взаимодействия дислокаций при образовании и срыве скопления требует значительных вычислительных ресурсов. Для ускорения расчетов применялась технология распараллеливания вычислений, а сами расчеты проводились с использованием вычислительного 38 ядерного кластера T-Edge-10 с пиковой нагрузкой 456 tf Костромского государственного университета им. Н.А. Некрасова. Все это позволило свести время вычислений к приемлемым величинам.

Список литературы

- [1] Муравьев Т.В., Зуев Л.Б. // ЖТФ. 2008. Т. 78. Вып. 8. С. 135–139.
- [2] Kamyshanchenko N.V., Nikulin I.S., Kungurtsev E.S., Kungurtsev M.S. // Technical Phys. Lett. 2013. Vol. 39. N 5. P. 469–471.
- [3] Нацик В.Д., Чишко К.А. // ФТТ. 1975. Т. 17. № 1. С. 342– 345.
- [4] Нацик В.Д., Чишко К.А. // ФТТ. 1978. Т. 20. № 7. С. 1933– 1936.
- [5] Kumar J., Ananthakrishna G. // Phys. Rev. Lett. 2011. Vol. 106. N 10. P. 105 702.
- [6] Полухин П.И., Гун Г.Я., Галкин А.М. Сопротивление пластической деформации металлов и сплавов. М.: Металлургия, 1983. 352 с.
- [7] Благовещенский В.В., Панин И.Г. // Физика металлов и материаловедение. 2010. Т. 109. Вып. 3. С. 286–288.
- [8] Благовещенский В.В., Панин И.Г. // Вычислительные технологии. 2008. Т. 13. Вып. 5. С. 5–10.
- [9] Хирт Дж., Лоте И. Теория дислокаций. М.: Атомиздат, 1972. 599 с.
- [10] Косевич А.М. // УФН. 1964. Т. 84. Вып. 4. С. 579-609.

127