13

Влияние давления рабочего газа на магнитные свойства и текстуру поликристаллических пленок Fe/SiO₂/Si(100), полученных магнетронным распылением

© Ю.В Никулин,^{1,2} А.С. Джумалиев,^{1,2} Ю.А. Филимонов^{1,2,3}

¹ Саратовский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, Саратов, Россия

² Саратовский национальный исследовательский университет им. Н.Г. Чернышевского,

Саратов, Россия

³ Саратовский государственный технический университет им. Ю.А. Гагарина,

Саратов, Россия

e-mail: yvnikulin@gmail.com

(Поступило в Редакцию 24 сентября 2015 г.)

Исследованы магнитные свойства и текстура поликристаллических пленок Fe/SiO₂/Si(100) толщиной 90 nm, полученных магнетронным распылением при различном давлении рабочего газа. Показано, что снижение давления может приводить к росту намагниченности пленок на 50% и уменьшению ширины линии ферромагнитного резонанса и поля коэрцитивности более чем на порядок. Указанные изменения магнитных свойств отражают смену текстуры пленок с Fe(110) на Fe(200) и переход от столбчатой микроструктуры к квазиоднородной.

Введение

Разработке методов получения текстурированных поликристаллических пленок железа (Fe) на полупроводниковых подложках и исследованиям связи текстуры с магнитными параметрами и микроструктурным строением пленок уделяется большое внимание в связи с перспективами создания устройств спинтроники и магноники на их основе и возможностью их совмещения с интегральными полупроводниковыми технологиями [1-3]. В частности, текстурированные поликристаллические пленки Fe(100) представляют интерес с точки зрения создания сред для перпендикулярной магнитной записи [4], индукционных записывающих головок [5], магниторезистивных структур [6,7] и СВЧ устройств [8,9]. К этому следует добавить, что текстура пленок определяет их упругие свойства, что может оказаться важным для применения поликристаллических пленок железа в микроэлектромеханических системах [10]. Для роста пленок Fe на полупроводниковых подложках широко используют технологии электрохимического осаждения [11], молекулярно-лучевой эпитаксии [12], термического [13], ионного [14] и магнетронного [4-10,15-20] распылений. Последний метод характеризуется большим набором управляющих параметров [21] и позволяет управлять микроструктурой, кристаллографической текстурой и свойствами пленок за счет изменения температуры T_s и потенциала смещения Us подложки, давления P и состава рабочего газа, бомбардировкой растущей пленки дополнительным пучком ионов, потенциалом (мощностью) магнетрона и расстоянием между магнетроном и подложкой [22-25]. Цель настоящей работы показать, что за счет снижения давления аргона Р можно добиться существенного улучшения магнитных параметров пленок $Fe/SiO_2/Si(100)$, которое происходит на фоне смены

кристаллографической текстуры пленки с Fe(110) на Fe(100) и характера микроструктурного строения по толщине от столбчатого на квазиоднородный.

Следует отметить, что влияние давления аргона на кристаллографическую текстуру и магнитные свойства пленок Fe на неориентирующих подложках ранее уже обсуждалось [4,5,15-20]. Во всех перечисленных работах, за исключением работы [20], изменение лишь одного параметра Р сопровождалось улучшением кристалличности и магнитных параметров, но оказывалось недостаточным для смены текстуры пленки с Fe(110) на Fe(100). Поэтому для получения пленок Fe(100) использовалось добавление в рабочий газ кислорода [19], отжиг пленок при $T_s \approx 873 \, {\rm K}$, полученных при низких скоростях роста [4], осаждение на нагретую подложку $(T_s \approx 773 \text{ K})$ [17,15] или за счет отжига пленок Fe(110) при $T_s \approx 873 \,\mathrm{K}$ [15]. То обстоятельство, что на неориентирующих подложках легче всего растут пленки железа с текстурой (110), связано с тем, что кристаллографическая плоскость Fe(110) характеризуется наименьшим значением поверхностной энергии [26]. В работе [20] было показано, что за счет только лишь снижения давления *Р* для пленок Fe, осажденных магнетронным распылением на постоянном токе на подложки $SiO_2/Si(100)$, можно получить смену текстуры с (110) на (100). Однако влияние давления рабочего газа на магнитные параметры пленок Fe/SiO₂/Si(100) в работе [20] не обсуждалось.

Результаты и обсуждение

Магнетронное распыление проводилось в вакуумной установке ВУП-5 с базовым давлением 0.2 mPa. Для распыления использовалась мишень Fe (99.95%, Williams), а в качестве рабочего газа аргон марки ОЧ

Рис. 1. *а* — дифрактограммы пленок Fe толщиной *d* ≈ 90 nm, выращенных на подложках Si/SiO₂ при различном давлении рабочего газа *P* ≈ 1.33–0.09 Pa при комнатной температуре подложки $T_s \approx 293$ K. Вертикальными линиями показаны положения дифракционных линий Fe(110) и Fe(200) из базы данных Международного центра по дифракционным данным (JCPDS, карточка № 060696); *b* — зависимости изменения межплоскостного расстояния Δa для кристаллографических плоскостей (200) и (110) пленок Fe толщиной *d* ≈ 90 nm от давления рабочего газа *P*. В качестве эталонных значений межплоскостного расстояния $d^{(110)} \approx 0.2028$ nm и $d^{(200)} \approx 0.1434$ nm брались значения для порошкового поликристаллического железа (база данных Международного центра по дифракционным данным, карточка № 060696).

(99.998%). Давление рабочего газа менялось в диапазоне $P \approx 0.09-1.33$ Ра. При этом мощность разряда изменялась от 57 до 100 W, а скорость роста увеличивалась от $v \approx 18$ до 30 nm/min. Расстояние от подложки до мишени составляло 75 mm. Пленки железа осаждались на подложки монокристаллического кремния Si(100) с термически окисленным слоем SiO₂ толщиной 0.3 μ m. Среднеквадратичная шероховатость поверхности подложки очищались в ультразвуковой ванне с ацетоном и подвергались отжигу в вакууме при температуре 620-670 K в течение 30 min. Напыление проводилось на подложку при комнатной температуре $T_s \approx 293$ K.

Кристаллическая структура пленок изучалась методом рентгеновской дифракции с помощью дифрактометра ДРОН-4 с фокусировкой по плоскому образцу в геометрии Брэгга-Брентано (схема $\Theta - 2\Theta$ Cu-K_aизлучение, $\lambda \approx 0.15418 \text{ nm}$). Микроструктура пленок изучалась с помощью сканирующего электронного микроскопа (СЭМ) (Auriga, Carl Zeiss). Эффективная намагниченность насыщения $4\pi M_s$ и ширина линии ферромагнитного резонанса ΔH определялись методом ферромагнитного резонанса (ФМР) на частоте 9.9 GHz при комнатной температуре в касательной геометрии намагничивания аналогично [27]. Петли перемагничивания получались методом вибромагнитометрии (BM) при комнатной температуре в касательной к поверхности пленки геометрии намагничивания. Толщина пленок *d* определялась методом профилометрии (Dectak 150, Veeco) с точностью 5%. Выращенные пленки не покрывались защитным слоем перед извлечением на атмосферу.

На рис. 1, а и 2 приведены дифрактограммы и изображения поперечного сечения пленок Fe, полу-

ченных при различных давлениях рабочего газа P. Из рисунков видно, что пленки Fe, осаждаемые при $1.33 \le P \le 0.26$ Pa, формируются с текстурой (110) и столбчатой микроструктурой по толщине, тогда как в пленках, осаждаемых при P < 0.15 Pa, формируется текстура (200) и квазиоднородная микроструктура. Пленки Fe(200), получаемые при P < 0.15 Pa обладают лучшей текстурированностью и кристалличностью по сравнению с пленками Fe(110), осаждаемыми при давлениях аргона $1.33 \le P \le 0.26$ Pa. Это подтверждается большими значениями интенсивности дифракционной линии Fe(200) относительно интенсивности шумового сигнала.

Указанные изменения текстуры и микроструктуры осажденных пленок Fe при снижении давления рабочего газа Р связаны с увеличением миграционной способности адсорбированных на подложке атомов (адатомов) железа и обсуждались в работах [20,28]. Нужно отметить, что стабилизация кристаллической фазы Fe(200) также достигается за счет минимизации энергии внутренних напряжений в пленке [29]. Поскольку для железа модуль Юнга в (100) направлении $Y^{[100]} \approx 130 \, {
m GPa}$ почти вдвое меньше, чем в $\langle 110
angle$ направлении $Y^{[110]} \approx 219.2 \,\text{GPa}$ [30], кристаллиты Fe(200) легче поддаются линейной деформации, чем кристаллиты Fe(110), и соответственно растягиваясь или сжимаясь, могут эффективно минимизировать упругие напряжения, возникающие в процессе роста пленки [29]. Данное предположение подтверждается зависимостью изменения межплоскостного расстояния Δa для кристаллографических плоскостей (200) и (110) от давления рабочего газа Р, представленной на рис. 1, b. Из рисунка видно, что наиболее сильные изменения межплоскостного расстояния ($\Delta a \approx 0.9 - 1.1\%$) проявляются в области

Рис. 2. СЭМ изображения поперечного сечения пленок Fe толщиной $d \approx 300$ nm, выращенных при различном давлении рабочего газа $P: I - P \approx 1.33 - 0.5$ Pa, текстура (110), $2 - P \approx 0.2$ Pa, присутствуют две кристаллические фазы Fe(110) и Fe(200) без выраженного текстурирования, $3 - P \approx 0.13 - 0.9$ Pa, текстура (200). Масштаб для рисунка b = 300 nm.

низкого давления рабочего газа ($P < 0.2 \, \text{Pa}$), когда в пленке доминирует текстура (200).

Изменение кристаллического строения и микроструктуры пленок при снижении давления рабочего газа также сопровождается значительным улучшением их магнитных характеристик. На рис. 3 представлены зависимости $4\pi M_s$, ΔH , H_c и M_r/M_s от давления рабочего газа Р для пленок толщиной 90 nm. Из рис. 3, а видно, что с понижением P от $P \approx 1.33$ до 0.09 Ра намагниченность насыщения $4\pi M_s$ увеличивается почти в 1.5 раза и достигает значений $4\pi M_s \approx 20-20.5$ kG, что всего на 5-7% меньше значений $4\pi M_s \approx 21.5 \,\mathrm{kG}$ для объемного железа [31]. При этом значения структурночувствительных параметров ΔH и H_c уменьшаются в десятки раз с $\Delta H \approx 820$ Ое и $H_c \approx 160$ Ое при $P \approx 1.33$ Ра, достигая значений $\Delta H \approx 30 \,\text{Oe}$ и $H_c \approx 2.5 \,\text{Oe}$ при $P \approx 0.09$ Ра. Увеличение значений $4\pi M_s$ и уменьшение ΔH и H_c при снижении давления рабочего газа P может быть связано с тем, что в диапазоне давлений $P \approx 0.13 - 0.09$ Ра пленки Fe(200) имеют более высокую структурную однородность, являются менее пористыми и обладают более высокой кристалличностью. Известно, что увеличение кристалличности пленки приводит к увеличению координационного числа кристаллической структуры, рост значений которого может оказывать влияние на величину намагниченности $4\pi M_s$ пленки [32]. Нужно отметить, что столбчатая структура пленок, осаждаемых при высоких давлениях рабочего газа $P \approx 0.5 - 1.33$ Ра, подразумевает наличие большого количества дефектов в виде межзеренных границ и аморфизированных областей, которые, являясь структурными дефектами, также способствуют увеличению H_c и ΔH . При этом бо́льшую ширину линии Φ MP в пленках Fe(110) следует связать с доминирующим вкладом процессов двухмагнонного рассеяния [33,34] в пленках со столбчатой структурой.

Рис. 3. a — зависимость эффективной намагниченности насыщения $4\pi M_s$ (1) и ширины линии ФМР ΔH (2) от давления рабочего газа P; b — зависимость коэрцитивной силы H_c (1) и коэффициента прямоугольности петли гистерезиса M_r/M_s (2) от давления рабочего газа P. Толщина пленок $d \approx 90$ nm. В интервале давлений 0.2 < P < 0.26 Ра (область I) в пленках присутствуют две кристаллические фазы Fe(110) и Fe(200) без выраженного текстурирования. Области давлений II и III отвечают текстурам Fe(200) и Fe(110) соответственно.

Снижение давления рабочего газа приводит также к изменению характера перемагничивания пленки. Из рис. 3, *b* видно, что пленки, осажденные при $P \approx 0.09-0.13$ Ра, имеют петли гистерезиса с коэффициентом прямоугольности $M_r/M_s \approx 0.9-0.95$, что свидетельствует о формировании оси легкого намагничивания в плоскости пленки. Увеличение давления рабочего газа до $P \approx 0.5-1.33$ Ра приводит к уменьшению коэффициента прямоугольности до $M_r/M_s \approx 0.3-0.4$ и переходу к закритическим петлям гистерезиса [35]. Малые значения отношения M_r/M_s , характерные для закритических петель гистерезиса, могут быть связаны с формированием в пленке поля перпендикулярной магнитной анизотропии обусловленного анизотропией формы кристаллитов пленок со столбчатой микроструктурой.

Заключение

Таким образом, в работе показано, что при магнетронном осаждении пленок железа на подложку Si/SiO2 снижение давления рабочего газа с $P \approx 1.33$ до 0.09 Ра наряду со сменой текстуры пленок с Fe(110) на Fe(200) и изменения микроструктуры со столбчатой на квазиоднородную приводит к увеличению $4\pi M_s$ в 1.5 раза, снижению ΔH почти в 30 раз, H_c почти в 60 раз и переходу от закритических $(M_r/M_s \approx 0.3 - 0.4)$ петель гистерезиса к прямоугольным ($M_r/M_s \approx 0.9 - 0.95$). Указанное улучшение магнитных характеристик пленки связывается с улучшением структурной однородности и кристалличности пленки при снижении давления рабочего газа с $P \approx 1.33$ до 0.09 Ра. Отметим, что подходы к управлению текстурой, микроструктурой и магнитными свойствами пленок ферромагнитных металлов могут представлять интерес при создании многослойных структур на основе пленок Fe(200) и сред с перпендикулярной магнитной анизотропией [4]. Кроме того, полученные результаты по влиянию давления на микроструктуру и текстуру пленок показывают их взаимосвязь и дополняют зонную модель формирования микроструктуры пленок [22-25], наносимых на не ориентирующие подложки методом магнетронного распыления.

Работа выполнена при финансовой поддержке РФФИ (гранты № 16-37-60052).

Список литературы

- [1] Prinz G.A. // Science. 1998. Vol. 282. P. 1660-1663.
- [2] Boeck J. De, Van Roy W., Motsnyi V., Liu Z., Dessein K., Borghs G. // Thin Sol. Film 2002. Vol. 412. P. 3–13
- [3] Tsai C.S., Su J., Lee C.C. // IEEE Trans. Magn. 1999. Vol. 35. N 5. P. 3178–3180.
- [4] Nakagawa S., Kamiki T. // J. Magn. Magn. Mater. 2005. Vol. 287. P. 204–208.
- [5] Seiko W., Hoshia Y., Shimizu H. // J. Magn. Magn. Mater. 2001. Vol. 235. P. 196–200.
- [6] Colino J.M., Shuller I.K., Schad R., Potter C.D., Belien P., Verbanck G., Moshchalkov V.V., Bruynseraede Y. // Phys. Rev. B. 1996. Vol. 53. P. 766–769.

- [7] Duluard A., Nequlescu B., Hehn M., Lacour D., Lu Y., Lengaigne G., Montaigne F., Robert S., Suire S., Tiusan C. // Appl. Phys. Lett. 2012. Vol. 100. P. 072408-1-4.
- [8] Khivintsev Y.V., Kuanr B.K., Harward I., Camley R.E., Celinski Z. // J. Appl. Phys. 2006. Vol. 99. N 8. P. 08P512-1-3.
- [9] Никулин Ю.В., Хивинцев Ю.В., Филимонов Ю.А. // Гетеромагнитная микроэлектроника. 2008. № 5. С. 70–78.
- [10] Cantwell P.R., Kim H., Schneider M.M., Hsu H.-H., Peroulis D., Stach E. A., Strachan A. // J. Microelectromechanical Systems. 2012. Vol. 21. N 4. P. 840–849.
- [22] Jartych E., Chocyk D., Budyinski M., Jalochowski M. // Appl. Surf. Sci. 2001. Vol. 180. P. 246–254.
- [12] Martinez Boubeta C., Clavero C., Garcia-Martin J.M., Armelles G., Cebollada A., Balcells L., Menéndez J.L., Peiró F., Cornet A., Michael F. Toney // Phys. Rev. B. 2005. Vol. 71. P. 014407-1-10.
- [13] Wei H., Zhan Q.-F., Wang D.-Y., Chen L.-J., Sun Y., Cheng Z.-H. // Chin. Phys. 2007. Vol. 16. N 11. P. 3541–3544.
- [14] Ishiwata N., Wakabayashi C., Matsumoto T. // IEEE Trans. Magn. 1987, Vol. 23. N 5. P. 2152–2154.
- [15] He H., Zha C.L., Ma B., Zhang Z.Z., Jin Q.Y. // J. Magn. Magn. Mater. 2007. Vol. 310. P. 2656–2658.
- [16] Javed A., Morley N.A., Gibbs M.R.J // Appl. Surf. Sci. 2011. Vol. 257. P. 5586–5590.
- [17] Kim Y.K., Oliveria M. // J. Appl. Phys. 1993. Vol. 74. P. 1233–1241.
- [18] Meydan T., Kockar H. // J. Optoelectron. Advanc. Mater. 2004. Vol. 6. N 2. P. 633–636.
- [19] Takebayashi S., Shimokawa K. // J. Appl. Phys. 1991. Vol. 69.
 P. 5673.
- [20] Джумалиев А.С., Никулин Ю.В., Филимонов Ю.А. // Письма в ЖТФ. 2013. Т. 39. Вып. 21. С. 10.
- [21] Кузьмичев А.И. Магнетронные распылительные системы. Киев: Аверс, 2008. 244 с.
- [22] Мовчан Б.А., Демчишин А.В. // Физика металлов и металловедение. 1969. Т. 28. С. 83–90.
- [23] Thornton J.A. // Ann. Rev. Mater. Sci. 1977. Vol. 7. P. 239–260.
- [24] Barna P.B., Adamik N. // Thin Sol. Films. 1998. Vol. 317. P. 27–33.
- [25] Petrov I., Barna P.B., Hultmuan A., Greene J.E. // J. Vac. Sci. Technol. A. 2003. Vol. A21. N 5. P. S117–S128.
- [26] Wang S.G., Tian E.K., Lung C.W. // J. Phys. Chem. Sol. 2000. Vol. 61. P. 1295–1300.
- [27] Высоцкий С.Л., Джумалиев А.С., Филимонов Ю.А. // РЭ. 2000. Т. 45. № 2. С. 209–213.
- [28] Джумалиев А.С., Никулин Ю.В., Филимонов Ю.А. // РЭ. 2012. Т. 57. № 5. С. 1–8.
- [29] Thompson C.V. // Annu. Rev. Mater. Sci. 2000. Vol. 30. P. 159–190.
- [30] Zhang J.-M., Zhang Y., Xu K.-W., Ji V. // Physica B. 2007. Vol. 390. P 106–111.
- [31] Тикадзуми С. Физика ферромагнетизма. Магнитные свойства вещества / Пер. с японского. М.: Мир, 1983. 304 с.
- [32] Zhong W.H., Chang Q.S., Li S. // Sol. Stat. Commun. 2004. Vol. 130. P. 603–606.
- [33] Arias R., Mills D.L. // Phys. Rev. B. 1999. Vol. 63. N 10. P. 7395–7409.
- [34] Яковлев Ю.М., Генделев С.Ш. Монокристаллы ферритов в радиоэлектронике. М.: Советское радио, 1975. 360 с.
- [35] Кринчик Г.С. Физика магнитных явлений. М: Изд-во МГУ, 1985. 174 с.