Многослойные гетероструктуры для квантово-каскадных лазеров терагерцового диапазона

© А.Е. Жуков^{+×}, Г.Э. Цырлин⁺*×, Р.Р. Резник^{+‡}, Ю.Б. Самсоненко⁺*, А.И. Хребтов⁺, М.А. Калитеевский⁺•, К.А. Иванов⁺•, Н.В. Крыжановская⁺, М.В. Максимов⁺, Ж.И. Алфёров^{+×}

⁺ Санкт-Петербургский национальный исследовательский Академический университет Российской академии наук, 194021 Санкт-Петербург, Россия

[×] Санкт-Петербургский научный центр Российской академии наук,

199034 Санкт-Петербург, Россия

* Институт аналитического приборостроения Российской академии наук,

190103 Санкт-Петербург, Россия

[‡] Санкт-Петербургский политехнический университет Петра Великого,

195251 Санкт-Петербург, Россия

• Университет ИТМО,

197101 Санкт-Петербург, Россия

E-mail: Zhukale@gmail.com

(Получена 27 октября 2015 г. Принята к печати 2 ноября 2015 г.)

Приведены результаты исследования структурных и оптических свойств гетероструктур GaAs/AlGaAs, содержащих 228 каскадов, синтезированных методом молекулярно-пучковой эпитаксии, а также результаты моделирования межзонных оптических переходов и переходов между уровнями каскада.

1. Введение

Источники терагерцового (ТГц) диапазона частот востребованы для различных применений как гражданского, так и специального назначений, включая спектроскопию, в том числе определение следовых количеств различных веществ, создание систем формирования изображений объектов, скрытых для обычных оптических систем, широкополосные системы связи и т.д. Одной из основных проблем является отсутствие компактных достаточно мощных хроматических источников излучения этого спектрального диапазона. Наиболее перспективным кандидатом для реализации ТГц-систем различного назначения в настоящее время считается квантово-каскадный лазер (ККЛ) [1,2]. Первые ККЛ ТГц диапазона были реализованы в начале 2000-х гг. [3,4]. К настоящему времени созданы подобные ТГц ККЛ, работающие вплоть до 200 К [5], обладающие при температуре жидкого азота мощностью излучения несколько десятков мВт. Также были реализованы работающие при комнатной температуре лазерные источники терагерцового излучения [6], основанные на внутризонном усилении разностной частоты двух ККЛ среднего инфракрасного (ИК) диапазона [7].

Несмотря на очевидную научную и практическую значимость ККЛ, в нашей стране эта технология начала развиваться лишь несколько лет назад, когда были продемонстрированы ККЛ, синтезированные методом молекулярно-пучковой эпитаксии (МПЭ), излучающие на длине волны около 5–6 мкм [8–10], а также синтезированные методом эпитаксии из металлоорганических соединений на длину волны ~ 10 мкм [11]. В то же время о создании в России ТГц ККЛ до сих пор не сообщалось.

В настоящей работе нами исследована возможность синтеза методом МПЭ многопериодных многослойных

гетероструктур, предназначенных для создания ККЛ частотного диапазона около 3 ТГц. Нами осуществлена эпитаксия двух многослойных гетероструктур GaAs/AlGaAs, различающихся толщинами слоев GaAs, исследованы их структурные и оптические свойства методами рентгеновской дифракции и спектроскопии фотолюминесценции соответственно, проведен расчет межзонных оптических переходов в несмещенной структуре и внутризонных переходов при приложении прямого смещения.

2. Эпитаксиальный синтез

В качестве базовой конструкции квантово-каскадного лазера ТГц дипазона в настоящей работе была выбрана многослойная гетероструктура с туннельнопрозрачными барьерами, в которой ТГц излучение возникает в результате переходов электронов между уровнями с соответствующей энергией перехода. Достоинством таких ТГц ККЛ, использующих принцип прямой генерации, является то, что они могут быть реализованы в системе материалов AlGaAs/GaAs на подложках GaAs, что, с одной стороны, позволяет избежать проблем, связанных с рассогласованием постоянных кристаллических решеток эпитаксиальных слоев и подложки, а с другой — обеспечивает более высокую механическую прочность и меньшую цену подложек по сравнению с гетероструктурами для ККЛ в системе материалов InGaAs/InAlAs на подложках InP. За основу была взята конструкция многопериодной гетероструктуры, описанная в [5], на которой была получена лазерная генерация в температурном диапазоне 8-200К на частоте 2.75-3.22 ТГц.

Эпитаксиальные структуры, обозначенные нами ККЛ-1 и ККЛ-2, были синтезированы методом молеку-

лярно-пучковой эпитаксии в установке МПЭ Riber 21 с использованием твердотельного источника мышьяка. Рост осуществлялся на полуизолирующих подложках GaAs(100) в мышьяк-стабилизированных условиях. Особое внимание уделялось точности установки скоростей роста и поддержанию их стабильности во время формирования активной области. Калибровка скоростей роста проводилась на отдельном образце непосредственно перед ростом лазерных структур. Скорости роста по GaAs и AlAs были установлены для структуры ККЛ-1 равными 0.85 и 0.15 монослоя в секунду (МС/с) соответственно, для ККЛ-2 равными 0.7 и 0.105 МС/с. Для уменьшения толщины переходных слоев использовались специальные высокоскоростные заслонки. В нашем случае время срабатывания заслонок алюминиевого и галлиевого источников не превышало 0.15 с.

На буферном слое GaAs был осажден стоп-слой Al_{0.8}Ga_{0.2}As толщиной 200 нм. Активная область содержала 228 периодов, каждый из которых имел структуру, описанную в табл. 1. Каждый каскад содержит двойную квантовую яму GaAs/AlGaAs, между уровнями которой происходит лазерный переход, и более широкую квантовую яму, служащую инжектором/экстрактором электронов. Снизу и сверху активная область была ограничена контактными слоями GaAs:Si (5 · 10¹⁸ см⁻³) толщиной 75 и 50 нм соответственно. Средняя часть слоев инжектора/экстрактора также имела легирование *n*-типа с концентрацией ~ 5 · 10¹⁶ см⁻³.

При синтезе методом МПЭ гетероструктур, предназначенных для генерации излучения ТГц диапазона, толщина которых составляет ~ 10 мкм, может тем не менее уменьшаться скорость роста GaAs вследствие истощения источника галлия в процессе длительного осаждения. По этой же причине может иметь место невоспроизводимость толщин слоев от структур к структуре. Чтобы прояснить, насколько велико влияние точного поддержания скорости осаждения арсенида галлия, нами были синтезированы и исследованы две структуры, ККЛ-1 и ККЛ-2, сконструированные таким образом, что толщины всех слоев GaAs в ККЛ-1 на 15% меньше толщин соответствующих слоев в ККЛ-2 (табл. 1).

3. Структурные свойства

Структурные свойства эпитаксиальных образцов исследовались с помощью рентгеновской дифракции высокого разрешения (XRD). Использовался дифракто-

Таблица 1. Структурные параметры многослойных гетероструктур

Структура	Каскад (Al _{0.15} Ga _{0.85} As/GaAs), толщины слоев, Å	Толщина каскада, Å	
		номинальная	XRD
ККЛ-1	43/75.6/24.6/69.3/41/136	389.5	383
ККЛ-2	43/89/24.6/81.5/41/160	439.1	436

Рис. 1. Рентгеновская кривая качания структуры ККЛ-1 вблизи рефлекса GaAs (004), а также модельная кривая.

метр D8 DISCOVER Bruker AXS (длина волны излучения $\lambda = 0.15406$ нм) с полушириной первичного пучка < 12 угл. сек. в режиме $\Omega - 2\theta$ -сканирования.

На рис. 1 показана кривая качания вблизи симметричного рефлекса (004) GaAs, измеренная на структуре ККЛ-1. Ширина на половине высоты сателлитных пиков (FWHM)), обусловленных периодическим повторением каскадов ККЛ, составляет 15–19 угл. сек. Отметим, что полная ширина сверхструктурных пиков в модельном спектре с учетом изгиба структуры под действием упругих напряжений составляет 22.4 угл. сек. Это означает, что в исследуемых структурах можно пренебречь как возможным влиянием неточности поддержания толщины каскада в пределах всей структуры, так и шероховатостью гетероинтерфейсов, подтверждая правильность выбора технологических параметров при синтезе активной области.

Расчетная кривая качания для модельной структуры, обеспечивающей наилучшее согласие с экспериментальными данными, также показана на рис. 1. Толщина одного каскада, определенная с помощью моделирования рентгеновских кривых качания, составила 38.3 и 43.6 нм для структур ККЛ-1 и ККЛ-2 соответственно, вместо ожидаемых значений 38.95 и 43.91 нм (табл. 1). Таким образом, расхождение ожидаемых и экспериментально измеренных значений периода составило 1.7 и 0.7% в структурах ККЛ-1 и ККЛ-2 соответственно.

4. Оптические свойства

В лазерах ближнего и среднего ИК диапазонов, работающих на межзонных оптических переходах, длина волны лазерной генерации оказывается близкой к длине волны фотолюминесценции активной области. Использование средств люминесцентной экспресс-диагностики,

Рис. 2. Спектры фотолюминесценции структуры ККЛ-1 при 77 К и варьируемой мощности возбуждения (*a*), ККЛ-2 при фиксированной мощности и различных температурах измерения (*b*).

которые могут быть применены в отношении эпитаксиальных структур до проведения процессов, связанных с изготовлением прибора, существенно упрощает отработку технологии таких лазеров, позволяя в случае необходимости внести коррективы в конструкцию лазерной структуры.

В случае же ТГц ККЛ подобные прямые методы экспресс-определения ожидаемой длины волны генерации отсутствуют. В связи с этим представляется эффективным сопоставление результатов измерения энергий электронно-дырочных оптических переходов и их сопоставление с результатами расчета. В случае их хорошего согласия можно полагать, что и энергии внутризонных переходов между электронными уровнями каскадов также будут совпадать с предсказанными по результатам моделирования.

Оптические свойства исследовались методом спектроскопии фотолюминесценции (ФЛ). Измерения проводились в температурном диапазоне T = 77-300 К. Оптическая накачка осуществлялась с помощью YAG:Ndлазера, работающего на второй гармонике в непрерывном режиме (длина волны $\lambda = 527$ нм), плотность мощности накачки варьировалась от 2.5 до 15 Вт/см². Сигнал ФЛ детектировался с помощью монохроматора FHR 1000 и одноканального охлаждаемого Si-фотодетектора.

На рис. 2, а представлены спектры ФЛ структуры ККЛ-1, измеренные при 77 К и различной мощности возбуждения в диапазоне $P = 2.5 - 15 \,\mathrm{Br/cm^2}$, а на рис. 2, b — спектры структуры ККЛ-2, измеренные при фиксированной плотности мощности (15 Bт/см²) и различных температурах в диапазоне T = 77 - 140 K. В спектрах обеих структур можно различить три пика излучения, которые были идентифицированы как переходы между первым электронным уровнем и первым уровнем тяжелых дырок (E1-HH1), первым электронным уровнем и первым уровнем легких дырок (E1-LH1), вторым электронным уровнем и вторым уровнем тяжелых дырок (Е2-НН2). Такая интерпретация наблюдаемых пиков находится в согласии с тем, что с ростом уровня возбуждения относительная интенсивность более коротковолновых пиков растет, а при изменении температуры спектральное положение пиков сдвигается в соответствии с температурным ходом ширины запрещенной зоны GaAs. Отметим, что интенсивная люминесценция на длине волны основного оптического перехода Е1-НН1 наблюдалась в обеих структурах вплоть до комнатной температуры.

5. Расчет уровней энергии

Нами был выполнен расчет уровней размерного квантования. Моделирование проводилось методом матрицы переноса. Моделирование выполнялось для структуры, содержащей 10 периодов, каждый из которых соответствовал описанию, приведенному в табл. 1. На обоих концах модельной структуры мы полагали бесконечные потенциальные барьеры. Ширина запрещенной зоны GaAs при 77 К полагалась равной 1508 мэВ. Вычисленная энергия оптических переходов была затем уменьшена на 6 мэВ, чтобы учесть энергию донорного уровня в GaAs.

В табл. 2 сведены экспериментальные и расчетные значения энергий межзонных оптических переходов для температуры 77 К. Как видно, для большинства переходов расхождение результатов вычислений с данными эксперимента не превосходит 1 мэВ.

Таблица 2. Энергии межзонных оптических переходов при 77 К

Структура	Энергия перехода, мэВ (расчет/эксперимент)		
	E1-HH1	E1-LH1	E2-HH2
ККЛ-1 ККЛ-2	1522.2/1522.8 1517.7/1517.9	1529.2/1529.1 1523.1/1522.8	1546.8/1546.1 1535.5/1533.7

Рис. 3. Зонная диаграмма смещенной структуры ККЛ-2 (QCL-2) (*a*) и соотношение между силой осциллятора и частотой переходов для ККЛ-1 (QCL-1) и ККЛ-2 (QCL-2) (*b*).

С использованием метода матрицы переноса нами также был выполнен расчет электронных уровней и соответствующих им волновых функций. С помощью золотого правила Ферми был выполнен расчет силы осциллятора для переходов между уровнями, возникающих в прямосмещенных многопериодных гетероструктурах [12]. На рис. 3, *а* приведен профиль потенциала для ККЛ-2 при приложении электрического поля напряженностью F = 12.2 кВ/см. Также на рисунке показаны квадраты волновых функций и уровни размерного квантования (1–4), которые участвуют в процессе генерации излучения ТГц диапазона.

Полученные нами расчетные значения энергий лазерных переходов E_{13} и E_{23} , усредненные для 8 средних каскадов, составляют 14.54 и 11.49 мэВ (3.52 и 2.78 ТГц соответственно), разница уровней энергии в экстракторе E_{41} равна 34.3 мэВ. Эти значения находятся в хорошем согласии с данными, приведенными для аналогичной структуры в работе [5]: $E_{13} = 14.2$, $E_{23} = 11.5$, $E_{41} = 34.6$ мэВ.

Физика и техника полупроводников, 2016, том 50, вып. 5

На рис. 3, b обобщены расчетные данные по частоте перехода и силе осциллятора для различных оптических переходов, рассчитанных для структур ККЛ-1 и ККЛ-2. Как видно, в структуре ККЛ-1 наиболее вероятным является переход $2 \rightarrow 4$ с частотой 3.21 ГГц. При этом сила осциллятора для такого перехода, равная согласно расчетам 0.425, оказывается в ~ 2 раза выше силы осциллятора (0.211) для перехода $1 \rightarrow 3$ в структуре ККЛ-2, обладающего близкой частотой 3.52 ГГц. Переходы, имеющие частоту ~ (2.6-2.8) ГГц, обладают в обеих структурах схожей силой осциллятора ~ 0.3.

6. Заключение

Таким образом, методом молекулярно-пучковой эпитаксии синтезированы многопериодные (228 каскадов, ~ 10 мкм) эпитаксиальные структуры GaAs/AlGaAs, предназначенные для создания квантово-каскадных лазеров терагерцового диапазона. Экспериментальное значение толщины каскада соответствует ожидаемому с точностью лучше, чем 2%. При этом угловая ширина сверхструктурных пиков на рентгеновской кривой качания не превосходит 20 угл. сек. Исследования спектров фотолюминесценции показали хорошее согласие (в пределах 1 мэВ) энергий межзонных оптических переходов с расчетными значениями. При этом изменение толщины GaAs-слоев на 15% приводит к надежно детектируемому сдвигу положений оптических переходов. Это означает, что для оценки положения уровней энергии в таких сложных структурах могут быть использованы различные оптические методики экспресс-диагностики, работающие в ближнем ИК диапазоне. Расчет ТГц переходов в прямосмещенных структурах показал возможность сдвига частоты излучения в диапазоне вблизи 3 ТГц при сохранении высокой вероятности переходов с помощью масштабирования толщины квантовых ям в каскаде.

В настоящее время осуществляется отработка технологии формирования волноводов типа металлполупроводник-металл с целью создания лазерных диодов из исследованных в настоящей работе структур.

Работа выполнена при поддержке Программы фундаментальных исследований Президиума РАН "Наноструктуры: физика, химия, биология, основы технологий".

Авторы выражают благодарность ООО "Коннектор-Оптикс" за помощь в проведении рентгеновских измерений. М. Калитеевский выражает благодарность проекту FP7 ITN NOTEDEV.

Список литературы

- [1] Р.Ф. Казаринов, Р.А. Сурис. ФТП, 5 (4), 797 (1971).
- [2] J. Faist, F. Capasso, D.L. Sivco, A.L. Hutchinson, A.Y. Cho. Science, 264, 553 (1994).
- [3] R. Koehler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi. Nature, 417, 156 (2002).

- [4] M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie. Appl. Phys. Lett., 81 (8), 1381 (2002).
- [5] S. Fathololoumi, E. Dupont, C.W.I. Chan, Z.R. Wasilewski, S.R. Laframboise, D. Ban, A. Matyas, C. Jirauschek, Q. Hu, H.C. Liu. Opt. Express, 20 (4), 3866 (2012).
- [6] Q.Y. Lu, N. Bandyopadhyay, S. Slivken, Y. Bai, M. Razeghi. Appl. Phys. Lett., 104, 221105 (2014).
- [7] M.A. Belkin, Q.J. Wang, C. Pflugl, A. Belyanin, S.P. Khanna, A.G. Davies, E.H. Linfield, F. Capasso. IEEE J. Select. Topics Quant. Electron., 15 (3), 952 (2009).
- [8] В.В. Мамутин, В.М. Устинов, J. Boetthcher, H. Kuenzel. ФТП, 44 (7), 995 (2010).
- [9] А.Ю. Егоров, П.Н. Брунков, Е.В. Никитина, Е.В. Пирогов, М.С. Соболев, А.А. Лазаренко, М.В. Байдакова, Д.А. Кириленко, С.Г. Конников. ФТП, 48 (12), 1640 (2014).
- [10] А.Ю. Егоров, А.В. Бабичев, Л.Я. Карачинский, И.И. Новиков, Е.В. Никитина, М. Tchernycheva, А.Н. Софронов, Д.А. Фирсов, Л.Е. Воробьев, Н.А. Пихтин, И.С. Тарасов. ФТП, **49** (11), 1574 (2015).
- [11] И.И. Засавицкий, М.Д. Кузьмичев, А.Н. Зубов, А.А. Мармалюк, М.А. Ладугин, А.А. Падалица, А.В. Лобинцов, Ю.В. Курнявко, С.М. Сапожников, Т.А. Багаев, А.Ю. Андреев, В.А. Симаков, С.С. Зарубин. XII Росс. конф. по физике полупроводников (Звенигород, 2015) доклад Чт Б 2-1у.
- [12] M.A. Kaliteevski, K.A. Ivanov, G. Pozina, A.J. Gallant. Sci. Rept., 4, 5444 (2014).

Редактор Л.В. Шаронова

Multilayer heterostructures for quantum-cascade lasers of terahertz frequency range

A.E. Zhukov^{+×}, G.E. Cirlin^{+*×}, R.R. Reznik^{+‡}, Yu.B. Samsonenko^{+*}, A.I. Khrebtov⁺, M.A. Kaliteevski⁺•, K.A. Ivanov⁺•, N.V. Kryzhanovskaya⁺, M.V. Maximov⁺, Zh.I. Alferov^{+×}

⁺ St. Petersburg National Research Academic University, Russian Academy of Sciences, 194021 St. Petersburg, Russia
[×] St. Petersburg Scientific Center of RAS, 199034 St. Petersburg, Russia
^{*} Institute for Analytical Instrumentation, Russian Academy of Sciences, 190103 St. Petersburg, Russia
[‡] Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
• ITMO University, 197101 St. Petersburg, Russia

Abstract Results are presented on structural and optical properties of GaAs/AlGaAs heterostructures comprising 228 quantum cascades grown by molecular-beam epitaxy as well as on simulation of interband optical transitions and terahertz transitions between cascade energy levels.