06;13

Структурная инженерия вакуумно-дуговых покрытий системы MoN–CrN

 В.М. Береснев¹, О.В. Соболь², А.Д. Погребняк³, С.С. Гранкин¹, В.А. Столбовой⁴, П.В. Турбин^{1,5}, А.А. Мейлехов², М.Ю. Арсеенко⁶

¹ Харьковский национальный университет им. В.Н. Каразина, 61022 Харьков, Украина
² Национальный технический университет "Харьковский политехнический институт", 61002 Харьков, Украина
³ Сумской государственный университет, 40007 Сумы, Украина
⁴ Национальный научный центр "Харьковский физико-технический институт", 61108 Харьков, Украина
⁵ Научный физико-технологический центр МОН и НАН Украины, 61022 Харьков, Украина
⁶ Белгородский государственный национальный исследовательский университет, 308015 Белгород, Россия E-mail: beresnev-scpt@yandex.ru

Поступило в Редакцию 4 сентября 2015 г.

Путем использования в качестве составляющих слоев переходных металлов Мо и Сг с относительно невысокой теплотой образования нитридов показаны возможности структурной инженерии в многослойной MoN/CrN-системе при изменении давления реакционного газа азота P_N и и подачи на подложку отрицательного потенциала смещения $-U_s$. Установлено, что изменением P_N от $7 \cdot 10^{-4}$ до $3 \cdot 10^{-3}$ Тогг можно получить два разных фазово-структурных состояния: при низком давлении формируется многослойный композит неизоструктурного типа с гексагональной кристаллической решеткой в слоях нитрида хрома и с решеткой кубического типа в слоях нитрида молибдена, при высоком давлении происходит формирование изоструктурного состояния с кубической решеткой в нитридных слоях обоих типов. Наличие двух типов структурных состояний позволяет изменять твердость многослойного покрытия, которая в его изоструктурном состоянии достигает 38 GPa.

70

Использование многослойных систем при осаждении позволяет не только проводить моделирование структурного состояния каждого из слоев в отдельности, но и создавать путем подбора толщины, типа материала и количества слоев в периоде искусственные структуры с уникальными функциональными свойствами [1–5].

В монослойных покрытиях на основе MoN и CrN структура и свойства могут изменяться в широких пределах в зависимости от подаваемого потенциала на подложку и давления азотной атмосферы в процессе осаждения [6,7]. В этой связи можно ожидать значительной чувствительности структурных состояний и свойств покрытий, полученных на основе объединения MoN и CrN в качестве слоев многослойной системы. При этом наибольшие эффекты можно ожидать при нанометровом размере слоев, что обусловлено наиболее высокими механическими свойствами нитридов в этом размерном диапазоне [8,9].

Задачей данной работы являлось исследование влияния отрицательного потенциала смещения $-U_s$, задающего энергию осаждаемых частиц, и давления азотной атмосферы в рабочей камере, определяющего содержание азота в покрытии, на фазово-структурные состояния в слоях (структурная инженерия) и характеристику механических свойств — твердость.

Образцы многослойного покрытия получены вакуумно-дуговым методом на модернизированной установке "Булат-66" [10]. Давление рабочей (азотной) атмосферы при осаждении составляло $P_{\rm N} = (7-30) \cdot 10^{-4}$ Тогг, скорость осаждения составляла около 3 nm/s. Осаждение осуществлялось из двух источников (Мо и Сг) при непрерывном вращении закрепленных на подложках образцов со скоростью 8 грm, что позволяло получать слои толщиной около 10 nm, с общим числом слоев 960 (или 480 бислойных периодов) и общей толщиной покрытия около 9 μ m. В процессе осаждения на подложки подавался постоянный отрицательный потенциал величиной $-U_s = 20, 70, 150$ и 300 V.

Фазово-структурный анализ проводился методом рентгеновской дифрактометрии в излучении CuK_{α} . Разделение профилей на составляющие осуществлялось с использованием пакета программ NewProfile.

Элементный состав исследовался энергодисперсионным методом на растровом электронном микроскопе FEI Nova NanoSEM 450. Толщина покрытий определялась на этом же растровом микроскопе по боковым срезам системы "покрытие-подложка". Твердость покрытий измерялась

Лавление азота <i>Р</i> м. Torr	Потенциал смещения $-U_s$, V							
Austrenine useru i iv, reni	25	50	100	150	200	250	300	
$7\cdot 10^{-4}$	0.80	0.85	0.99	1.35	_	_		
$3 \cdot 10^{-3}$	0.86	0.90	0.92	0.93	0.95	0.97	1.05	

Таблица 1. Зависимость соотношения атомов Мо/Сr от величины приложенного отрицательного потенциала смещения $-U_s$ и давления азота P_N

с помощью твердомера модели ДМ 8 по методу микро-Виккерса, при нагрузке на индентор 0.2 N.

На рис. 1 представлены данные анализа элементного состава в зависимости от давления $P_{\rm N}$ и подаваемого отрицательного потенциала $-U_s$. Видно, что содержание азота, как легкого элемента внедрения, в определяющей мере зависит от величины $P_{\rm N}$ при осаждении (рис. 1, *a*). При этом влияние $-U_s$ сказывается в меньшей мере (рис. 1, *b*) и проявляется в относительном уменьшении (вследствие селективного вторичного распыления с поверхности роста) атомной концентрации азота при больших значениях потенциала смещения $-U_s$. Отметим, что усиление связи между осаждаемым металлом и атмосферным азотом при высоком давлении $P_{\rm N}$ приводит к стабилизации по составу покрытия до существенно больших по величине $-U_s$ (рис. 1, *b*, зависимость 2).

Увеличение по абсолютному значению потенциала смещения $-U_s$ приводит к существенному повышению однородности (уменьшению капельной составляющей) покрытий. Заметим, что еще одним способом уменьшения капельной составляющей в покрытии является использование импульсных пучков для испарения [11,12].

Изменения содержания металлических составляющих покрытия (Мо и Cr) от потенциала смещения $-U_s$ приведены в табл. 1, из которой следует значительное изменение отношения Мо/Сг в зависимости от потенциала смещения $-U_s$ при низком давлении. Причиной наблюдаемого эффекта является более высокая средняя энергия бомбардирующих растущее покрытие ионов Мо и Сг, что обусловлено меньшими потерями энергии на столкновение при низком давлении P_N .

Для исследований влияния технологических параметров $(-U_s \ u \ P_N)$, определяющих энергию осаждаемых частиц и их состав, получены

Рис. 1. Изменение содержания азота в покрытии в зависимости от: a — давления при осаждении (P_N) и постоянном $U_s = -70$ V; b — от U_s при постоянном $P_N = 7 \cdot 10^{-4}$ Torr (кривая 1) и $P_N = 3 \cdot 10^{-3}$ Torr (кривая 2).

Рис. 2. Участки дифракционных спектров покрытий, полученных при: $a - P_{\rm N} = 7 \cdot 10^{-4}$ Torr и $-U_s = 20$ V (спектр *I*), $-U_s = 70$ V (спектр *2*) и $-U_s = 150$ V (спектр *3*); $b - P_{\rm N} = 3 \cdot 10^{-3}$ Torr и $-U_s = 20$ V (спектр *I*), $-U_s = 70$ V (спектр *2*), $-U_s = 150$ V (спектр *3*) и $-U_s = 300$ V (спектр *4*), *S* сверхструктурные пики.

Письма в ЖТФ, 2016, том 42, вып. 10

две серии покрытий: 1-я серия сформирована при $P_{\rm N} = 7 \cdot 10^{-4}$ Torr и $-U_s = 20, 70, 150$ V, 2-я серия сформирована при $P_{\rm N} = 3 \cdot 10^{-3}$ Torr и тех же потенциалах смещения. На рис. 2, *а* и *b* приведены участки дифракционных спектров для указанных серий покрытий. Видно, что при низком давлении $P_{\rm N} = 7 \cdot 10^{-4}$ Torr происходит формирование низших нитридов β -Cr₂N (гексагональная решетка, JCPDS 35-0803) и γ -Mo₂N (кубическая ГЦК, JCPDS 25-1366) с совпадением межплоскостных расстояний для плоскостей (110) β -Cr₂N/(111) γ -Mo₂N и несовпадением между (002) β -Cr₂N и (200) γ -Mo₂N.

С увеличением по абсолютному значению $-U_s$ наблюдается преимущественный рост (002) β -Cr₂N и (200) γ -Mo₂N (рис. 2, *a*, спектр 3), что приводит к усилению межслоевого несоответствия.

При давлении $P_{\rm N} = 3 \cdot 10^{-3}$ Тогг происходит формирование фаз мононитрида хрома CrN и γ -Mo₂N с кубической (структурный тип NaCl) решеткой в обоих слоях (рис. 2, *b*). При этом с увеличением $-U_s$ происходит переход от поликристаллического нетекстурированного состояния при $-U_s = 20$ V до преимущественной ориентации роста кристаллитов при осаждении с осью аксиальной текстуры [100] при потенциале смещения $-U_s$, превышающем по абсолютному значению -70 V (рис. 2, *b*, спектры 3 и 4). Отметим, что появление текстуры такого типа, по-видимому, обусловлено относительным уменьшением содержания азота в покрытии с повышением по абсолютной величине $-U_s$. Наличие структур с совпадающими межплоскостными расстояниями в контактирующих слоях может свидетельствовать о взаимосвязанном росте этих двух структур.

Полученный спектр структурных состояний многослойных покрытий определяет значительные изменения в его механических характеристиках. Из представленных данных в табл. 2 следует, что наибольшее значение твердости достигнуто при малом U_s и высоком давлении P_N , обеспечивающем изоструктурное состояние слоев и наибольшее содержание азота в покрытии. Уменьшение твердости при меньшем давлении можно связать с образованием вакансий в подрешетке азота из-за его значительно меньшего содержания в покрытии по сравнению со стехиометрическим составом. Исходя из сравнения данных табл. 1 и 2 видно, что при изменении соотношения Мо/Сг от 0.80 до 1.35 твердость покрытия существенно падает. При этом падение твердости наиболее сильно при низшем давлении осаждения $P_N = 7 \cdot 10^{-4}$ Torr. Объяснением этому может служить сравнение фазовых составов на

Таблица 2. Зависимость твердости покрытий (H, GPa) от величины потенциала смещения $-U_s$ и давления азота P_N

Давление азота $P_{\rm N}$, Torr	Потенциал смещения $-U_s$, V						
	20	70	150	300			
$7\cdot 10^{-4}$	28	18	12	-			
$3 \cdot 10^{-3}$	38	38	32	27			

основе данных рис. 2. Действительно, как при $P_{\rm N} = 7 \cdot 10^{-4}$ Torr, так и при $P_{\rm N} = 3 \cdot 10^{-3}$ Torr в слоях Мо–N происходит формирование фазы у-Mo₂N с большой областью гомогенности. В отличие от этого в слоях системы Cr–N в зависимости от давления происходит формирование двух типов фаз: при $P_{\rm N} = 7 \cdot 10^{-4}$ Torr фазы β -Cr₂N с гексагональной решеткой, а при $P_{\rm N} = 3 \cdot 10^{-3}$ Torr фазы CrN с кубической решеткой и сравнительно малой областью гомогенности по составу. Как следует из полученных результатов, наибольшая твердость достигается при наличии в слое Cr–N фазы CrN с кубической решеткой и сравнительно малой областью гомогенности по составу. При этом наивысшие по величине значения твердости (38 GPa) достигаются при соотношении Mo/Cr менее 0.9 (ср. данные табл. 1 и 2).

Кроме того, причиной снижения твердости с увеличением U_s , повидимому, является усиление интенсивности процесса перемешивания в приграничной области с образованием твердого раствора пониженной твердости, что согласуется с данными работы [13].

Таким образом, результаты работы демонстрируют возможности структурной инженерии многослойной системы, базирующейся на переходных металлах с невысокой теплотой образования нитридов от неизоструктурного к изоструктурному межслоевому состоянию при сравнительно небольшом изменении $P_{\rm N}$. При этом обычно используемый для повышения связности слоев в процессе конденсации $-U_s$ в случае нанометровой толщины слоев положительно сказывается на свойствах только при невысоких значениях потенциала смещения до 70 V, когда область перемешивания в межслоевом пространстве при осаждении не является определяющей. Получению высоких свойств в этом случае способствует скрепление слоев при их изоструктурном состоянии.

Работа выполнена при частичной финансовой поддержке Министерства образования и науки Украины по темам научно-исследовательских работ 0115U000477, 0115U003165 и 0115U003166. Часть исследований проведена на научном оборудовании Центра коллективного пользования "Диагностика структуры и свойств наноматериалов" Белгородского государственного национального исследовательского университета, при финансовой поддержке Министерства образования и науки РФ в рамках проекта № 14.594.21.0010, уникальный код RFMEFI59414X0010.

Список литературы

- Xie Z.H., Hoffman M., Munroe P., Singh R., Bendavid A., Martin P.J. // J. Mater. Res. 2007. V. 22. N 8. P. 2312–2318.
- [2] Sobol' O.V., Andreev A.A., Grigoriev S.N., Gorban' V.F., Volosova M.A., Aleshin S.V., Stolbovoi V.A. // Met. Sci. Heat Treat. 2012. V. 54. N 3–4. P. 195– 203.
- [3] Lackner J.M., Major L., Kot M. // Bull. Polish Academy Sci. Techn. Sci. 2011.
 V. 59. N 3. P. 343–355.
- [4] Gilewicz A., Warcholinski B. // Tribology Int. 2014. V. 80. P. 34-40.
- [5] Ertas M., Onel A.C., Ekinci G., Toydemir B., Durdu S., Usta M., Colakerol L. // Int. J. Chem., Nucl. Mater. Metall. Eng. 2015. V. 9. N 1. P. 53–57.
- [6] Sobol' O.V., Andreev A.A., Stolbovoi V.A., Fil'chikov V.E. // Tech. Phys. Lett. 2012. V. 38. N 2. P. 168–171.
- [7] Гугля А.Г., Неклюдов И.М. // Успехи физики металлов. 2005. Т. 6. С. 197– 232.
- [8] Погребняк А.Д., Шпак А.П., Азаренков Н.А., Береснев В.М. // УФН. 2009. Т. 179. № 1. С. 35–64.
- [9] Beresnev V.M., Sobol' O.V., Pogrebnjak A.D., Turbin P.V., Litovchenko S.V. // Tech. Phys. 2010. V. 55. N 6. P. 871–873.
- [10] Андреев А.А., Саблев Л.П., Григорьев С.Н. Вакуумно-дуговые покрытия. Харьков: ННЦ ХФТИ, 2010. 318 с.
- [11] Klepikov V.F., Lonin Yu.F., Lytvynenko V.V., Pashenko A.V., Ponomarev A.G., Uvarov V.V., Uvarov V.T., Sheremet V.I. // Probl. Atomic Sci. Technol. Ser. Nucl. Phys. Inv. 2008. N 5 (50). P. 91–95.
- [12] Batracov A.B., Bazaleev M.I., Donets S.E., Klepikov V.F., Lytvynenko V.V., Lonin Yu.F., Ponomarev A.G., Uvarov V.V., Uvarov V.T. // Probl. Atomic Sci. Technol. Ser. Nucl. Phys. Inv. 2013. N 6 (88). P. 225–229.
- [13] Nanostructured coatings / Eds: Albano Cavaleiro, Jeff Th.M. De Hosson. Springer, 2006. 652 p.