05

Анализ кристаллографических закономерностей формирования структуры мартенситного пакета интерметаллидного соединения NiMn

© Ю.В. Хлебникова, Л.Ю. Егорова, Д.П. Родионов, Е.С. Белослудцева, В.А. Казанцев

Институт физики металлов им. М.Н. Михеева УрО РАН, 620990 Екатеринбург, Россия e-mail: Yulia kh@imp.uran.ru

(Поступило в Редакцию 20 октября 2015 г.)

Методами оптической, сканирующей электронной микроскопии и рентгеноструктурного анализа показано, что при охлаждении монокристалла сплава Ni₄₉Mn₅₁ ниже температуры $\beta \rightarrow \theta$ (OЦK \rightarrow FЦT) превращения образуется псевдомонокристалл, имеющий при комнатной температуре структуру L1₀ тетрагонального мартенсита с параметрами a = 0.3732 nm, c = 0.3537 nm и степенью тетрагональности c/a = 0.94775. Определены температуры прямого и обратного переходов B2 \rightarrow L1₀. Проведен анализ кристаллогеометрических особенностей формирования мартенситного пакета. С использованием метода EBSD установлено, что в соседних пакетах всегда присутствуют три сорта пластин тетрагонального мартенсита, находящихся в двойниковом положении и различающихся направлением оси тетрагональности. Повторный нагрев и закалка псевдомонокристалла приводят к перекристаллизации с образованием крупных зерен. Пакетная структура тетрагонального мартенсита при этом сохраняется, но размеры пакетов, сформированных в пределах отдельного зерна, уменьшаются в 2–3 раза по сравнению с исходным псевдомонокристаллом.

Введение

В некоторых металлах и сплавах с кубическими ОЦК или ГЦК решетками при закалке или при медленном охлаждении от соответствующих температур происходят фазовые мартенситные превращения, при которых исходная кубическая решетка трансформируется в гранецентрированную тетрагональную. В принципе при таком превращении некий объем металла может превращаться в новую фазу тремя способами, различающимися направлением тетрагональности кубической оси {100}, и происходит формирование структуры, элементы которой либо сдвинуты, либо повернуты друг относительно друга. Соседствующие элементы структуры, или с-домены, различаются направлением оси тетрагональности. Образующиеся при фазовом переходе элементы структуры имеют форму пластин с тетрагональной решеткой. При образовании тетрагональной фазы пластинчатой формы габитусными гранями пластины служат неискажаемые в процессе перестройки плоскости решетки кристаллографического типа {110} высокотемпературной фазы. Такую структуру, образованную группами пластин с тетрагональной решеткой, часто называют полидоменной. Подобная структура может образовываться в сплавах CuAu, NiAl, NiMn и ряде сплавов на основе титана, платины, палладия, серебра и железа [1-4].

Атомно-упорядоченные интерметаллические соединения на основе NiMn как бинарные, так и многокомпонентные испытывают термоупругие мартенситные превращения при относительно высоких температурах. Термоупругий характер мартенситного перехода должен обусловливать в этих сплавах эффекты памяти формы. Из-за высокой температуры фазовых переходов в сплавах на основе NiMn наличие эффектов памяти выяснить однозначно весьма затруднительно. К тому же эти сплавы очень хрупкие, что сильно ограничивает область их применения. Улучшение пластичности данной группы сплавов является одной из главных задач, стоящих перед исследователями материалов с эффектом памяти формы на основе интерметаллических соединений. Многие современные исследования посвящены поиску подтверждения эффектов памяти формы в сплавах NiMn и повышению их пластичности за счет легирования [5–14].

В настоящей работе на основе металлографических наблюдений, данных сканирующей электронной микроскопии и рентгенографического анализа рассматриваются кристаллографические закономерности структуры, сформировавшейся в сплаве Ni₄₉Mn₅₁ в процессе фазового ОЦК—ГЦТ превращения. Основное внимание в работе уделено анализу данных, полученных методом дифракции обратно отраженных электронов (EBSD), а также их сопоставлению с известными из литературы результатами электронно-микроскопического исследования тонких фольг на просвет.

Получение монокристаллов

Заготовка бинарного сплава NiMn состава, близкого к эквиатомному, была выплавлена в индукционной печи в атмосфере аргона из никеля чистотой 99.99 wt.% и переплавленного электролитического марганца чистотой 99.93 wt.%.

Из полученной заготовки выращивали монокристалл по методу Бриджмена—Стокбаргера без затравки в атмосфере аргона при давлении ~ 1.2 · 10⁵ Ра. Скорость кристаллизации составляла 1 mm/min, градиент на фронте кристаллизации ~ 1 К/mm. Химический состав закристаллизованного слитка определяли стандартным химическим методом. Содержание Ni составляет 50.63 wt.% и

Рис. 1. Фазовая диаграмма системы Ni-Mn [15].

Mn - 49.37 wt.%. Такой химический состав соответствует сплаву Ni₄₉Mn₅₁ (at.%). Выращен монокристалл диаметром 13 mm и длиной ~ 90 mm. На начальной стадии кристаллизации слитка зародилось несколько зерен, но по мере продвижения фронта кристаллизации остается только одно зерно, остальные зерна вырождаются и далее растет монокристалл. Поэтому носовую часть монокристалла, представляющую собой комплекс из нескольких крупных столбчатых зерен, не использовали для вырезки образцов.

В соответствии с диаграммой состояния системы Ni–Mn, приведенной в [15], сплав Ni₄₉Mn₅₁ по химическому составу отличается от эквиатомного, но относится к области твердого раствора, ограниченного концентрационными рамками по содержанию никеля (от 46 до 55 at.%), в которой возможно образование мартенсита с ГЦТ-решеткой, упорядоченной по типу L1₀ (рис. 1). Образующийся после кристаллизации слитка монокристалл имел гранецентрированную кубическую решетку, далее в процессе охлаждения до комнатной температуры монокристалл претерпел цикл $\gamma \to \beta \to \theta$ (ГЦК \to ОЦК \to ГЦТ)-превращений.

Строго говоря, выращенный монокристалл сплава Ni₄₉Mn₅₁ следует называть псевдомонокристаллом, поскольку его структура при комнатной температуре, образовавшаяся после цикла превращений, состоит из пакетов мартенситных пластин различных, хотя и кристаллографически закономерных, ориентаций.

Методы исследования структуры

Образцы для исследования вырезали из средней части кристалла. Исследовали исходную структуру псевдомонокристалла, а также структуру нагретых до 960°С образцов, которые после гомогенизации в течение 26 h

Рис. 2. Дифрактограмма исходного псевдомонокристалла сплава Ni₄₉Mn₅₁.

Рис. 3. Дилатограмма нагрева и охлаждения (*a*) и температурная зависимость коэффициента линейного расширения (*b*) псевдомонокристалла сплава Ni₄₉Mn₅₁.

были закалены в воду. Часть гомогенизированных образцов была повторно нагрета посадкой в печь до 960°С, затем переохлаждена до 850° С (в β -область) и после выдержки в течение 20 min снова закалена в воду. Скорость охлаждения при закалке составляла ~ 500 K/s.

Для выявления макроструктуры образцов использовали травление в смеси концентрированных кислот HCl и HNO3 в соотношении 3:1 (реактив "царская водка"). Микроструктуру в продольных и поперечных образцах выявляли травлением в 4–6% спиртовом растворе HNO₃ (реактив "ниталь"). Структуру исходных псевдомонокристальных и термообработанных образцов исследовали на оптическом микроскопе "Neophot-30". Химический состав в разных участках исходного и гомогенизированного псевдомонокристалла определяли с использованием спектрометра EDAX для элементного анализа на сканирующем электронном микроскопе Quanta-200 Pegasus с площади $\sim 0.01\,mm^2$ или пучком диаметром 100 nm.

Ориентацию отдельных реек тетрагонального мартенсита в различных пакетах исходного псевдомонокристалла определяли методом EBSD на специализированной приставке EDAX к сканирующему электронному микроскопу Quanta 200 Pegasus в отделе электронной микроскопии ЦКП "Испытательный центр нанотехнологий и перспективных материалов" Института физики металлов УрО РАН. Область формирования дифракционной картины в точке составляла около 50 nm. Образцы перед съемкой подвергали электролитической полировке. Сканирование ориентационных данных осуществлялось с шагом $0.1 \,\mu$ m с участков поверхности площадью примерно $120 \times 60 \,\mu$ m.

Рентгеноструктурным методом на дифрактометре ДРОН-3М в Си*К*α-излучении определяли фазовый со-

Рис. 4. Структура поперечного сечения исходного псевдомонокристалла сплава Ni₄₉Mn₅₁: *a* — макроструктура, ×7; *b* — ячеистая ростовая структура.

Рис. 5. Структура (*a*) и химический состав (*b*) центральной (*1*) и периферийной (*2*) зон ячейки в исходном псевдомонокристалле сплава Ni₄₉Mn₅₁: *a* — участки сканирования; *b*, *c* — спектры, полученные от Ni и Mn, *b* — участок *1*, *c* — участок *2*.

Рис. 6. Микроструктура поперечного сечения исходного (*a*, *b* — оптическая микроскопия) и гомогенизированного псевдомонокристалла сплава Ni₄₉Mn₅₁ (*c* — сканирующая электронная микроскопия): *a* — пакетный мартенсит центральной зоны ячейки, *b* — граница двух пакетов.

став исходного псевдомонокристалла при комнатной температуре, параметры кристаллической решетки мартенсита и степень тетрагональности.

Дилатограммы нагрева и охлаждения исходных псевдомонокристальных образцов снимали на дилатометре Ulvac Sincu-riku в интервале температур от 20 до 800° C со скоростью нагрева ~ 2 K/min. Температуры начала и окончания фазовых переходов: прямого (M_s и M_f) и обратного (A_s и A_f) определялись как точка пересечения двух касательных в области перегиба на дилатометрической кривой.

Электронно-микроскопическое исследование проводили на микроскопах JEM-200CX при ускоряющем напряжении 160 kV и CM-30 при ускоряющем напряжении 300 kV. Фольги вырезали перпендикулярно оси роста кристалла и изготавливали по стандартным методикам. Для идентификации фаз использовали съемку с последующей расшифровкой электронно-дифракционных картин с выбранного участка структуры.

Результаты рентгеноструктурного анализа

В соответствии с диаграммой состояния системы Ni-Mn (рис. 1) сплав Ni₄₉Mn₅₁ в процессе охлаждения до комнатной температуры претерпевает последовательно два фазовых перехода: $\gamma \rightarrow \beta$ и $\beta \rightarrow \theta$ (ОЦК \rightarrow ГЦТ). В результате первого перехода гранецентрированная кубическая неупорядоченная решетка типа A1 монокристалла трансформируется в объемно центрированную упорядоченную по типу B2. Второе превращение приводит к образованию мартенсита с гранецентрированной кристаллической решеткой, упорядоченной по типу L1₀.

Рис. 7. Структура и химический состав центральной и периферийной зон ячейки гомогенизированного псевдомонокристалла сплава Ni₄₉Mn₅₁: *a*, *c* — участки сканирования; *b*, *d* — спектры никеля и марганца, соответствующие выбранным участкам сканирования.

По данным рентгеноструктурного анализа установлено, что при комнатной температуре структура псевдомонокристалла состоит только из тетрагонального мартенсита, упорядоченного по типу L1₀. На дифрактограммах присутствуют линии 111, 020, 002, 220, 020, 131, 113 и 222, относящиеся к L10 (ГЦТ) мартенситу (рис. 2). Экспериментально определенные по данным рентгеновской дифрактометрии параметры решетки сплава Ni₄₉Mn₅₁: a = 0.374, c = 0.352 nm и степень тетрагональности c/a = 0.94775. В работе [13] были определены параметры решеток для поликристаллического сплава NiMn эквиатомного состава a = 0.374 nm, $c = 0.352 \,\mathrm{nm}$ и степень тетрагональности c/a = 0.94. Исследуемый нами сплав имеет решетку с близкими параметрами, но несколько более сжатую вдоль оси с и растянутую вдоль оси а по сравнению со сплавом эквиатомного состава Ni₅₀Mn₅₀.

Дилатометрическое исследование

Измерения коэффициента теплового линейного расширения (КТР) при нагреве от 20 до 800°С и охлаждении проводили на образцах кубической формы в трех различных направлениях. Ход дилатометрических кривых и температурной зависимости КТР от выбранного направления измерения практически не изменялся. При анализе дилатометрических кривых и температурной зависимости КТР было установлено, что в интервале температур от комнатной до 600°C никаких отклонений от линейного хода не наблюдается (рис. 3). В исследуемом нами псевдомонокристалле сплава Ni₄₉Mn₅₁ мартенситный переход B2->L10 происходит при температурах: $M_s = 640^{\circ}$ С, $M_f = 625^{\circ}$ С, обратный переход L10 — B2 — при температурах $A_s = 660^{\circ}$ С, $A_f = 680^{\circ}$ С (температуры переходов отмечены стрелками на рис. 3, а). Полученные нами значения температур начала прямого и обратного мартенситного перехода находятся в качественном согласии с данными работ [13,14], выполненными на поликристаллических сплавах Ni₅₀Mn₅₀ и Ni₄₉Mn₅₁. В системе Ni-Mn даже при небольшом изменении химического состава температуры прямого и обратного мартенситного превращения значительно меняются. Может также быть не полное совпадение полученных температур фазовых переходов для сплава одного и того же состава, но находящегося в разном структурном состоянии, в данном случае

Рис. 8. Ориентация мартенситных пластин в пакете исходного псевдомонокристалла сплава Ni₄₉Mn₅₁: *a* — EBSD-микрокарта ориентировок мартенсита, *b* — полюсная фигура (001), *c* — изменение угла разориентировки участков структуры вдоль линии сканирования (показана штрихами на EBSD-микрокарте).

поликристаллическом или псевдомонокристаллическом. Тот факт, что температура мартенситного превращения сплавов на основе интерметаллидного соединения NiMn изменяется в очень широком диапазоне, открывается перспектива выбора сплава для применения в определенном интервале температур эксплуатации вариацией его химического состава.

Структура исходного и гомогенизированного псевдомонокристалла

Макроструктура исходного псевдомонокристалла сплава $Ni_{49}Mn_{51}$ представлена на рис. 4, *а*. В сечении, перпендикулярном оси роста кристалла, отчетливо видны ячейки, свидетельствующие о химической неоднородности в процессе кристаллизации слитка (рис. 4, *b* — участок соответствует отмеченному на рис. 4, *a* прямоугольником). Из-за химической неоднородности центр ячейки, т.е. оси бывших дендритов,

Журнал технической физики, 2016, том 86, вып. 6

кристаллизующиеся в первую очередь, обогащаются никелем [16]. Марганец оттесняется от осей дендритов к периферии и границы ячеек обогащаются марганцем и соответственно содержат меньшее по сравнению с центральными областями количество никеля (рис. 5). Результаты локального микроанализа свидетельствуют и повышенном по сравнению с равновесным содержанием марганца на ~ 2.3 at.% по границам ячеек и пониженным содержанием марганца на ~ 0.6 at.% в центре ячейки. Средний размер ячеек составляет около 200 μ m.

На поверхности исходного псевдомонокристалла после химического травления отчетливо видна структура в виде пакетов мартенситных пластин (рис. 6, *a*). Следует отметить, что границы пакетов имеют характерное "елочное" строение, т.е. пластины, принадлежащие одному пакету, могут свободно проходить через границу и проникать в соседний пакет (рис. 6, *b*). Подобное строение границ пакетных структур наблюдали в целом ряде металлов и сплавов, например в титане и цирконии при ОЦК—ГПУ-превращении [17,18], в псевдомонокристаллах закаленной среднеуглеродистой стали при

Рис. 9. Ориентация мартенситных пластин в двух соседних пакетах исходного псевдомонокристалла сплава Ni₄₉Mn₅₁: *a* — EBSD-микрокарта ориентировок зерен, *b* — полюсная фигура (001), *c* — направление осей тетрагональности L1₀ мартенсита в стандартном стереографическом треугольнике.

ГЦК→ОЦК-превращении [19,20]. Мартенситные пластины в пакете имеют разную травимость в зависимости от их ориентации подобно областям селективного отражения в стальных псевдомонокристаллах [20]. Каждый пакет состоит из чередующихся пластин тетрагонального мартенсита. Пакетная структура L1₀ мартенсита на образцах, вырезанных в продольном и поперечном сечениях псевдомонокристалла, идентична.

После гомогенизирующего отжига пакетная структура псевдомонокристалла не претерпела заметных изменений (рис. 6, c). Тот факт, что морфология и структура мартенситных пластин в исходном псевдомонокристалле практически не отличается от структуры мартенсита в гомогенизированном псевдомонокристалле, является свидетельством термоупругого характера мартенситного превращения. В процессе отжига произошло перераспределение никеля и марганца и выравнивание химического состава центральных и периферийных зон ячеек по всему образцу. Результаты локального химического анализа свидетельствуют о соответствии значений содержания никеля и марганца среднему составу сплава (рис. 7).

Результаты EBSD-анализа

Сьемку EBSD-микрокарт проводили с группы пластин мартенсита, принадлежащих одному пакету, а также с области стыка двух пакетов. Отметим, что исследуемый сплав Ni₄₉Mn₅₁ находится в псевдомонокристальном состоянии и размер отдельной мартенситной пластины в пакете в несколько раз больше, чем в поликристалле. Благодаря этому линии Кикучи, расшифровка которых лежит в основе метода EBSD-анализа, более четкие. В свою очередь текстурные максимумы на полюсных фигурах легче соотнести со структурными элементами, от которых они получены.

На рис. 8, *а* приведен фрагмент пакета, в котором группа мартенситных пластин имеет чередующиеся ориентировки. На полюсной фигуре (001) присутствуют два ярко выраженных текстурных максимума, обозначенные цифрами 1 и 2 и принадлежащие двум чередующимся ориентировкам мартенсита (рис. 8, *b*). Видно, что положения текстурных максимумов (001) для соседних мартенситных пластин в пакете отличаются на 90°, следовательно, в пакете содержатся чередующиеся через одну мартенситные пластины с разным

Рис. 10. Тонкая структура мартенсита исходного псевдомонокристалла сплава Ni₄₉Mn₅₁: *a* — светлопольное изображение, *b* — темнопольное изображение в рефлексе *g* = 210, *c* — электронно-дифракционная картина, рефлексе *g* = 210 указан стрелкой, *d* — схема расшифровки электронно-дифракционной картины.

направлением оси тетрагональности c1 и c2. Размытие текстурных максимумов на полюсной фигуре связано с имеющейся разориентацией в пределах 5° по длине мартенситных пластин. Был построен профиль угловой разориентации структурных элементов при сканировании вдоль выбранного направления, приблизительно перпендикулярного ширине мартенситных пластин в пакете (штриховая линия на рис. 8, *a*). При пересечении границы между пластинами мартенсита измеренная угловая разориентация составляла ~ 90°. Небольшие отклонения от точного значения, по-видимому, связаны с имеющейся разориентацией вдоль мартенситной пластины.

Другой анализируемый участок структуры содержал пластины мартенсита, принадлежащие двум пакетам (рис. 9). Условная граница между пакетами показана на рис. 9, *а* штриховой линией. На полюсной фигуре (001), снятой с данного участка структуры, присутствуют три текстурных максимума, соответствующие ориентировкам мартенсита *1, 2 и 3* (рис. 9, *b*). Видно, что положения текстурных максимумов (001) для всех ориентаций мартенситных пластин в двух соседних пакетах отличаются на 90°, при этом в одном пакете содержатся

7 Журнал технической физики, 2016, том 86, вып. 6

чередующиеся через одну мартенситные пластины с направлениями осей тетрагональности c1 и c2, а в соседнем — с направлениям c1 и c3. Направления осей тетрагональности для всех ориентаций мартенситных пластин в стандартном стереографическом треугольнике показано на рис. 9, c.

Результаты EBSD анализа подтверждают данные авторов работы [5], полученные электронно-микроскопическим исследованием тонких фольг на просвет, о том, что пакет состоит из чередующихся через один мартенситных кристаллов с различающейся осью тетрагональности. Соседний пакет содержит также набор чередующихся через один мартенситных кристаллов, но при этом "задействована" другая пара осей тетрагональности.

Итак, в двух соседних пакетах тетрагонального мартенсита содержатся три сорта пластин, различающихся направлением оси тетрагональности. Всего в упорядоченной решетке L1₀ тетрагонального мартенсита существует 24 кристаллографически эквивалентных системы двойникующего сдвига. Но при этом все кристаллографически эквивалентные ориентировки образующихся мартенситных кристаллов с ГЦТ-решеткой группируются в пакеты, чередуясь через один по направлению оси тетрагональности. Подобная картина характерна и для других интерметаллидных соединений, имеющих структуру L1₀ тетрагонального мартенсита, например, для полидоменной структуры в сплаве FePd и структуры псевдомонокристалла сплава $Pt_{40}Fe_{60}$, о чем сообщалось ранее в работах [21,22].

Просвечивающая электронная микроскопия

Электронно-микроскопическое исследование тонких фольг на просвет подтверждают данные, полученные методом EBSD анализа. По данным электронномикроскопического анализа, пакеты состоят из чередующихся пластин тетрагонального мартенсита двойнико-

Рис. 11. Крупнозернистая структура сплава $Ni_{49}Mn_{51}$ после закалки от $850^{\circ}C$.

Рис. 12. Электронная микрофотография структуры мартенсита сплава Ni₄₉Mn₅₁ после закалки от 850°C. вой ориентации (рис. 10). На электронно-дифракционной картине, снятой с участка структуры, содержащего несколько пластин мартенсита, присутствуют рефлексы L10 фазы, принадлежащие четырем разным ориентировкам (рис. 10, с). Эти ориентировки находятся попарно в двойниковом положении, плоскость двойникования показана на схеме расшифровки электронно-дифракционной картины штриховой линией (рис. 10, d). Плоскости габитуса двойников имеют ориентацию, близкую к $\{111\}_{L1_0} \parallel \{101\}_{B2}$. Полученные нами результаты находятся в согласии с данными авторов [12-14], полученными на поликристаллическом сплаве Ni₅₀Mn₅₀ стехиометрического состава и серии сплавов Ni₅₀Mn_{50-у}Ti_у. Внутри отдельно взятой пластины тетрагонального мартенсита также происходит двойникование, но размер образующихся двойников на порядок меньше (нанодвойники). Плоскости габитуса нанодвойников $\{111\}\langle 11\bar{2}\rangle_{L1_0} \parallel \{101\}\langle 10\bar{1}\rangle_{B2}$ [13].

Следует также обратить внимание на практически полное отсутствие дислокаций в кристаллах $L1_0$ тетрагонального мартенсита в исследованном псевдомонокристалле, что свидетельствует о термоупругом механизме $B2 \rightarrow L1_0$ -перехода. Известно, что пластины нетермоупругого мартенсита характеризуются высокой плотностью дислокаций [23,24].

Структура псевдомонокристалла после закалки

Микроструктура псевдомонокристалла сплава Ni49Mn51 после гомогенизации, повторного нагрева до 960°С, переохлаждения до 850°С, 20 min и закалки в воду показана на рис. 11. После отжига псевдомонокристалла происходит перекристаллизации с образованием крупного зерна около 200 µm. Возможно, границы зерен образуются преимущественно по границам бывших ячеек, о чем свидетельствует совпадение среднего размера зерен и размера ячеек. Пакетная структура L10 мартенсита в полученном поликристалле сохраняется, на размеры пакетов уменьшаются в 2-3 раза по сравнению с исходным псевдомонокристаллом. Отметим, что образовавшиеся зерна имеют часто зубчатые или ступенчатые границы. Средняя ширина мартенситных пластинок на электронных микрофотографиях закаленного псевдомонокристалла также уменьшилась в ~ 2.5 раза по сравнению с исходным псевдомонокристаллом (рис. 12). Изображения тонкой структуры мартенсита, приведенные на рис. 10 и 12, получены с одной и той же плоскости фольги и для наглядности выполнены в одном масштабе. Наблюдается корреляция между размером пакета и шириной пластинок мартенсита в пакете.

Выводы

1. Показано, что выращенный псевдомонокристалл сплава Ni₄₉Mn₅₁ при комнатной температуре имеет

структуру L1₀ тетрагонального мартенсита с параметрами a = 0.3732 nm, c = 0.3537 nm и степенью тетрагональности c/a = 0.94775.

2. На основе дилатометрических данных впервые для сплава Ni₄₉Mn₅₁, находящегося в псевдомонокристаллическом состоянии, определены температуры прямого и обратного превращений B2 \rightarrow L1₀: $M_s = 640^{\circ}$ C, $M_f = 625^{\circ}$ C, $A_s = 660^{\circ}$ C, $A_f = 680^{\circ}$ C.

3. Проведен анализ кристаллогеометрических особенностей структуры мартенсита, формирующегося в процессе $B2 \rightarrow L1_0$ -перехода в псевдомонокристалле сплава Ni₄₉Mn₅₁. С использованием метода EBSD впервые установлено, что в соседних пакетах всегда присутствуют три сорта пластин тетрагонального мартенсита, находящихся в двойниковом положении и различающихся направлением оси тетрагональности.

4. После гомогенизирующего отжига сплава $Ni_{49}Mn_{51}$ и закалки происходит перекристаллизация с образованием крупных зерен размером около $200 \,\mu$ m. Пакетная структура ГЦТ-мартенсита при этом сохраняется, но размеры пакетов, сформированных в пределах отдельного зерна, уменьшаются в 2–3 раза по сравнению с исходным псевдомонокристаллом. Толщина мартенситных пластинок в пакете коррелирует с размерами пакета.

Работа выполнена в рамках государственного задания по теме "Структура", № 01201463331 (проект № 15-17-2-24).

Список литературы

- [1] Гринберг Б.А., Сюткина В.И. Новые методы упрочнения упорядоченных сплавов. М.: Металлургиздат, 1985. 176 с.
- [2] Ройтбурд А.Л. Современное состояние теории мартенситных превращений. В кн.: Несовершенства кристаллического строения и мартенситные превращения. М.: Наука, 1972. С. 7–33.
- [3] Ройтбурд А.Л. // ФТТ. 1968. Т. 10. Вып. 12. С. 3619-3627.
- [4] Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенситные превращения. Екатеринбург: УрО РАН, 1998. 162 с.
- [5] Adachi K., Wayman C.M. // Met. Trans. A. 1985. Vol. 16A.
 P. 1567–1579.
- [6] Adachi K., Wayman C.M. // Met. Trans. A. 1985. Vol. 16A.
 P. 1581–1597.
- [7] Krasevec V. // Phys. Stat. Sol. (a). 1975. Vol. 30. P. 241-250.
- [8] Kren E., Nagy E., Nagy I., Pal L., Szabo P. // J. Phys. Chem. Sol. 1968. Vol. 29. P. 101–108.
- [9] Пушин В.Г., Юрченко Л.И., Соколова А.Ю., Иванова Л.Ю. // ФММ. 1994. Т. 78. № 6. С. 104–113.
- [10] Пушин В.Г., Кондратьев В.В. // ФММ. 1994. Т. 78. № 5. С. 40–61.
- [11] Лободюк В.А., Коваль Ю.Н., Пушин В.Г. // ФММ. 2011. Т. 111. № 2. С. 169–194.
- [12] Юрченко К.А., Юрченко Л.И., Коуров Н.И., Пушин В.Г. // Изв. РАН. Сер. физическая. 2008. Т. 72. № 10. С. 1520– 1522.
- [13] Пушин В.Г., Белослудцева Е.С., Казанцев В.А., Коуров Н.И. // Материаловедение. 2012. № 11. С. 3–10.

- [14] Пушин В.Г., Куранова Н.Н., Марченкова Е.Б., Белослудцева Е.С., Казанцев В.А., Коуров Н.И. // ЖТФ. 2013. Т. 83. Вып. 6. С. 104–113.
- [15] Барабаш О.М., Коваль Ю.Н. Кристаллическая структура металлов и сплавов. Киев: Наукова думка, 1986. С. 599.
- [16] Лодиз Р., Паркер Р. Рост монокристаллов. М.: Мир, 1974. С. 176–189.
- [17] Хлебникова Ю.В., Сазонова В.А., Родионов Д.П., Вильданова Н.Ф., Егорова Л.Ю., Калетина Ю.В., Солодова И.Л., Умова В.М. // ФММ. 2009. Т. 108. № 3. С. 267–275.
- [18] Хлебникова Ю.В., Родионов Д.П., Сазонова В.А., Егорова Л.Ю., Калетина Ю.В. // ФММ. 2013. Т. 114. № 9. С. 818–830.
- [19] Хлебникова Ю.В. // ФММ. 2010. Т. 109. № 1. С. 43-71.
- [20] Смирнов М.А., Счастливцев В.М., Журавлев Л.Г. Основы термической обработки стали. Изд. 2-е, переработанное. М.: ООО "Наука и технологии", 2002. 519 с.
- [21] Xu H., Wiezorek J.M.K. // Acta Mater. 2004. Vol. 52, N 2. P. 395–403.
- [22] Хлебникова Ю.В., Родионов Д.П. // ДиРМ. 2011. № 4. С. 9–15.
- [23] Отцука К., Симидзу К., Судзуки Ю. и др. // Сплавы с эффектом памяти формы / Под ред. Х. Фунакубо: пер. с японского. М.: Металлургия, 1990. 224 с.
- [24] Shape memory materials / Ed. by K. Otsuka, C.M. Wayman. Cambridge: Cambridge University Press, 1999. 284 p.