05

Асимметричный магнитоимпеданс в двухфазных ферромагнитных пленочных структурах

© А.С. Антонов¹, Н.А. Бузников²

¹Институт теоретической и прикладной электродинамики РАН, Москва ² Научно-исследовательский институт природных газов и газовых технологий — Газпром ВНИИГАЗ, Развилка, Московская область E-mail: n_buznikov@mail.ru

Поступило в Редакцию 16 марта 2016 г.

Теоретически исследован магнитоимпеданс трехслойной пленочной структуры, состоящей из магнитомягкой и магнитожесткой пленок, разделенных слоем немагнитного высокопроводящего материала. Предложена модель для описания зависимостей импеданса образца от внешнего магнитного поля и частоты, основанная на совместном решении линеаризованных уравнений Максвелла и уравнения Ландау—Лифшица, учитывающая магнитостатическое взаимодействие между магнитными слоями. Показано, что магнитостатическое взаимодействие приводит к изменению распределения намагниченности магнитомягкой пленки и к возникновению асимметрии в зависимости импеданса от поля. Полученные результаты могут быть использованы для создания сенсоров слабого магнитного поля.

Явление магнитоимпеданса (МИ) заключается в изменении комплексного сопротивления ферромагнитного проводника в присутствии внешнего магнитного поля. Этот эффект наблюдается в различных магнитомягких материалах и представляет большой интерес для создания сенсоров слабого магнитного поля [1]. С точки зрения миниатюризации сенсоров на основе эффекта МИ и их совместимости с современными технологиями электроники перспективными являются пленочные структуры [2]. Эффект МИ наблюдался в однослойных магнитомягких пленках [3,4], в трехслойных пленочных структурах [5–7], а также в многослойных наноструктурных пленках [8,9].

Следует отметить, что, хотя импеданс магнитомягких проводников обладает высокой чувствительностью к изменениям внешнего поля, зависимость импеданса от поля в области малых полей является нели-

86

нейной. Для получения линейной характеристики отклика импеданса и повышения чувствительности эффекта МИ при создания сенсоров перспективным является использование асимметричной зависимости импеданса от поля (так называемый асимметричный МИ) [1]. Одним из возможных способов получения асимметричной характеристики импеданса является создание асимметричной статической магнитной конфигурации. Для пленочных структур асимметричная зависимость импеданса от поля возникает в образцах с обменным взаимодействием [10,11].

Кроме того, асимметричный МИ наблюдался и в двухфазных пленочных структурах NiFe/Cu/Co [12]. Возникающий в этих образцах сдвиг кривых намагничивания относительно нулевого поля обусловлен магнитостатической связью между магнитомягкой пленкой пермаллоя и магнитожестким слоем кобальта. При этом измеренные зависимости импеданса от внешнего поля носят асимметричный характер в широком интервале частот. В настоящей работе предложена модель для описания асимметричного МИ в двухфазных пленочных структурах, которая позволяет объяснить основные экспериментальные результаты, полученные в работе [12].

Рассматриваемая пленочная структура представляет собой плоский трехслойный образец длиной l и шириной w < l. Образец состоит из магнитомягкой пленки толщиной d_1 , высокопроводящего немагнитного слоя толщиной d_0 и магнитожесткого слоя толщиной d_2 . Геометрия задачи и используемая система координат схематически показаны на рис. 1.

Возбуждающий переменный ток $I = I_0 \exp(-i\omega t)$ пропускается вдоль пленочной структуры (вдоль оси y), и внешнее постоянное магнитное поле H_e параллельно току. Система координат выбрана таким образом, что переменное магнитное поле, индуцированное током, параллельно оси x (рис. 1). Так как длина и ширина пленочной структуры намного больше ее толщины, пренебрегая краевыми эффектами, будем полагать, что значения полей зависят только от координаты, перпендикулярной плоскости образца (координаты z).

В этом приближении решение уравнений Максвелла для амплитуд продольного электрического поля e_k и поперечного магнитного поля h_k в трех слоях образца имеют вид

$$e_{k} = (c\lambda_{k}/4\pi\sigma_{k})[A_{k}\operatorname{ch}(\lambda_{k}z) + B_{k}\operatorname{sh}(\lambda_{k}z)],$$

$$h_{k} = A_{k}\operatorname{sh}(\lambda_{k}z) + B_{k}\operatorname{ch}(\lambda_{k}z).$$

Рис. 1. Геометрия задачи и система координат, использованные в модели.

Здесь k = 0, 1, 2 — номер слоя; A_k и B_k — постоянные; $\lambda_k = (1 - i)/\delta_k$, $\delta_k = c/(2\pi\omega\sigma_k\mu_k)^{1/2}$, c — скорость света в вакууме, σ_k и μ_k — удельная проводимость и поперечная магнитная проницаемость k-го слоя соответственно (для центрального немагнитного слоя $\mu_0 = 1$).

Шесть постоянных A_k и B_k в (1) определяются из условий непрерывности полей при $z = \pm d_0/2$ и условия для амплитуды магнитного поля на поверхности образца:

$$h_1(d_0/2 + d_1) = -h_2(-d_0/2 - d_2) = 2\pi I_0/cw.$$

Значения поперечной магнитной проницаемости магнитных слоев зависят от множества факторов, таких как конфигурация доменной структуры, распределение осей анизотропии и т.д. Влияние этих факторов является довольно сложным, что приводит к трудностям при моделировании реальных материалов. В дальнейшем будем полагать, что значения магнитной проницаемости слоев определяются только

процессом вращения намагниченности. Отметим, что такое приближение справедливо для не слишком низких частот [1].

Предположим также, что наведенная при отжиге образцов в магнитном поле анизотропия в магнитных слоях близка к поперечной [12] и углы отклонения осей анизотропии ψ_k от поперечного направления малы. Вследствие магнитостатического взаимодействия между слоями в магнитомягкой пленке появляется эффективное поле сдвига H_b , которое имеет противоположное направление по отношению к вектору намагниченности в магнитожестком слое.

Равновесные значения углов вектора намагниченности в пленках θ_1 и θ_2 по отношению к поперечному направлению могут быть найдены при помощи минимизации свободной энергии. Для магнитожесткого слоя свободная энергия может быть представлена в виде суммы энергии анизотропии и энергии Зеемана во внешнем магнитом поле. Минимизация свободной энергии приводит к следующему уравнению для равновесного угла намагниченности θ_2 :

$$H_{a2}\sin(\theta_2-\psi_2)\cos(\theta_2-\psi_2)=H_e\cos\theta_2,$$

где H_{a2} — поле анизотропии магнитожесткого слоя.

В выражении для свободной энергии магнитомягкого слоя должно быть также учтено присутствие поля сдвига H_b . Для равновесного угла намагниченности θ_1 имеем

$$H_{a1}\sin(heta_1-\psi_1)\cos(heta_1-\psi_1)-H_b\sin(heta_1- heta_2)-H_e\cos heta_1=0$$

Здесь $H_{a1} \ll H_{a2}$ — поле анизотропии магнитомягкой пленки.

Значения поперечной магнитной проницаемости в слоях определяются из решения уравнения Ландау–Лифшица. Для поперечной магнитной проницаемости магнитожесткой пленки μ_2 получаем

$$\mu_2 = 1 + \frac{\gamma 4\pi M_2 (\gamma 4\pi M_2 + \omega_1 - i\kappa\omega) \sin^2 \theta_2}{(\gamma 4\pi M_2 + \omega_1 - i\kappa\omega) (\omega_2 - i\kappa\omega) - \omega^2}$$

Здесь M_2 — намагниченность насыщения магнитожесткого слоя, γ — гиромагнитное отношение, κ — параметр затухания Гильберта,

$$\omega_1 = \gamma [H_{a2} \cos^2(\theta_2 - \psi_2) + H_e \sin \theta_2],$$

$$\omega_2 = \gamma [H_{a2} \cos\{2(\theta_2 - \psi_2)\} + H_e \sin \theta_2]$$

Для поперечной магнитной проницаемости магнитомягкого слоя μ_1 имеем

$$\mu_1 = 1 + \frac{\gamma 4\pi M_1 (\gamma 4\pi M_1 + \omega_3 - i\kappa\omega) \sin^2 \theta_1}{(\gamma 4\pi M_1 + \omega_3 - i\kappa\omega)(\omega_4 - i\kappa\omega) - \omega^2},$$

где M_1 — намагниченность насыщения магнитомягкой пленки,

$$\omega_3 = \gamma [H_{a1} \cos^2(\theta_1 - \psi_1) - H_b \cos(\theta_1 - \theta_2) + H_e \sin \theta_1],$$

$$\omega_4 = \gamma [H_{a1} \cos\{2(\theta_1 - \psi_1)\} - H_b \cos(\theta_1 - \theta_2) + H_e \sin \theta_1],$$

Импеданс трехслойной пленочной структуры Z может быть выражен через значения электрического поля на верхней и нижней поверхностях образца:

$$Z = l \frac{e_1(d_0/2 + d_1) + e_2(-d_0/2 - d_2)}{2I_0}$$
$$= \frac{\pi l}{cw} \frac{e_1(d_0/2 + d_1) + e_2(-d_0/2 - d_2)}{h_1(d_0/2 + d_1)}$$

На рис. 2 показана зависимость модуля импеданса |Z| трехслойной структуры от внешнего поля H_e , рассчитанная при различных значениях поля сдвига H_b . Значения импеданса отнесены к сопротивлению образца при постоянном токе $R_{dc} = (l/\pi w)(\sigma_0 d_0 + \sigma_1 d_1 + \sigma_2 d_2)^{-1}$. Геометрические параметры пленочной структуры, для которой проводились расчеты, были выбраны в соответствии с размерами экспериментальных образцов, исследованных в работе [12].

Из рис. 2 видно, что в присутствии поля сдвига зависимость импеданса пленочной структуры от поля становится асимметричной. Это проявляется, во-первых, в сдвиге зависимости импеданса относительно нулевого поля; во-вторых, возникает разница между максимальными значениями импеданса при положительных и отрицательных полях. Асимметрия обусловлена тем, что поле сдвига приводит к изменению статической магнитной конфигурации и поперечной магнитной проницаемости магнитомягкой пленки. Отметим, что аналогичный механизм, приводящий к асимметричному МИ, был подробно исследован для аморфных лент с поверхностными нанокристаллическими магнитожесткими слоями [13,14].

С возрастанием поля сдвига асимметрия между значениями импеданса в максимумах возрастает. При этом положение отрицательного пика практически не изменяется, а положительное значение поля,

Puc. 2. Зависимость модуля импеданса |Z| от внешнего поля H_e при $f = \omega/2\pi = 0.75 \text{ GHz}$ и различных значениях H_b , Oe: $1 - H_b = 0.5$; $2 - H_b = 1$; $3 - H_b = 2$; $4 - H_b = 3$. Параметры, использованные при расчетах: $d_0 = 7 \text{ nm}$, $d_1 = 25 \text{ nm}$, $d_2 = 50 \text{ nm}$, $M_1 = 800 \text{ G}$, $M_2 = 1000 \text{ G}$, $H_{a1} = 5 \text{ Oe}$, $H_{a2} = 30 \text{ Oe}$, $\psi_1 = -0.05\pi$, $\psi_2 = 0$, $\sigma_0 = 5 \cdot 10^{17} \text{ s}^{-1}$, $\sigma_1 = 10^{16} \text{ s}^{-1}$, $\sigma_2 = 1.5 \cdot 10^{17} \text{ s}^{-1}$, $\kappa = 0.02$.

при котором возникает максимум импеданса, убывает с возрастанием поля сдвига. С увеличением толщины немагнитной прослойки d_0 магнитостатическое взаимодействие между пленками уменьшается. При этом сам импеданс и его относительное изменение во внешнем поле возрастают вследствие уменьшения отношения толщины скин-слоя к толщине образца.

Изменение зависимости импеданса от внешнего поля при увеличении частоты возбуждающего тока проиллюстрировано на рис. 3. При не

Рис. 3. Зависимость модуля импеданса |Z| от внешнего поля H_e при $H_b = 3$ Ое и различных значениях частоты f, GHz: I - f = 0.5; 2 - f = 0.75; 3 - f = 1; 4 - f = 1.5; 5 - f = 2. Параметры, использованные при расчетах, такие же, как на рис. 2.

слишком высоких частотах зависимость импеданса от поля определяется скин-эффектом. В этом диапазоне частот положения максимумов в зависимости импеданса от внешнего поля практически не изменяются, а максимальные значения импеданса возрастают вследствие уменьшения толщины скин-слоя в пленках. При частотах больше и порядка 1 GHz вследствие ферромагнитного резонанса значения полей, при которых достигаются максимальные значения импеданса, начинают возрастать. При этом асимметрия между пиками практически исчезает. Подобное поведение зависимости импеданса от поля наблюдалось и в эксперименте [12].

Рассчитанные для трехслойных пленочных структур относительные изменения импеданса во внешнем поле невелики и составляют всего несколько процентов. Это обстоятельство связано с малой толщиной пленочной структуры. Увеличение относительного изменения импеданса может быть достигнуто при помощи напыления повторяющихся магнитомягких и магнитожестких слоев, разделенных немагнитной прослойкой [15]. Создание таких многослойных пленок приведет к уменьшению отношения толщины скин-слоя в магнитомягких слоях к толщине образца и соответственно к возрастанию импеданса. Отметим, что предложенная в настоящей работе модель может быть обобщена на случай многослойной структуры с тремя повторяющимися слоями.

Таким образом, в работе теоретически исследован асимметричный МИ в двухфазных ферромагнитных пленочных структурах. Возникновение асимметрии в зависимости импеданса пленочной структуры от внешнего поля связано с магнитостатическим взаимодействием между магнитными слоями. Вследствие магнитостатического взаимодействия в магнитомягком слое появляется поле сдвига, что приводит к изменению статической магнитной конфигурации и поперечной магнитной проницаемости магнитомягкой пленки. Полученные зависимости импеданса от поля и частоты находятся в качественном согласии с результатами экспериментальных исследований [12].

Работа выполнена при поддержке Министерства образования и науки РФ, проект № 02.G25.31.0127.

Список литературы

- [1] Phan M.-H., Peng H.-X. // Prog. Mat. Sci. 2008. V. 53. N 2. P. 323-420.
- [2] Kurlyandskaya G.V. Encyclopedia of Sensors / Eds. C.A. Grimes, E.C. Dickey, M.V. Pishko. American Scientific Publishers: Stevenson Ranch, CA, 2006. V. 4. P. 205–237.
- [3] Sommer R.L., Chien C.L. // Appl. Phys. Lett. 1995. V. 67. N 22. P. 3346-3348.
- [4] Xiao S.Q., Liu Y.H., Yan S.S. et al. // Phys. Rev. B. 2000. V. 61. N 8. P. 5734-5739
- [5] Hika K., Panina L.V., Mohri K. // IEEE Trans. Magn. 1996. V. 32. N 5. P. 4594– 4596.
- [6] Антонов А.С., Гадецкий С.Н., Грановский А.Б. и др. // ФММ. 1997. Т. 83. № 6. С. 60–71. [Antonov A.S., Gadetsky S.N., Granovsky A.B. et al. // Phys. Met. Metallogr. 1997. V. 83. N 6. P. 612–618.]

- [7] Kurlyandskaya G.V., Muñoz J.L., Barandiarán J.M. et al. // J. Magn. Magn. Mater. 2002. V. 242–245. Part 1. P. 291–293.
- [8] Volchkov S.O., Fernández E., García-Arribas A. et al. // IEEE Trans. Magn. 2011. V. 47. N 10. P. 3328–3331.
- [9] Fernández E., Svalov A.V., Kurlyandskaya G.V., García-Arribas A. // IEEE Trans. Magn. 2013. V. 49. N 1. P. 18–21.
- [10] García C., Florez J.M., Vargas P., Ross C.A. // Appl. Phys. Lett. 2010. V. 96. N 23. P. 232 501(3 p.).
- [11] da Silva R.B., Corrêa M.A., Silva E.F. et al. // Appl. Phys. Lett. 2014. V. 104. N 10. P. 102 405 (5 p.).
- [12] Silva E.F., Gamino M., de Andrade A.M.H. et al. // Appl. Phys. Lett. 2014.
 V. 105. N 10. P. 102 409 (5 p.).
- [13] Kim C.G., Jang K.J., Kim H.C., Yoon S.S. // J. Appl. Phys. 1999. V. 85. N 8. P. 5447–5449.
- [14] Buznikov N.A., Kim C.G., Kim C.O., Yoon S.S. // Appl. Phys. Lett. 2004. V. 85. N 16. P. 3507–3509.
- [15] Silva E.F., da Silva R.B., Gamino M. et al. // J. Magn. Magn. Mater. 2015. V. 393. P. 260–264.