02;04

Невозможность регистрации эмиссионных линий иона азота в плазме филаментов

© А.А. Ильин

Институт автоматики и процессов управления Дальневосточного отделения РАН, Владивосток Дальневосточный федеральный университет, Владивосток E-mail: kunashir@gmail.com

Поступило в Редакцию 29 апреля 2016 г.

Показано, что эмиссионные линии ионов азота N II не могут вносить вклад в излучение других линий и наблюдаться в спектре излучения плазмы филаментов, генерируемых фемтосекундными лазерными импульсами с пиковой интенсивностью $\sim 50 \ {\rm TW/cm^2}$ в воздухе. Представлена простая процедура, позволяющая оценивать соотношение интенсивностей линий при филаментации в воздухе.

Филаментация фемтосекундного лазерного излучения широко используется для дистанционного зондирования атмосферы, дистанционного спектрального анализа и др. [1,2]. Важной характеристикой плазмы филаментов, позволяющей детектировать эмиссионные линии, является их интенсивность. Как правило, в спектре плазмы филаментов наблюдаются атомарные и молекулярные линии, для воздуха характерны 1⁻ N₂⁺ $B^2 \sum_{u}^{+} -X^2 \sum_{g}^{+}$ и 2⁺ N₂C ³ Π_u - B^3 Π_g системы, триплет N I 742.4, 744.2, 746.8 nm и трудноразрешаемый триплет O I 777 nm [3]. Недавно S.-Y. Li и др. опубликовали статью [4], в которой показали, что в излучение в области 1⁻ системы N₂⁺ (391.2 nm) вносят значительный вклад линии иона азота N II. Характеристики линий N II в исследуемом авторами [4] спектральном диапазоне, а также линий N₂⁺ и N₂ представлены в табл. 1, для молекулярных линий показаны энергии переходов только для колебательных чисел верхнего v' = 0 и нижнего уровня v'' = 0. Для перехода $3p^3D^\circ - 4p^3P$ указано максимальное значение вероятности перехода А для линии 391.54 nm. В работе [4] лазерное излучение (800 nm, 2–3.1 mJ, 50 fs) фокусировалось в воздухе линзой с фокусным расстоянием 1 т.

6

Молекула (ион)	λ , nm	Энергия уровня (терма), eV	Переход	A, s^{-1}	Энергия ионизации, eV
N_2	337.0	11.03-7.35	$C^3\Pi_u - B^3\Pi_g$	$1.3\cdot 10^7$	15.58
N_2^+	391.2	3.17-0	$B^2 \sum_u^+ -X^2 \sum_g^+$	$1.1. \cdot 10^{7}$	27.12, 30.85, 37.84 [2]
N II	391.39, 391.54 391.56, 391.96, 392.46, 393.04	28.35–25.19	$3p^3D^\circ-4p^3P$	$3.2 \cdot 10^7$ (391.54)	29.6, 36.7
N II	399.5	21.6-18.5	$3p^1D-3s^1P^\circ$	$1.2\cdot 10^8$	

Таблица 1. Характеристики линий

Задача данной работы — исследование процессов диссоциации молекулярых ионов N_2^+ и накачки возбужденных уровней ионов N^+ в плазме филаментов.

Рассмотрим процесс диссоциации молекулярного иона N₂⁺ и образования ионов N⁺ в плазме филаментов более подробно. Авторы [4] определяют значение интенсивности в эксперименте $I \sim 5 \cdot 10^{13} \, \mathrm{W/cm^2}$. Для данной интенсивности в работах [5,6] наблюдалось следующее отношение плотности молекулярных ионов при многофотонной ионизации молекул азота $N_2^{2+}/N_2^+ \sim 10^{-2}$. С другой стороны, пороговые энергии образования ионов N^{2+} при ударной ионизации электронами молекул азота — 70 eV [7]. Для похожих экспериментальных условий $(800 \text{ nm}, \sim 2 \text{ mJ}, 40-42 \text{ fs}, фокусное расстояние линзы 1 m)$ [8,9] электронная температура плазмы филаментов $T_e < 1 \, \text{eV}$, т.е. вероятность образования ионов N²⁺ электронным ударом пренебрежимо мала. Следовательно, ионы N⁺ большей частью должны образоваться не за счет рекомбинации ионов N²⁺, а за счет реакции диссоциации (1) [10] (табл. 2), при этом уровни N₂⁺ $X^2 \sum_{g}^+$, $A^2 \prod_{u}$ и $B^2 \sum_{u}^+$ населяются при многофотонной ионизации N₂ [11]. Хорошо известно, что интенсивность линии $I \propto n(i)A$, где n(i) — населенности уровня i и A — вероятность спонтанного перехода. Выше было показано, что плотность ионов N²⁺ пренебрежимо мала, значит, рекомбинационная накачка уровня $3p^3D^\circ$

Таблица 2. Характерные времена реакций

	Реакция	Характерное время, s
 (1) (2) (3) 	$ \begin{split} & N_2^+(X,A,B) + e \to N^+(2p^{23}P) + N(^4S) \\ & N^+(2p^{23}P) + e \to N^+(3p^3D^\circ) + e \\ & N_2^+ + e \to N(^4S) + N(^4S) \end{split} $	$7.7 \cdot 10^{-6}(X), \ 1.3 \cdot 10^{-6}(A), \\ 8 \cdot 10^{-7}(B) \\ 3.4 \cdot 10^{4} \\ 7.4 \cdot 10^{-10}$

(близкого по энергии к потенциалу ионизации, см. табл. 1) несущественна. Таким образом, уровень $3p^3D^{\circ}$ будет накачиваться за счет реакции (2) (табл. 2).

Оценим времена, характеризующие процессы появления линий N II 391.39–393.04 nm, как $\tau_d = (k_d N_e)^{-1}$ — характерное время диссоциации и N₂⁺ и $\tau_{ex} = (k_{ex}N_e)^{-1}$ — время накачки уровня ${}^{3}D^{\circ}$ за счет реакции (2), т.е. изначально образуется ион N⁺ в результате реакции (1), а затем происходит переход на уровень $3p^{3}D^{\circ}$. Выражения для констант диссоциации k_d представлены в работе [12], методика расчета констант скоростей возбуждения k_{ex} описана в работах [13,14]. Важным параметром для расчета τ_d и τ_{ex} является начальная электронная температура, которая меняется в широких пределах от 3900 K [8] до 1 eV [15]. В работе [9] с похожими экспериментальными условиями работы [4] получено усредненное за интервал 20 ns значение температуры $T_e = 5800$ K, поэтому в расчетах, представленных в табл. 2, выбрано $T_e = 1$ eV. Электронную плотность N_e можно оценить из соотношения

$$N_e = (R_{N_2}(I)[N_2] + R_{O_2}(I)[O_2])t_p$$

где R(I) — скорость ионизации из работы [16], $[N_2]$ и $[O_2]$ — плотности молекул кислорода и азота. Для длительности импульса $t_p = 50$ fs [4] получаем $N_e \approx 3 \cdot 10^{16}$ cm⁻³. Стоит отметить, что температура электронов очень быстро падает с характерным временем ~ 0.6–10 ns [8,15], поэтому из рассмотрения исключены каскадные переходы, приводящие к накачке уровня $3p^3D^\circ$. Из данных табл. 2 видно, что характерные времена реакций диссоциации и накачки уровня $3p^3D^\circ$ намного превышают время жизни плазмы филаментов (длительность излучения молекул и атомов ~ 1 и 150 ns соответственно [3]). Также в таблице показано характерное время реакции диссоциативной рекомбинации (3) [17],

которое почти на 3–4 порядка меньше времени диссоциации, т.е. в плазме филаментов ионы N_2^+ большей частью рекомбинируют с образованием атомов азота. Таким образом, исходя из вышесказанного, плотность частиц $n(N \text{ II } 3p^3D^\circ) \rightarrow 0$ по сравнению с населенностью уровня $N_2^+ B^2 \sum_{u}^+$, который населяется в процессе многофотонной ионизации. А значит, линии N II 391.39–393.04 nm не могли быть зарегистрированы в работе [4] и не могут вносить вклад в излучение линии 1⁻ системы в области 391 nm.

Избежать ошибки, допущенной авторами при расшифровке спектра, поможет простое правило: если линии N II 391.39–393.04 nm присутствуют в спектре, то должны наблюдаться линии с бо́льшим значением A и меньшими энергиями верхнего уровня, например N II 399.5 nm. В соответствии с работой [18] в фемтосекундной плазме основную роль играет накачка из основного состояния, следовательно, отношение населенностей уровней иона N II определяется как

$$\frac{n(3p^1D)}{n(3p^3D^\circ)} \sim \frac{k_{ex}(2p^{2\,3}P - 3p^1D)}{k_{ex}(2p^{2\,3}P - 3p^3D^\circ)}.$$

Таким образом, отношение интенсивностей линий определяется следующей формулой:

$$\frac{I(399.5)}{I(391.54)} \sim \frac{k_{ex}(2p^{23}P - 3p^{1}D)A_{399.5}}{k_{ex}(2p^{23}P - 3p^{3}D^{\circ})A_{391.54}}$$

Для $T_e = 1 \text{ eV}$ получаем $I(399.5)/I(391.54) \sim 2 \cdot 10^2$, но в спектрах работы [4] отсутствует такая линия. Наблюдается лишь молекулярная линия N₂ 399.7 nm 2⁺-системы. В случае плазмы, возбуждаемой импульсом CO₂-лазера, где большую роль играют каскадные переходы и рекомбинационная накачка, наблюдается следующее отношение интенсивностей $I(399.5)/I(391.54) \sim 5$ при $T_e = 21000 \text{ K}$ [19].

Таким образом, в плазме филаментов с начальной температурой $T_e \sim 1 \, {\rm eV}$ невозможна регистрация эмиссионных линий N II 391.39–393.04 в силу как высокой энергии верхнего уровня 28.35 eV, так и малой плотности ионов N II. Также представляется сомнительной регистрация других линий N II при пиковой интенсивности $I \sim 5 \cdot 10^{13} \, {\rm W/cm}^2$, так как в основном ионы ${\rm N}_2^+$ исчезают в процессе диссоциативной рекомбинации с образованием нейтральных атомов.

Работа выполнена при финансовой поддержке Российского научного фонда (соглашение № 14-50-00034). Константы скоростей возбуждения рассчитаны с использованием оборудования ЦКП ЛаМИ ИАПУ ДВО РАН.

Список литературы

- Букин О.А., Бабий М.Ю., Голик С.С. и др. // Квант. электрон. 2014. Т. 44. № 6. С. 563. [Bukin O.A., Babii M.Yu., Golik S.S. et al. // Quantum Electron. 2014. V. 44. Р. 563.]
- [2] Li H.-L., Xu H.-L., Yang B.-S. et al. // Opt. Lett. 2013. V. 38. P. 1250.
- [3] Ilyin A.A., Golik S.S., Shmirko K.A. // Spectrochim. Act. B. 2015. V. 112. P. 16.
- [4] Li S.-Y., Li S.-C., Sui L.-Z. et al. // Phys. Rev. A. 2016. V. 93. P. 013405.
- [5] Cornaggia C., Hering Ph. // J. Phys. B: At. Mol. Opt. Phys. 1998. V. 31. P. L503.
- [6] Cornaggia C., Hering Ph. // Phys. Rev. A. 2000. V. 62. P. 023 403.
- [7] Itikawa Y. // J. Phys. Chem. Ref. Data. 2006. V. 35. P. 31.
- [8] Sun Z., Chen J., Rudolph W. // Phys. Rev. E. 2011. V. 83. P. 046 408.
- [9] Bernhardt J., Liu W., Theberge F. et al. // Opt. Commun. 2008. V. 281. P. 1268.
- [10] Lofthus A., Krupenie P.H. // J. Phys. Chem. Ref. Data. 1977. V. 6. P. 113.
- [11] Becker A., Bandrauk A.D., Chin S.L. // Chem. Phys. Lett. 2001. V. 343. P. 345.
- [12] Teulet P., Sarrette J.P., Gomes A.M. // J. Quant. Spectrosc. Radiat. Transf. 1999. V. 62. P. 549.
- [13] Ilyin A.A., Sokolova E.B. // Proc. SPIE. 2012. V. 8696. P. 86960D.
- [14] Ильин А.А., Голик С.С. // Письма в ЖТФ. 2014. Т. 40. В. 6. С. 7. [Ilyin А.А., Golik S.S. // Tech. Phys. Lett. 2014. V. 40. Р. 234.]
- [15] Shneider M.N., Zheltikov A.M., Miles R.B. // Phys. Plasmas. 2011. V. 18. P. 063 509.
- [16] Kasparian J., Sauerbrey R., Chin S.L. // Appl. Phys. B. 2000. V. 71. P. 877.
- [17] Kossiy I.A., Kostinsky A.Yu., Matveev A.A., Silakov V.P. // Plasma Sources Sci. Techolog. 1992. V. 1. P. 207.
- [18] Ilyin A.A., Golik S.S. // Spectrochim. Acta. Part B. 2013. V. 87. P. 192.
- [19] Camacho J.J., Poyato J.M.L., Diaz L., Santos M. // J. Phys. B: At. Mol. Opt. Phys. 2007. V. 40. P. 4573.