07

Воздействие внешних условий на электронные свойства однослойных углеродных нанотрубок

© С.Д. Шандаков¹, М.В. Ломакин¹, А.Г. Насибулин^{2,3,4}

¹ Кемеровский государственный университет, Кемерово, Россия

² Сколковский институт науки и технологий, Москва, Россия

³ Санкт-Петербургский политехнический университет Петра Великого, Россия

⁴ Аалто университет, Puumieihenkuja, 2, 00076 Aalto, Espoo, Finland E-mail: sergey.shandakov@gmail.com, a.nasibulin@skoltech.ru

Поступило в Редакцию 8 июня 2016 г.

Представлены спектры оптического поглощения пленок однослойных углеродных нанотрубок (ОУНТ) после их годового хранения на воздухе и при их нагревании до 250°С. Результаты исследований показывают, что длительное хранение ОУНТ при окружающей атмосфере приводит к значительному уменьшению интенсивности оптического поглощения, обусловленного электронным возбуждением, которая восстанавливается при нагревании пленки. Обсуждается механизм изменения электронных свойств ОУНТ при воздействии окружающей среды.

В настоящее время однослойные углеродные нанотрубки (OУHT), как и материалы на их основе, в частности прозрачные проводящие тонкие пленки из ОУНТ, интенсивно исследуются для различных приложений. ОУНТ обладают необычными электронными свойствами, которые зависят как от их диаметра, так и от хиральности. Следует отметить, что для ОУНТ в области низких энергий (0.5-4 eV) их электронные свойства определяются переходами, обусловленными электронным возбуждением. Сорбция электронно-донорных или акцепторных молекул поверхностью ОУНТ приводит к перераспределению электронной плотности и соответственно изменению интенсивности переходов [1,2]. При этом в работе [1] обнаружена зависимость эффекта допирования от диаметра ОУНТ, а в работе [2], наоборот, такого эффекта не наблюдали. В работе [3] показано, что интенсивность пиков первого перехода полупроводниковых ОУНТ (S11) увеличивается при очистке продукта

23

синтеза от дефектных ОУНТ (методом их окисления при нагревании на воздухе) или разделении пучков ОУНТ (ультразвуковым воздействием). В работе [4] измерение пропускания света пленками со случайной упаковкой ОУНТ показало, что электронные переходы нечувствительны к изменению температуры (в интервале 15-295 К), но зависят от внешнего давления (в интервале 1-8 GPa). С учетом зависимости как геометрических размеров ОУНТ, так и сорбции молекул на их поверхности от температуры неочевидным является тот факт, что переходы, обусловленные электронным возбуждением, нечувствительны к изменению температуры. Как видно, воздействие окружающей среды может привести к значительному изменению оптических и электронных свойств ОУНТ. Таким образом, понимание механизмов изменения свойств ОУНТ под воздействием окружающей среды позволит более эффективно использовать устройства на их основе. В настоящей работе исследуются изменение и восстановление электронных свойств ОУНТ в процессе их хранения и нагревания-охлаждения на воздухе.

ОУНТ были получены в виде аэрозоля каталитическим разложением CO на частицах Fe, получаемых при разложении паров ферроцена [5,6]. ОУНТ на выходе из реактора были отфильтрованы на мембранном нитроцеллюлозном фильтре "Миллипоре" с размером пор $0.45\,\mu$ m. Для дальнейших исследований ОУНТ с фильтра переносили холодным прессованием [7] на пластину с квадратным отверстием для свободно стоящей пленки с целью проведения оптических измерений, исключающих влияние подложки [8].

Измерения оптической плотности проводились с использованием спектрофотометра Lambda 1050 (Perkin Elmer) в диапазоне длин волн от 190 до 3200 nm. Нагревание пленки ОУНТ осуществляли внутри камеры спектрометра с использованием температурной камеры Linkam TP93. Температура контролировалась с помощью термопары и внешнего нагревателя с отверстием диаметром 2 mm, на котором закреплялась пленка ОУНТ.

Для исследования использовались несколько образцов ОУНТ с различным временем выдерживания на воздухе при комнатной температуре после синтеза. С целью исследования влияния сорбированных нанотрубками компонентов воздуха на переходы, соответствующие первому и второму электронному возбуждению в полупроводниковых (S_{11}, S_{22}) и в металлических (M_{11}) трубках, были измерены спектры оптического поглощения пленок ОУНТ при их нагревании.

25

Нагревание проводили в диапазоне от 24 до 250°С, затем образец охлаждали до комнатной температуры. Более значительное увеличение интенсивности поглощения при нагреве наблюдалось для образцов с большим временем выдержки на воздухе (при температуре около 24°С и относительной влажности 30–40%).

На рис. 1, а представлены спектры, полученные для образца со временем выдержки на воздухе около 12 месяцев. Как можно видеть, спектр, полученный после длительного хранения трубок и снятый при комнатной температуре, имеет относительно низкую интенсивность первых переходов, обусловленных электронным возбуждением. Следует отметить, что интенсивность этих переходов уменьшается с увеличением срока хранения образцов на воздухе с момента их получения. Представленный на рис. 1 спектр в области энергий от 0.5 до 0.8 eV, характерной для первого перехода полупроводниковых ОУНТ (S11), состоит из четко разделенных 6 полос. При больших энергиях (1-2 eV), характерных для переходов S_{22} и M_{11} , полосы имеют большую ширину, меньшую интенсивность и не разделяются на отдельные компоненты. Спектры оптического поглощения, представленные на рис. 1, показывают увеличение амплитуды полос S₁₁ и незначительное изменение амплитуды S₂₂, M₁₁ и плазмонного пиков. Для спектров, полученных при температуре выше 190°С (не показаны), огибающая кривая сохранялась, но возникали пульсации, которые, по всей видимости, были обусловлены особенностями режима работы прибора (пульсации вновь исчезали при охлаждении образца до 190°С). Дальнейшее охлаждение образца от 190°С до комнатной температуры не приводило к существенным изменениям спектра. Необходимо отметить, что пленки ОУНТ, выдержанные на воздухе в течение 2-3 дней после получения, при нагревании не показали никакого изменения интенсивности оптической плотности.

Следует отметить, что представление спектров (рис. 1, *b*), полученных при разных температурах, относительно друг друга позволяет упростить интерпретацию результатов и исключить необходимость аппроксимации базовой линии, которая достаточно произвольна в области ближнего ИК-диапазона. Как видно из рис. 1, *b*, основное изменение спектра наблюдается в интервале изменения температуры 90–130°С. Следует отметить, что данный температурный интервал соответствует найденному в работе [9] интервалу, при котором наблюдалась десорбция молекул кислорода с поверхности ОУНТ в вакуум.

Рис. 1. *а* — зависимость оптической плотности пленки ОУНТ от энергии возбуждения при разных температурах. Первое измерение было получено при 25°С после хранения пленки на воздухе около года. *b* — изменения оптической плотности пленки ОУНТ при ее нагревании и охлаждении в различных интервалах температуры.

На рис. 2 изображен спектр для образца ОУНТ, полученный при 170°С, относительно спектра, полученного при комнатной температуре, и представлено разложение спектра поглощения в области 0.50–0.75 eV

Рис. 2. Оптическая плотность (область S_{11}) пленки ОУНТ при температуре 170°С относительно плотности при 25°С. Пунктирными линиями представлено разложение огибающей функциями Лоренца (указаны значения энергии полос).

на 6 пиков с использованием функции Лоренца (рис. 2). Для спектров S_{11} (относительно спектра, полученного при комнатной температуре) рассчитаны параметры лоренцианов. При этом наименьший коэффициент корреляции получился для аппроксимации спектра при температуре 90 и 250°С ($R^2 = 0.995$).

На основании полученных значений энергий (частот) поглощения для 6 полос можно рассчитать диаметры и индексы хиральности соответствующих ОУНТ согласно формулам [10]:

$$\nu_{11}/cm^{-1} = \frac{1 \cdot 10^7}{157.5 + 1066.9d} + \frac{A_1 \cos(3\alpha)}{d^2},$$

$$\alpha = \arctan \frac{\sqrt{3}m}{2n+m}, \qquad d = a\sqrt{m^2 + n^2 + mn}/\pi, \tag{1}$$

где $A_1 = -710$, если n - m = 3k + 1 и $A_1 = 369$, если n - m = 3k + 2(k = 0, 1, 2, ...); n, m — индексы хиральности; α — угол хиральности;

N₂	$E_{\mathrm{exp}},\mathrm{eV}$	E, eV	<i>n</i> , <i>m</i>	<i>d</i> , nm	d_g , nm
1	0.520 ± 0.001	0.519 0.520	(18, 13) (21, 8)	2.111 2.031	0.327 0.314
2	0.566 ± 0.002	0.566 0.568	(22, 5) (18, 10)	1.948 1.924	0.301 0.298
3	0.606 ± 0.002	0.604 0.608	(21, 4) (17, 9)	1.821 1.791	0.282 0.277
4	0.651 ± 0.002	0.652	(21, 1)	1.685	0.261
5	0.700 ± 0.003	0.699	(20,0)	1.566	0.242
6	0.743 ± 0.006	0.738 0.743 0.744	(11, 10) (17, 3) (13, 8)	1.425 1.463 1.437	0.220 0.226 0.222

Средние значения энергии пиков (E_{exp}), аппроксимирующих экспериментальный спектр, и расчетные (по энергии E, близкой к E_{exp} с учетом погрешности аппроксимации) значения индексов хиральности (n, m), диаметра ОУНТ (d) и диаметра межтрубного канала (d_g) в пучке ОУНТ

d — диаметр УНТ, выраженный в nm; a = 0.246 nm — постоянная решетки плоскости графена.

В таблице приведены диаметры и индексы хиральности ОУНТ, соответствующие разложению спектра поглощения на 6 компонентов с учетом разброса значений для разных температур. Расчеты показывают, что исследуемая пленка в основном состоит из ОУНТ с достаточно небольшим набором индексов хиральности и соответственно диаметров (от 1.425 до 2.111 nm) в рассматриваемом диапазоне энергий.

Основной причиной изменений интенсивности переходов S_{11} может быть десорбция при нагреве из пленок ОУНТ электронно-акцепторных молекул, находящихся в воздухе и уменьшающих интенсивность полосы S_{11} [8], в первую очередь O_2 . Во время хранения пленок ОУНТ в лабораторных условиях их поверхность может сорбировать компоненты воздуха, а сложность топологической структуры может приводить к конкурентному накоплению компонентов, способных наиболее прочно связываться с поверхностью ОУНТ. Таким компонентом может быть O_2 , способный хемосорбироваться на поверхности углерода.

29

Рис. 3. Схематическое представление изменения плотности состояний, обусловленное сорбцией и десорбцией молекул О₂ на поверхности: *a* — полупроводниковых, *b* — металлических ОУНТ.

На рис. 3 схематически представлено изменение плотности состояний, обусловленное сорбцией и десорбцией молекул O_2 на поверхности полупроводниковых и металлических ОУНТ. Изменения могут быть объяснены *p*-допированием ОУНТ при сорбции молекул кислорода, при котором происходит понижение уровня Ферми $E_{\rm F}$. При этом валентная зона V_1 (некоторых полупроводниковых ОУНТ, а именно с большим диаметром, т.е. меньшей шириной запрещенной зоны) становится незаполненной и ОУНТ не способны поглотить фотон с энергией перехода с первого уровня (V_1) валентной зоны на первый уровень (C_1) зоны проводимости. Таким образом, в спектре поглощения пленки ОУНТ амплитуда пика S_{11} должна уменьшиться в силу того, что для части ,допированных" ОУНТ этот переход будет невозможен. И, наоборот, при десорбции молекул кислорода амплитуда S_{11} должна увеличиваться. Отметим, что чем меньше значение энергии перехода S_{11} , тем в большей степени будет проявляться эффект

сорбционного допирования ОУНТ (далее допирования). С учетом того, что энергия перехода S_{11} уменьшается с увеличением диаметра ОУНТ (без учета вариаций, обусловленных хиральностью ОУНТ), изменение интенсивности перехода S_{11} при сорбции-десорбции молекул кислорода в первую очередь будет наблюдаться для ОУНТ большего диаметра. Для больших значений энергий перехода S_{11} (в том числе и S_{22}) изменение интенсивности перехода будет проявляться только при более сильном эффекте допирования. Для металлических ОУНТ с еще большей энергией перехода (M_{11}), как представлено на рис. 3, валентная зона остается заполненной и запреты на переходы M_{11} не накладываются. Данный механизм воздействия молекул кислорода на электронные переходы в ОУНТ объясняет наблюдаемое увеличение интенсивности полос S_{11} и незначительное изменение амплитуды S_{22} , M_{11} .

С учетом медленной релаксации спектра после охлаждения образца можно предположить, что на электронные переходы оказывают влияние молекулы кислорода, находящиеся в труднодоступных местах, которые относительно легко удаляются при нагреве и медленно проникают обратно в эти места при охлаждении. Такими труднодоступными местами могут быть места межтрубочных контактов и полости, образованные укладкой ОУНТ в пучки. При этом заполнение указанных полостей будет лимитировано диффузией молекул газа вдоль осей ОУНТ внутри пучков. Для пучка из трех параллельных ОУНТ одинакового диаметра d образуемый ими канал межтрубного пространства будет доступен для молекул диаметром, который можно определить геометрически как диаметр вписанного круга между контактирующими трубами: $d_{g} = (2/\sqrt{3} - 1)d$. Данные расчетов согласно приведенной формуле представлены в последнем столбце таблицы. Согласно расчетным значениям диаметра канала между ОУНТ, этот канал доступен для молекул кислорода, если диаметр ОУНТ достаточно большой (~ 2 nm и более). Для ОУНТ диаметром 1.5 nm и менее проникновение молекул кислорода в межтрубное пространство маловероятно, по крайней мере для пучка параллельных прямых ОУНТ.

Таким образом, в работе методом оптической спектроскопии проведены исследования влияния нагрева до 250°С тонких пленок ОУНТ без подложки, выдержанных долгое время на воздухе, на электронные свойства ОУНТ. Результаты исследований показали, что длительное хранение ОУНТ при окружающей атмосфере приводит к значительному уменьшению первых переходов, обусловленных электронным возбуждением, которые восстанавливаются при нагревании пленок за счет

десорбции электроноакцепторных молекул с поверхности нанотрубок. Уменьшение интенсивности переходов, обусловленных электронным возбуждением, после нагревания при выдержке пленок в воздухе можно объяснить лимитированной диффузией адсорбцией кислорода поверхностью ОУНТ. Полученные результаты об изменении электронных свойств ОУНТ объясняются влиянием молекул кислорода, адсорбированных в области межтрубных контактов ОУНТ.

Работа выполнена при поддержке Министерства образования и науки РФ (проект RFMEFI58114X0006).

Авторы благодарят к.х.н. Илью Аношкина за помощь в проведении экспериментов.

Список литературы

- [1] Itkis M.E., Niyogi S., Meng M.E. et al. // Nano Lett. 2002. V. 2. N 2. P. 155.
- [2] Zhou W., Vavro J., Nemes N.M. et al. // Phys. Rev. B. 2005. V. 71. P. 205 423.
- [3] Ryabenko A.G., Dorofeeva T.V., Zvereva G.I. // Carbon. 2004. V. 42. P. 1523.
- [4] Thirunavukkuarasu K., Hennrich F., Kamarás K., Kuntscher C.A. // Phys. Rev. B. 2010. V. 81. P. 045 424.
- [5] Moisala A., Nasibulin A.G., Shandakov S.D. et al. // Carbon. 2005. V. 43. P. 2066.
- [6] Moisala A., Nasibulin A.G., Brown D.P. et al. // Chem. Eng. Sci. 2006. V. 61. P. 4393.
- [7] Kaskela A., Nasibulin A.G., Zavodchikova M. et al. // Nano Letters. 2010. V. 10. P. 4349.
- [8] Nasibulin A.G., Kaskela A.O., Mustonen K. // ACS Nano. 2011. V. 5. P. 3214.
- [9] Ulbricht H., Moos G., Hertel T. // Surface Science. 2003. V. 532–535. P. 852– 856.
- [10] Bachilo S.M., Strano M.S., Kittrell C. et al. // Science. 2002. V. 298. P. 2361.