Электрофизические свойства структур металл–диэлектрик–полупроводник на основе *n*-GaAs с квантовыми точками InAs, выращенными на поверхности слоя *n*-GaAs

© С.В. Тихов, О.Н. Горшков, М.Н. Коряжкина, А.П. Касаткин, И.Н. Антонов, О.В. Вихрова, А.И. Морозов

Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского, 603095 Нижний Новгород, Россия

E-mail: mahavenok@mail.ru

(Получена 27 апреля 2016 г. Принята к печати 10 мая 2016 г.)

Изучены свойства МДП-структур на основе *n*-GaAs, в которых в качестве диэлектрика использованы оксид кремния и стабилизированные оксидом иттрия диоксид циркония и диоксид гафния, и которые содержали квантовые точки InAs, встроенные на границе раздела диэлектрик/*n*-GaAs. Структуры проявляли резистивное переключение и синаптическое поведение

1. Введение

Резистивная память с произвольным доступом (англ.: Resistive Random Access Memory (RRAM)) [1] — новое поколение энергонезависимой памяти, основанное на использовании элементов памяти с двумя устойчивыми состояниями диэлектрика (другое название мемристивные структуры [2]): состояния с высоким сопротивлением (СВС) и состояния с низким сопротивлением (СНС), переключение между которыми осуществляется путем приложения внешнего напряжения к структуре металл-диэлектрик-металл (МДМ). К настоящему времени достигнуты определенные успехи в направлении коммерциализации приборов RRAM [1]. Другое важное направление применения мемристивных структур обусловлено их способностью (по аналогии с биологическим синапсом) непрерывным образом менять сопротивление в зависимости от подаваемого на него электрического сигнала, в связи с чем такой элемент рассматривается как основа нового поколения электронных синаптических устройств, призванных имитировать адаптивное поведение биологических систем [3]. Наряду с резистивным переключением в МДМ-структурах этот эффект изучается также в p-n-переходах [4] и структурах металл-диэлектрик-полупроводник (МДП) [5,6], что повышает функциональность мемристивных приборов. В частности, в работе [6] показано, что МДП-структуры могут проявлять стимулированное светом резистивное переключение в результате процессов, происходящих в полупроводнике.

Квантовые точки (англ.: quantum dots (QD)) из InAs, выращенные на поверхности эпитаксиального слоя *n*-GaAs, имеют размеры и плотность [7,8], позволяющие использовать их в качестве концентраторов электрического поля в МДП-структурах для реализации эффекта резистивного переключения в диэлектрике.

В настоящей работе исследовано поведение МДПструктур на основе *n*-GaAs с QD, сформированными на границе раздела (ГР) диэлектрик/полупроводник (Д/П), с оксидом кремния и стабилизированными оксидом иттрия (12 мол%) диоксидом циркония (англ.: yttriastabilized zirconia) (YSZ) и диоксидом гафния (англ.: yttria-stabilized hafnia) (YSH) в качестве диэлектрика.

2. Методика эксперимента

МДП-структуры были сформированы на основе монокристаллических пластин n^+ -GaAs с ориентацией (100) со слоями n-GaAs с равновесной концентрацией электронов n_0 , равной 5.2 · 10¹⁶ см⁻³, и QD InAs на поверхности этих слоев, полученных методом МОС-гидридной эпитаксии. Квантовые точки были образованы из пяти монослоев InAs. Пленки SiO_x, YSZ и YSH были сформированы магнетронным методом при температуре подложки 473 К на поверхности, покрытой QD. Толщина диэлектрических слоев составляла 40 нм. Управляющий прозрачный для света металлический электрод из Аи (толщиной 20 нм) с подслоем Zr (толщиной 3 нм) для улучшения адгезии был сформирован одновременно на поверхность, покрытую как OD, так и диэлектриками. Таким образом, были получены барьеры Шоттки (БШ) и МДП-структуры на одной подложке полупроводника. Их площадь составляла $\sim 1.0 \cdot 10^{-2} \, \mathrm{cm}^2$.

На полученных структурах измерялись морфология поверхности, покрытой QD, с помощью атомносилового микроскопа и спектры фотолюминисценции (ФЛ) при 77 К по методике [9,10]. Для БШ и МДПструктур измерялись зависимости сильносигнальной фотоэдс V_f от интенсивности потока фотонов N_F с максимумом излучения на длине волны 0.5 мкм по методике [11], а также вольт-фарадные, вольт-сименсные и вольт-амперные характеристики в интервале напряжений от -16 до +6 В и зависимости параметров малосигнальной эквивалентной схемы от частоты f в интервале $10^{3}-2 \cdot 10^{6}$ Гц и температуры *T* в интервале 77-500 К. Последние измерения проводились в автоматическом режиме на анализаторе параметров полупроводниковых приборов Agilent B1500A. Напряжение на структуре соответствовало потенциалу верхнего электрода относительно потенциала подложки.

3. Экспериментальные результаты

Морфология покрытой QD поверхности слоя *n*-GaAs была получена с помощью атомно-силового микроскопа.

Рис. 1. Зависимости интенсивности ФЛ от энергии квантов $h\nu$ для структур: 1 - QD/n-GaAs/ n^+ -GaAs, $2 - \text{SiO}_x/\text{QD}/n$ -GaAs/ n^+ -GaAs, 3 - YSH/QD/n-GaAs/ n^+ -GaAs, $4 - n^+$ -GaAs.

Анализ показал, что она содержала в основном два типа неровностей, которые были отнесены к QD. Одни имели среднюю высоту около 6 нм, латеральный размер у основания 40 нм и плотность около $4.0 \cdot 10^{10}$ см⁻², вторые — меньшую плотность (около $9.0 \cdot 10^8$ см⁻²), но бо́льшие размеры у основания (до 100 нм) и высоту (до 20 нм). Последние неровности всегда имеются в общем массиве QD при отсутствии легирования висмутом [9]. Их происхождение связывается с образованием дислоцированных кластеров при нанесении слоя InAs.

Анализ данных по зависимости интенсивности ФЛ структур от энергии квантов, приведенных на рис. 1, показал, что спектры ФЛ при 77 К обнаруживали отклик от QD при энергиях 0.80, 0.84 и 1.04 эВ на свободной поверхности n-GaAs. На покрытой диэлектриками поверхности сохранялся отклик при энергии 1.04 эВ, что свидетельствовало о сохранении QD. Этот уровень, вероятно, относился к мелким QD с наименьшими геометрическими размерами (первый тип неровностей). Отклик от массива QD с большими геометрическими размерами (второй тип неровностей — 0.80, 0.84 эВ) не был выявлен в покрытых диэлектриком поверхностях, по-видимому, из-за высокого уровня безызлучательной рекомбинации в этой области. Отклик при 1.15 эВ был отнесен к подложке, поскольку он соответствовал отклику от тыльной стороны подложки.

На рис. 2 приведены зависимости барьерной фотоэдс от интенсивности потока фотонов для ДШ Au/Zr/ n-GaAs/ n^+ -GaAs (1) и Au/Zr/QD/n-GaAs/ n^+ -GaAs (2). Видно, что величина фотоэдс V_f насыщалась при высоких уровнях фотовозбуждения и составляла 0.80 В для структуры Au/Zr/n-GaAs/ n^+ -GaAs и 0.57 В для структуры Au/Zr/QD/n-GaAs/ n^+ -GaAs и 0.57 В для структуры Au/Zr/QD/n-GaAs/ n^+ -GaAs. Для МДП-структур Au/Zr/SiO_x/QD/n-GaAs/ n^+ -GaAs V_f составляла 0.15 В, для Au/Zr/YSZ/QD/n-GaAs/ n^+ -GaAs — 0.4 В и для Au/Zr/YSH/QD/n-GaAs/ n^+ -GaAs — 0.43 В. Известно, что фотоэдс насыщения на одиночном барьере равна величине его темнового поверхностного потенциала φ_s [11]. Таким образом, можно считать, что в исследованных структурах с QD происходило открепление уровня Ферми на поверхности *n*-GaAs и изменение поверхностного потенциала на значительную величину подобно тому, как это происходит при пассивации поверхности халькогенидами [12] или нанослоями InP [13] и InGaAs [14]. В МДП-структурах Au/Zr/SiO_x/QD/*n*-GaAs/*n*⁺-GaAs φ_s составляла –0.15 В и это позволяло изменять величину электрического поля в диэлектрике, даже с учетом некоторого падения напряжения на области пространственного заряда полупроводника, до величины, достаточной для возникновения явления формовки в диэлектрике и последующего переключения его сопротивления.

На рис. 3 приведены вольт-амперные характеристики (BAX), демонстрирующие биполярное резистивное переключение. Пунктирными стрелками на BAX отмечено

Рис. 2. Зависимости V_f от N_F для диодов Шоттки: 1 — Au/Zr/n-GaAs/n⁺-GaAs, 2 — Au/Zr/QD/n-GaAs/n⁺-GaAs.

Рис. 3. Вольт-амперные характеристики структуры $Au/Zr/SiO_x/QD/n$ -GaAs/ n^+ -GaAs, демонстрирующие процесс резистивного переключения: I — первое переключение; 2, 6 — номера последующих переключений. Скорость развертки по напряжению 0.20 В/с. Пунктирными стрелками показано направление развертки по напряжению.

Физика и техника полупроводников, 2016, том 50, вып. 12

Рис. 4. Вольт-амперные характеристики структуры Au/Zr/ YSH/QD/*n*-GaAs/ n^+ -GaAs, иллюстрирующие влияние величины электрического поля на их гистерезис. Измерению кривых *1*–6 предшествовала подача отрицательного напряжению с амплитудой – 16 В и скоростью развертки по напряжения с амплитудой – 16 В и скоростью развертки по напряжению 0.60 В/с. Скорость развертки по напряжению: *1* — 0.084 В/с (при амплитуде напряжения 2 В), *2* — 0.109 В/с (при амплитуде напряжения 2.5 В), *3* — 0.130 В/с (при амплитуде напряжения 3 В), *4* — 0.174 В/с (при амплитуде напряжения 4 В), *5* — 0.217 В/с (при амплитуде напряжения 5 В), *6* — 0.270 В/с (при амплитуде напряжения 6 В). Пунктирными стрелками показано направление развертки по напряжению.

направление обхода петли гистерезиса, соответствующее достижению СНС при V < 0 и СВС при V > 0.

Механизм такого переключения был объяснен образованием проводящих шнуров (англ.: filaments) в диэлектрике [15], проходящих через ионные мостики, выстраиваемые в области концентраторов электрического поля, образованных QD. При отсутствии QD в структурах с SiO_x формовка и резистивное переключение не наблюдались. Следует считать, что при V < 0 ионные мостики соединяли верхний (Au) электрод с QD на полупроводниковой обкладке. При этом происходило закорачивание МДП-структуры путем электронного переноса тока через ионные мостики и достигалось СНС. При V > 0ионы кислорода притягивались к верхнему электроду, а электронная проводимость прерывалась, и достигалось СВС. МДП-структуры Au/Zr/YSZ/QD/n-GaAs/n⁺-GaAs и Au/Zr/YSH/QD/n-GaAs/n⁺-GaAs также испытывали аналогичные резистивные переключения, но эти переключения происходили при больших напряжениях. Этот факт можно объяснить большей долей падения напряжения на полупроводнике.

На рис. 4 приведены ВАХ МДП-структуры Au/Zr/ YSH/QD/n-GaAs/ n^+ -GaAs, иллюстрирующие ее синаптическое поведение. Следует отметить, что в отличие от структур Au/Zr/SiO $_x$ /QD/n-GaAs/ n^+ -GaAs (см. рис. 3) структуры Au/Zr/YSH/QD/n-GaAs/ n^+ -GaAs не требовали проведения процесса формовки. Каждой кривой переключения ВАХ при V > 0, показанной на рис. 4, предшествовало измерение ВАХ при V < 0 с амплитудой -16 В (на рисунке не показаны). Скорость развертки по напряжению при V < 0 составляла 0.60 В/с, а при V > 0 варьировалась от 0.084 В/с (при амплитуде напряжения 2 В) до 0.270 В/с (при амплитуде напряжения 6 В) таким образом, чтобы время измерения каждой кривой оставалось примерно постоянным (среднее время измерения ~ 23 с). Данные, показанные на рис. 4, иллюстрируют влияние величины электрического поля на гистерезис ВАХ при V > 0. Отметим, что при V < 0 гистерезис был незначительным и изменения его от цикла к циклу были малы.

Из этих данных следует, что, изменяя величину электрического поля, можно плавно менять величину гистерезиса. Такое поведение мемристивной структуры аналогично изменению пропускной способности биологического синапса и рассматривается в качестве одного из главных условий для применения мемристивных структур в нейроморфных системах и элементной базе синаптической электроники [16,17]. Подобное поведение наблюдалось в МДП-структурах с SiO_x и с YSZ, а также в МДМ-структурах на основе SiO_x, исследованных в работе [5].

Как показали измерения вольт-фарадных характеристик, в исследованных МДП-структурах с SiO_x при формовке происходило уменьшение встроенного положительного заряда у полупроводниковой обкладки, соответствующее плотности $\sim 1.0 \cdot 10^{12}$ см⁻². При переключении в CBC, наоборот, происходило увеличение этого заряда до исходной величины. Следует считать, что в формировании ионных мостиков участвовали положительно заряженные вакансии кислорода, концентрация которых велика в использованных диэлектрических пленках.

В табл. 1 приведены некоторые параметры диэлектриков и малосигнальной схемы МДП-структур в СНС и СВС. Приведены эффективные значения относительной диэлектрической проницаемости ε , тангенса угла диэлектрических потерь tg δ , параллельного R_p и последовательного R_s дифференциальных сопротивлений, определенных в случае использования параллельной и последовательной схемы замещения конденсатора, соответственно [18]. Индекс 0 относится к частоте 10³ Гц, а

Таблица 1. Параметры диэлектриков и малосигнальной эквивалентной схемы МДП-структур

Состав ді в МДП и его со	иэлектрика структуре остояние	£0	tg δ_0	tg δ_∞	<i>R</i> _{<i>p</i>0} , Ом	$R_{s\infty}, OM$
SiO _x	CHC CBC	7.0 7.0	24 0.020	0.15 0.12	$\begin{array}{c} 4.2\cdot10^4\\ 4.3\cdot10^6\end{array}$	26 21
YSZ	CHC CBC	19 19	3.7 0.20	0.55 0.12	$\begin{array}{c}9.2\cdot10^2\\1.6\cdot10^5\end{array}$	$\begin{array}{c} 1.5\cdot10^2\\ 48\end{array}$

Рис. 5. Частотные зависимости C_p (1-6) и G_p/ω (7-12) для МДП-структуры Au/Zr/YSZ/QD/*n*-GaAs/*n*⁺-GaAs, измеренные при V = 0 и температурах *T*, К: 1, 5 — 297; 2, 6 — 342; 3, 7 — 375; 4, 8 — 437. Теоретически полученные зависимости в случае моноуровня поверхностных состояний показаны точками.

 ∞ — к 10⁶ Гц. Величина R_{p0} характеризует суммарное параллельное сопротивление диэлектрика и полупроводника, а $R_{s\infty}$ — сопротивление полупроводниковой обкладки.

Как видно из таблицы, значения ε_0 не зависели от состояния МДП-структуры и определялись диэлектрической проницаемостью диэлектриков. Для оксида кремния эти значения близки к значениям для SiO [19,20] из-за наличия вакансий кислорода (избыточных атомов кремния). Значения ε_0 в структурах с YSZ и YSH соответствовали литературным данным [21]. В СНС было обнаружено появление больших омических потерь, обусловленное протеканием тока через проводящие шнуры, увеличение сопротивления полупроводниковой обкладки и уменьшение параллельного сопротивления. В СВС наблюдались противоположные изменения, что хорошо соответствовало ранее отмеченным изменениям, происходящим при переходе в эти состояния. Неизменность значений ε_0 при этом была рассмотрена как доказательство изменений в диэлектрике, затрагивающих очень ограниченный объем и выражающихся в возникновении в диэлектрике проводящих шнуров.

На рис. 5 показаны зависимости емкости C_p и приведенной к круговой частоте проводимости G_p/ω в параллельной эквивалентной схеме замещения МДПконденсатора [18] от частоты и от температуры для МДП-структуры Au/Zr/YSZ/QD/*n*-GaAs/*n*⁺-GaAs при V = 0. Качественно похожие кривые получены для МДП-структур Au/Zr/SiO_x/QD/*n*-GaAs/*n*⁺-GaAs и Au/Zr/ YSH/QD/*n*-GaAs/*n*⁺-GaAs. Наблюдающиеся релаксационные кривые были объяснены влиянием захвата на поверхностные состояния (ПС), а выход на мало меняющуюся емкость и проводимость на низких частотах наблюдался, когда емкость ПС оказывалась значительно больше емкости диэлектрика. В этом случае полная емкость и проводимость МДП-структуры определялась свойствами диэлектрика. Было установлено, что во всех исследованных структурах с QD экспериментальные зависимости G_p/ω от частоты описывались релаксацией с участием моноуровня ПС [18] (см., например, теоретически рассчитанную зависимость, показанную точками на рис. 5).

Времена релаксации, определенные по частоте максимума f_m

$$\tau = 1/(2\pi f_m),\tag{1}$$

экспоненциально уменьшались с ростом температуры, что также характерно для релаксации в случае захвата и эмиссии электрона с моноуровня ПС. Таким образом, плотность ловушек N_{t0} была определена по значению G_p/ω в максимуме по формуле [18]

$$2G_p/\omega = q^2 N_{t0}/(2kT),$$
 (2)

где q — заряд электрона, k — постоянная Больцмана, T — температура.

В предположении основного вклада в значение τ эмиссии, что характерно для обедненных основными носителями (в нашем случае электронами) поверхностей полупроводника, по температурной зависимости τ , согласно [22], из выражения

$$\ln(\tau T^2) = -\ln(\sigma_n b_n) + (E_c - E_t)/(kT),$$
 (3)

где σ_n — сечение захвата электрона ловушкой, E_c — энергия дна зоны проводимости, E_t — энергия поверхностного уровня, совпадающего с уровнем Ферми на поверхности Si, $b_n = u_n N_c / T^2$, причем u_n — тепловая скорость, N_c — плотность состояний в зоне проводимости, были определены значения E_t и σ_n , пренебрегая температурной зависимостью сечения захвата σ_n электрона. При этом для GaAs было использовано значение $b_n = 2.2 \cdot 10^{20} \text{ см}^{-2} \cdot \text{c}^{-1} \cdot \text{K}^{-2}$ [22].

На рис. 6 показаны зависимости $lg(\tau T^2)$ от $10^3/T$ для МДП-структуры Au/Zr/YSZ/QD/*n*-GaAs/*n*⁺-GaAs. Видно, что они имели вид прямых линий, наклон которых зависел от величины напряжения. Этот результат

Рис. 6. Зависимости (τT^2) от $10^3/T$ для МДП-структуры Au/Zr/YSZ/QD/*n*-GaAs/*n*⁺-GaAs, полученные при *V*, В: 1 - -4, 2 - 0, 3 - 1.

Физика и техника полупроводников, 2016, том 50, вып. 12

Состав диэлектрика	$N_t 10^{-11}, \mathrm{cm}^{-2}$	E_t , эВ	σ_n, cm^2
SiO _x	4.2 3.2	0.38 0.22	$\begin{array}{c} 4.5\cdot 10^{-15} \\ 6.4\cdot 10^{-16} \end{array}$
YSZ	3.5 1.7 11	0.38 0.30 0.18 0.46	$\begin{array}{c} 4.5\cdot 10^{-14} \\ 5.6\cdot 10^{-15} \\ 5.6\cdot 10^{-16} \\ 4.5\cdot 10^{-14} \end{array}$
YSH	3.9 3.2 3.7	0.44 0.28 0.17	$\begin{array}{c} 4.4\cdot 10^{-14} \\ 1.3\cdot 10^{-15} \\ 4.5\cdot 10^{-17} \end{array}$

Таблица 2	 Параметрь 	и поверхностных	состояний в	МДП-
структурах	и барьерах П	Іоттки с квантовн	ыми точками	

подтверждал открепление уровня Ферми в структуре Au/Zr/YSZ/QD/*n*-GaAs/ n^+ GaAs и его перемещение в зависимости от внешнего напряжения по запрещенной зоне полупроводника на ГР Д/П. Таким образом, различный наклон зависимостей, показанных на рис. 6, соответствовал различным моноуровням ПС на этой ГР. Качественно аналогичные зависимости были получены для МДП-структур с SiO_x и YSH. Отметим, что на ГР диэлектрик/GaAs с закрепленным в точке электронейтральности $E_c - (0.8-0.9)$ зВ уровнем Ферми обычно наблюдается квазинепрерывный спектр ПС [14].

Параметры ПС, которые тестируются в исследованных структурах, приведены в табл. 2. Таким образом, формирование различных диэлектрических слоев оказывало разное влияние на параметры ловушек в МДПструктурах.

4. Заключение

Показано, что квантовые точки из InAs изменяли изгиб зон на поверхности *n*-GaAs в барьерах Шоттки и МДП-структурах и активировали резистивное переключение в диэлектрике в МДП-структурах. Определены параметры поверхностных состояний, создаваемых формированием квантовых точек, встроенных на границах раздела SiO_x/*n*-GaAs, YSZ/*n*-GaAs и YSH/*n*-GaAs.

Авторы выражают благодарность Б.Н. Звонкову за создание полупроводниковых структур. Работа поддержана Министерством образования и науки России в рамках государственного задания № 2014/134 (код проекта 2591).

Список литературы

- [1] J.S. Lee, S. Lee, T.W. Noh. Appl. Phys. Rev., 2, 031303 (2015).
- [2] A. Adamatzky, L. Chua. Memristor Networks. Ed. (Springer International Publishing Switzerland, 2014).
- [3] W. Cai, R. Tetzlaff. In: Memristor Networks., eds A. Adamatz-Ky, L. Chua Springer International Publishing Switzerland, 2014) P. 113.

- [4] A. Bogusz, D. Blaschke, B. Abendroth, I. Skorupa, D. Bürger, O.G. Schmidt, H. Schmidt. 80. Jahrestagung der DPG und DPG-Frühjahrstagung. Regensburg, 6.–11. März 2016 (A. Bogusz et al., AIP Advances 4 (2014), A. Bogusz et al., Adv. Mater. Res. 1101 (2015).).
- [5] С.В. Тихов, О.Н. Горшков, И.Н. Антонов, А.П. Касаткин, М.Н. Коряжкина. Письма в ЖТФ, 40 (19), 18 (2014).
- [6] С.В. Тихов, О.Н. Горшков, М.Н. Коряжкина, И.Н. Антонов, А.П. Касаткин. Письма ЖТФ, 42 (10), 78 (2016).
- [7] Н.Н. Леденцов, В.М. Устинов, В.А. Щукин, П.С. Копьев, Ж.И. Алфёров, Д. Бимберг. ФТП, **32** (4), 385 (1998).
- [8] С.В. Тихов. ФТП, 46 (10), 1297 (2012).
- [9] Б.Н. Звонков, И.А. Карпович, Н.В. Байдусь, Д.О. Филатов, С.В. Морозов. ФТП, 35 (1), 92 (2001).
- [10] Б.Н. Звонков, И.Г. Малкина, Е.Р. Линькова, В.Я. Алешкин, И.А. Карпович, Д.О. Филатов. ФТП, **31** (9) 1100 (1997).
- [11] С.В. Тихов. ФТП, 29 (4), 742 (1995).
- [12] В.Н. Бессолов, М.В. Лебедев. ФТП, **32** (11), 1281 (1998).
- [13] S. Kundu, N.N. Halder, D. Biswas, P. Banerji, T. Shripathi, S. Chakraborty. J. Appl. Phys., **112**, 034514-1 (2012).
- [14] J. Robertson, Y. Guo, L. Lin. J. Appl. Phys., 117, 112806 (2015).
- [15] D. Kuzum, S. Yu, H. Wong. Nanotechnology, 24, 382 001 (2013).
- [16] A. Thomas. J. Phys. D: Appl. Phys., 46, 093 001 (2013).
- [17] A.N. Mikhaylov, A.I. Belov, D.V. Guseinov, D.S. Korolev, I.N. Antonov, D.V. Efimovykh, S.V. Tikhov, A.P. Kasatkin, O.N. Gorshkov, D.I. Tetelbaum, A.I. Bobrov, N.V. Malekhonova, D.A. Pavlov, E.G. Gryaznov, A.P. Yatmanov. Mater. Sci. Eng. B, **194**, 48 (2015).
- [18] В.Н. Овсюк. Электронные процессы в полупроводниках с областями пространственного заряда (Новосибирск, Наука: Сиб. отд-ние, 1984).
- [19] Т.И. Данилина. Технология тонкопленочных микросхем (Томск, ТУСУР 2006).
- [20] В.А. Гриценко, И.Е. Тысченко, В.П. Попов, Т.В. Перевалов. Диэлектрики в наноэлектронике (Новосибирск, Изд-во СО РАН, 2010).
- [21] G.D. Wilk, R.M. Wallace, J.M. Anthony. J. Appl. Phys., 89 (10), 5243 (2001).
- [22] Л.С. Берман, А.А. Лебедев. Емкостная спектроскопия глубоких центров в полупроводниках (Л., Наука: Ленингр. отд., 1981).

Редактор Г.А. Оганесян

Electrical properties of metal-insulator-semiconductor structures based on *n*-GaAs with InAs quantum dots deposited on the surface of the *n*-GaAs layer

S.V. Tikhov, O.N. Gorshkov, M.N. Koryazhkina), A.P. Kasatkin, I.N. Antonov, O.V. Vihrova, A.I. Morozov

Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia

Abstract The properties of the MIS-structures with silica, yttriastabilized zirconia and yttria-stabilized hafnia insulators based on *n*-GaAs containing InAs quantum dots embedded at the insulator/*n*-GaAs interface were studied. The structures showed resistive switching and synaptic behavior.