04;09

Численная оптимизация электрофизических характеристик ЭУФ-лазера на переходе 3*p*-3*s* Ne-подобного аргона в малоиндуктивном разряде капиллярного типа

© В.А. Бурцев, Н.В. Калинин [¶], С.А. Ваганов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург ¶E-mail: nvkalinin@rambler.ru

Поступило в Редакцию 12 июля 2016 г.

На основании результатов расчетов определены электрофизические характеристики капиллярного разряда, обеспечивающие при аспектном отношении диаметра и длины плазменного сгустка 1:100 и высокой эффективности ввода энергии в плазму получение коэффициента усиления $g^+ > 1 \text{ cm}^{-1}$ на рабочем переходе и генерацию в однопроходном режиме усиления спонтанного излучения с $g^+l > 25$ (l — длина активной среды).

Создание лазеров экстремально-ультрафиолетового и мягкого рентгеновского (ЭУФ-МР) диапазона является фундаментальной проблемой, определяющей перспективы развития целого ряда современных важных направлений прикладного характера в области физики, техники, биологии и медицины. Поэтому работы по созданию таких лазерных источников становятся все более актуальными [1–4].

В создании компактных и эффективных ЭУФ-лазеров на плазме многозарядных ионов, получаемой в капиллярных разрядах, при реализации схемы столкновительного возбуждения уже достигнуты большие успехи [1–3]. На Ne-подобных ионах аргона ArIX с переходом 3p-3s (длина волны $\lambda = 46.9$ nm) созданы лазеры, имеющие более высокую среднюю спектральную мощность, чем, например, любой современный синхротрон в рассматриваемом спектральном диапазоне. Это дало возможность провести целый ряд важных демонстрационных экспериментов и прикладных исследований по ЭУФ-микроскопии, интерференционной литографии [1–4].

33

3

В ФТИ им. А.Ф. Иоффе РАН создан и проходит тестирование оригинальный экспериментальный лазерный источник "Экстрим-М". Основная цель работ в данном направлении — создание источника излучения высокой спектральной яркости в диапазоне 1–50 nm для развития прикладных работ.

В основу разработок установки "Экстрим-М" положены научнотехнические идеи, проверенные на установке "Экстрим" [5–7]. Эти идеи обеспечивают, прежде всего, возможность создания хорошей предварительной ионизации газа в капилляре и получения большей удельной мощности, вводимой в плазму, которая, как известно, необходима для получения плазмы многозарядных ионов с требуемым неравновесным ионным составом и создания инверсии населенностей рабочих уровней [1,2,8–13]. Высокие функциональные возможности позволяют подводить в плазменной нагрузке мощность порядка 10 GW и создавать в плазме плотность мощности порядка и более 0.1 TW/cm³, необходимую для реализации различных схем формирования активной среды как ионизационного, так и рекомбинационного характера.

На начальном этапе работы на установке "Экстрим-М" авторы считают целесообразным повторить результаты по генерации излучения на переходе 3p-3s Ne-подобного аргона. Как показали расчеты, наиболее благоприятными параметрами плазмы являются электронная плотность $(0.3-1) \cdot 10^{19}$ сm⁻³, а температура электронов 60–80 eV [1,10–13].

Для всех схем возбуждения характерна высокая чувствительность к реабсорбции излучения в резонансных линиях, что приводит к сильным ограничениям на поперечные размеры среды. В случае генерации без резонаторов должно быть выполнено условие $g^+l > 25$. В то же время инверсия, как уже отмечалось, создается за счет выхода резонансного излучения. С учетом коэффициента поглощения на переходе 3s-2p, опустошающем нижний лазерный уровень, получается известная оценка аспектного отношения активной среды [1,10-13]: l/d = 1000:1 (здесь l — длина, d — диаметр активной среды).

Задачей наших исследований является определение электрофизических характеристик разряда, которые в рассматриваемой оригинальной системе "Экстрим-М" позволяют выполнить сформулированные выше требования, а именно: получить плазму с требуемыми параметрами и достаточно высоким коэффициентом усиления $g^+ \ge 1$ сm⁻¹ на рассматриваемом переходе при высоком аспектном отношении активной среды, высокой эффективности передачи энергии в плазму и преобразования этой энергию в энергию излучения.

Для численного исследования процессов формирования активной среды на неравновесной плазме многозарядных ионов в капиллярном разряде применялась обычная при решении подобных задач одномерная двухтемпературная магниторадиационно-гидродинамическая (МРГД) модель и кинетическая атомная столкновительно-излучательная модель. МРГД-модель описывает динамику плазмы с учетом наиболее значительных для разрядов рассматриваемого типа физических процессов [8,9,14,15]. Атомная столкновительно-излучательная модель, аналогичная [10-13], предназначена для расчета инверсной населенности уровней ионов и коэффициента усиления среды на рабочем переходе при заданных газодинамических характеристиках плазмы. Для оценки влияния пленения резонансного излучения на кинетику населенностей и величину коэффициента усиления применялся фактор ускользания, полученный при решении уравнения переноса в однородном по длине и неоднородном по радиусу цилиндре, расширяющемся с заданной скоростью.

Расчеты проводились применительно к условиям, которые будут реализованы на установке "Экстрим-М" при одном обострении электрических импульсов. Амплитуда падающей волны напряжения задавалась равной $U_m = 100$ kV, фронт нарастания напряжения 2 ns, волновое сопротивление линии $R_{\rho} = 4 \Omega$. Внутренний диаметр капилляра 5 mm, наружный диаметр 10 mm, капилляр изготовлен из тугоплавкого материала, что ограничивает роль образования плазмы у внутренней стенки капилляра за счет эрозии. Длина капилляра изменялась от 10 до 20 cm. Начальное давление газа в капилляре изменялось в пределах 0.4–4 Torr. Температура плазмы к началу сильноточной стадии разряда принималась равной 1 eV. Радиальные распределения температуры и плотности плазмы в начальный момент времени считались однородными к началу сильноточной стадии разряда.

На рис. 1–3 приведены результаты численного моделирования процессов формирования активной среды лазера для варианта, соответствующего полученному в оптимизационных расчетах максимальному коэффициенту усиления малого сигнала на переходе 3p-3s Ne-подобного аргона, равному $g^+ \sim 1.4$ сm⁻¹, при длине капилляра l = 20 сm и давлении газа в капилляре 4 Torr.

Расчеты показали, что фронт импульса мощности $\tau_P \approx 10 \text{ ns}$, его амплитуда $P_m = 2.5 \text{ GW}$, фронт нарастания разрядного тока $\tau_I < 25 \text{ ns}$, амплитуда импульса разрядного тока $I_m = 40 \text{ kA}$ (рис. 1).

Рис. 1. Зависимости от времени разрядного тока (I), радиуса плазменного столба (R_{pl}) и основных характеристик плазмы на оси разряда: плотности (D), температуры электронов (T_e) неравновесной степени ионизации (Z) в относительных единицах; здесь r_0 — внутренний радиус капилляра, $I_0 = U_0/R_\rho$, Ry — постоянная Ридберга, Z_n — заряд ядра.

Временные зависимости различных видов энергии, переданной в импульсную нагрузку, приведены на рис. 2. На момент времени 76 пs, в который коэффициент усиления достигает максимального значения $g^+ \sim 1.4 \text{ cm}^{-1}$, энергия, переданная генератором в нагрузку, составляет 100 J; энергия, введенная в плазму, 40 J; интегральная по спектру энергия излучения плазмы 10 J; при этом энергия, накопленная в индуктивных элементах цепи, составляет $\sim 60 \text{ J}$. На момент максимального сжатия плазменного столба (95 ns) в нагрузку в целом передано 155 J. При этом энергия, переданная в плазму (80 J), превосходит энергию, накопленную в индуктивных элементах электрической цепи, интегральная по спектру энергия излучения 40 J.

Динамика плазмы быстрого капиллярного разряда иллюстрируется рис. 1, 3. Электромагнитная сила нарастающего разрядного тока создает

Рис. 2. Распределение энергии, вводимой в нагрузку: W_G — энергия, передаваемая в нагрузку, W_B — энергия, запасаемая в индуктивных элементах нагрузки; W_{pl} — энергия, вводимая в плазму разряда; W_R — интегральная по спектру энергия излучения.

ударную волну в плазме, отрывает плазму от стенок и быстро ее сжимает до размеров порядка $(0.2-0.3)r_0$ (рис. 1). Высокая скорость нарастания разрядного тока (в нашем случае $dI/dt > 10^{12}$ A/s, рис. 1) обеспечивает быстрый отрыв плазмы от внутренней стенки капилляра, ее эффективное сгребание к оси капилляра и генерацию интенсивной сходящейся цилиндрической ударной волны. Малое время нарастания разрядного тока ограничивает количество материала стенок, поступающего в разряд до того, как магнитное поле начинает сжимать плазму, отрывая ее от стенок. Оптимальные условия для осуществления лазерной генерации на Ne-подобных ионах при столкновительном механизме возбуждения создаются на стадии резкого возрастания элек-

Рис. 3. Радиальные распределения плотности (D, сплошная линия), температуры электронов (T_e , линия обозначенная точками) и неравновесного среднего заряда ионов (Z, штриховая линия) в момент времени, соответствующий максимальному значению коэффициента усиления (76 ns); на вставке тот же рисунок в другом пространственном масштабе.

тронной плотности, когда электронная плотность быстро увеличивается и достигает значений $(0.8-1) \cdot 10^{19} \text{ cm}^{-3}$, а электронная температура составляет 70–80 eV (рис. 1, 3). Это происходит за 1–2 ns до момента достижения первой ударной волной оси капилляра. К моменту дости-

жения $g^+ \sim 1.4 \,\mathrm{cm}^{-1}$ вблизи оси разряда формируется область с характерным поперечным размером $\sim 0.04 \,\mathrm{mm}$, в которой плотность плазмы, температура электронов и неравновесный средний заряд ионов имеют практически однородные распределения (рис. 3, вставка). В момент стагнации плазмы электронная плотность продолжает нарастать, и из-за столкновительной термализации лазерных уровней исчезает инверсия населенностей. Электронная плотность и спонтанное излучение плазмы достигают максимума в момент стагнации через несколько наносекунд после лазерного импульса, как это отмечено ранее в [1].

Таким образом, проведенные расчеты намечают путь реализации ЭУФ лазерного источника с оригинальной системой питания и высокой эффективностью лазерной генерации на переходе 3p-3s в Ne-подобных ионах аргона $\lambda = 46.9$ nm.

Работа поддержана грантами РФФИ № 14-08-01166а и № 15-08-02408а.

Список литературы

- [1] Виноградов А.В., Рока Дж.Дж. // Квантовая электроника. 2003. Т. 33. № 1. С. 7–17.
- [2] Suckewer S., Jaegle P. // Laser Phys. Lett. 2009. V. 6. N 6. P. 411-436.
- [3] Szasz J., Kiss M., Santa I. et al. // Short Wavelength Laboratory Sources: Principles and Practices, 2014. Print ISBN: 978–1–84973–456–1
- [4] Wachulak P.W., Isoyan A., Bartels R.A. et al. // Short Wavelength Laboratory Sources: Principles and Practices, 2014. Print ISBN: 978–1–84973–456–1
- [5] Burtsev V.A., Bolshakov E.P., Kalinin N.V. et al. // Proc. Intern. Conf. on Soft X-ray Lasers and Applications VII. SPIE OP-320 (August 26–30, 2007. San-Diego, California, USA). Proc. SPIE. V. 6702. Ed. Gregory J. Tallens, James Dunn. P. 670 20R (1–8).
- [6] Burtsev V.A., Bolshakov E.P., Kalinin N.V. et al. // Proc. 10-th Intern. Conf. on X-ray lasers XRL 2006 (August 21–25, 2006, Berlin, Germany). Springer Proc. Phys. 2006. V. 115. P. 676–686.
- [7] Бурцев В.А., Забродский В.В., Калинин Н.В., Большаков Е.П. // ЖТФ. 2013.
 Т. 83. № 2. С. 43–51.
- [8] Держиев В.И., Жидков А.Г., Яковленко С.И. Излучение ионов в неравновесной плотной плазме. М.: Энергоатомиздат, 1986. 160 с.
- [9] Боровский А.В., Галкин А.Л. Лазерная физика: рентгеновские лазеры, ультракороткие импульсы, мощные лазерные системы. М.: ИздАТ, 1996. 496 с.

- [10] Виноградов А.В., Собельман И.И., Юков Е.А. // Квант. электроника. 1977. Т. 4. № 1. Р. 63–68.
- [11] Виноградов А.В., Шляпцев В.Н. // Квант. электроника. 1980. Т. 7. № 6. Р. 1319–1324.
- [12] Виноградов А.В., Шляпцев В.Н. // Квант. электроника. 1983. Т. 10. № 3. Р. 516-522.
- [13] *Иванова Е.П., Зиновьев Н.А.* // Квантовая электроника. 1999. Т. 27. № 3. С. 207–215.
- [14] Бурцев В.А., Калинин В.Н. // ЖТФ. 2013. Т. 83. № 8. С. 20–28.
- [15] Бурцев В.А., Калинин В.Н. // ЖТФ. 2014. Т. 84. № 9. С. 49–59.