03,09

Линейно-циркулярный дихроизм в полупроводнике со сложной валентной зоной с учетом четырехфотонного поглощения света

© Р.Я. Расулов, В.Р. Расулов, И.М. Эшболтаев

Ферганский государственный университет, Фергана, Узбекистан E-mail: r rasulov51@mail.ru

(Поступила в Редакцию 24 мая 2016 г.)

Теоретически исследован линейно-циркулярный дихроизм многофотонного поглощения света в полупроводниках со сложной валентной зоной.

Рассчитаны матричные элементы оптических переходов, протекающих между подзонами валентной зоны полупроводника типа *p*-GaAs. При этом учтены переходы, связанные как с неодновременным поглощением отдельных фотонов, так и одновременным поглощением двух фотонов. Получено выражение для температурной зависимости коэффициента многофотонного поглощения поляризованного излучения, где учтены оптические переходы между подзонами тяжелых и легких дырок полупроводника.

DOI: 10.21883/FTT.2017.03.44153.215

Нелинейное поглощение света в полупроводнике с вырожденной валентной зоной, обусловленное прямыми оптическими переходами между подзонами тяжелых и легких дырок и зависящее от состояния поляризации излучения, исследовано в [1–8]. В этих работах считается, что нелинейность в зависимости коэффициента однофотонного поглощения от интенсивности возникает за счет резонансного насыщения поглощения. Это насыщение обусловлено фотоиндуцированным изменением функций распределения легких и тяжелых дырок в области импульсного пространства вблизи поверхности $E_{\rm hh}(\mathbf{k}) - E_{\rm lh}(\mathbf{k}) - \hbar\omega = 0$, соответствующей условию резонанса. Здесь $E_{\rm hh}(\mathbf{k})(E_{\rm lh}(\mathbf{k}))$ — энергетический спектр тяжелых (легких) дырок, ω — частота света.

В работах [8–16] исследовано многофотонное поглощение света в полупроводниках. В [8] исследован многофотонный линейно-циркулярный дихроизм (ЛЦД) в *p*-Ge в режиме развитой нелинейности, когда в поглощение вносят сопоставимый вклад *n*-фотонные процессы с n = (1-5).¹ В работах [9–16] исследованы двух-, трехфотонные процессы в полупроводниках, обусловленные оптическим переходами между валентной зоной и зоной проводимости, однако в них, во-первых, не учтен вклад эффекта насыщения поглощения, а во-вторых, не учтены оптические переходы, обусловленные одновременным поглощением двух фотонов.

Здесь мы рассмотрим четырехфотонное поглощение поляризованного излучения как с учетом эффекта когерентного насыщения поглощения, так и без его учета. Поэтому далее рассматривается многофотонное поглощение поляризованного излучения в полупроводниках типа p-GaAs, обусловленное прямыми оптическими переходами между подзонами легких и тяжелых дырок. При этом считается, что энергия фотона $\hbar\omega$ удовле-

творяет неравенству $\hbar \omega \ll E_g$, Δ_{so} , где E_g — ширина запрещенной зоны, Δ_{so} — спин-орбитальное расщепление валентной зоны. При этом оптическое поглощение можно рассматривать в рамках эффективного гамильтониана $H(\mathbf{k})$ [5–8], заменяя в нем \mathbf{k} на

$$\mathbf{k} = -i\boldsymbol{\nabla} - \frac{e}{c\hbar}\mathbf{A}$$

где $\mathbf{A} = A_0 (\mathbf{e} \, e^{i \, \mathcal{N} \mathbf{r} - i \, \omega t} + \mathbf{e}^* e^{-i \, \mathcal{N} \mathbf{r} + i \, \omega t}), A_0$ — амплитуда векторного потенциала электромагнитной волны, \mathcal{N} — волновой вектор фотона.

Ввиду малости волнового вектора фотона по сравнению с волновым вектором электрона (дырки), образовавшегося в результате поглощения, при расчете коэффициента N-фотонного поглощения света ($K^{(N)}$) можно считать $\mathcal{N} \ll \mathbf{k}$ и положить $\mathcal{N} = 0$. В пространственно однородном случае для поляризованного света матричные элементы оператора электрон-фотонного взаимодействия состоят из двух составляющих, одна из которых описывает два однофотонных взаимодействия, а вторая — взаимодействия электронов с двумя одновременно поглощающимися фотонами [3]. В этих условиях поглощения света линейной и циркулярной поляризации при расчетах составных матричных элементов $M_{n'k'}^{(N)}$ N-фотонных переходов в методе эффективного гамильтониана [17,18] достаточно рассматривать виртуальные состояния в пределах той же зоны Г₈⁺. Тогда, следуя [3], коэффициент *N*-фотонного поглощения можно записать в виде

$$K^{(N)} = \frac{2\pi}{\hbar} \frac{\hbar\omega}{I} \sum_{\mathbf{k}, m = \pm 1/2; m' = \pm 3/2} (f_{1\mathbf{k}}^{(N)} - f_{2\mathbf{k}}^{(N)}) |M_{m;m'}^{(N)}(\mathbf{k})|^2 \times \delta(E_{2\mathbf{k}} - E_{1\mathbf{k}} - N\hbar\omega), \qquad (1)$$

где $M_{m;m'}^{(N)}(\mathbf{k})$ — матричный элемент оптического перехода из состояния $|m\mathbf{k}\rangle$ в состояние $|m'\mathbf{k}\rangle$, \mathbf{k} — волновой

¹ Линейно-циркулярный двухфотонный дихроизм предсказан в [1].

вектор дырок, $I = \frac{n_{\omega}\omega^2 A_0^2}{2\pi c}$ — интенсивность света, $E_{l\mathbf{k}}$ — энергетический спектр дырок в подзоне l: l = hh или 1 (l = lh или 2) для тяжелых (легких) дырок, $f_{l\mathbf{k}^{(N)}}$ — их неравновесная функция распределения при *N*-фотонном поглощении света, n_{ω} — коэффициент преломления света на частоте ω . Остальные величины общеизвестные. Здесь электронам в подзоне l = hh (тяжелые дырки) соответствуют состояния с проекцией $m = \pm 3/2$ углового момента на направление \mathbf{k} , а электронам в подзоне l = hh (легкие дырки) — состояния с $m \pm 1/2$ [17,18].

Отметим, что далее однофотонный переход будем обозначать как $(m') \to (m)$, а двухфотонный как $(m') \Rightarrow (m)$, они отвечают матричным элементам $M_{m;m'}^{(1)}(k)$ и $M_{m;m'}^{(2)}(k)$ соответственно.

Тогда коэффициент многофотонного поглощения без учета когерентного насыщения определяется выражением [3,5]

$$K^{(N)} = N \frac{2\pi}{\hbar} \frac{\hbar\omega}{I} \left[\left| M^{(N)}_{+1/2;+3/2}(\mathbf{k}) \right|^2 + \left| M^{(N)}_{-1/2;+3/2}(\mathbf{k}) \right|^2 \right] \\ \times \rho(N\hbar\omega) F(\beta, N, \omega),$$
(2)

где $F(\beta, N, \omega) = [1 - \exp(-N\hbar\omega)/(k_{\rm B}T)] \exp[(E_{\rm F} - E_1^{(N)})/k_{\rm B}T], E_{\rm F}$ — энергия Ферми, $E_1^{(N)} = NE_1^*, E_1^* = \frac{m_{\rm hh}m_{\rm Hh}}{m_{\rm hh} - m_{\rm Ih}} \hbar\omega$, $\rho(N\hbar\omega) = \mu_-k_N/(\pi^2\hbar^2)$ — приведенная плотность состояний фотовозбужденных дырок, k_N — удовлетворяет уравнению $-2Bk_N^2 = N\hbar\omega$, т.е. $k_N = (2\mu_-N\omega/\hbar)^{1/2}$, $\mu_- = \frac{m_{\rm hh}m_{\rm Hh}}{m_{\rm hh} - m_{\rm Ih}}, m_{\rm hh}(m_{\rm Ih})$ — эффективные массы тяжелых (легких) дырок, $B = -\frac{\hbar^2}{2\mu_-}$ — зонный параметр полупроводника.

Из последнего соотношения видно, что для определения спектральной или температурной зависимости оптических параметров полупроводника, например $K^{(N)}$, нужно рассчитать матричные элементы рассматриваемых оптических переходов, которые мы будем анализировать далее для конкретных случаев.

Приведем сначала общую формулу для матричного элемента двухфотонных электронных переходов

$$M_{m\mathbf{k},m'\mathbf{k}}^{(2)} = M_{m,m'}^{(2)} = \sum_{m''=\pm 1/2,\pm 3/2} \frac{M_{m,m''}^{(1)} M_{m'',m'}^{(1)}}{(E_{m''\mathbf{k}} - E_{m'\mathbf{k}} - \hbar\omega)} - \left(\frac{eA_0}{c\hbar}\right)^2 \left[H_{\Gamma_8}^{(2)}(\mathbf{e}')\right]_{m,m'}, \quad (3)$$

где $H_{\Gamma_8}^{(2)}(\mathbf{e}') = H_{\Gamma_8}^{(2)}(\mathbf{k} \to \mathbf{e}'), H_{\Gamma_8}^{(2)}(\mathbf{k})$ — эффективный гамильтониан дырок в представлении Латтинжера-Кона [17,18]; вектор \mathbf{e}' имеет компоненты $e_{x'}, e_{y'}, e_{z'};$ $e_{x'}, e_{y'}$ — проекции вектора поляризации света \mathbf{e} на оси x', y', перпендикулярные волновому вектору \mathbf{k} . Заметим, что второе слагаемое (3) в методе эффективной массы описывает двухфотонные оптические переходы с виртуальными состояниями в других зонах [3], т.е. это слагаемое учитывает вклад в $M_{m\mathbf{k},m'\mathbf{k}}^{(2)}$ промежуточных состояний в других зонах; знак минус в этом слагаемом связан с тем, что в $\mathbf{k} \cdot \mathbf{p}$ -методе энергетический знаменатель имеет вид типа $(E_{\Gamma_8} - E_{\tilde{n}})$, а в остальном матричном элементе двухфотонного перехода аналогичный знаменатель записывается как $(E_{\Gamma_8} - E_{\tilde{n}} - \hbar\omega) \approx -(E_{\Gamma_8} - E_{\tilde{n}})$ при $|E_{\Gamma_8} - E_{\tilde{n}}| \langle\!\langle \hbar\omega$. Тогда матричный элемент этого оператора для переходов $(2, \mathbf{k}, m) \rightarrow (1, \mathbf{k}, m')$ в сферическом приближении равен

$$\widehat{F}_{1,m'}^{+}(\mathbf{k})H_0\left(\frac{e}{c\hbar}\mathbf{A}\right)\widehat{F}_{2m}(\mathbf{k}) = \left(\frac{eA_0}{c\hbar}\right)^2 \left[-B\frac{m_0^2}{\hbar^2}\sum_{\alpha}(\widehat{J}_{\alpha}e_{\alpha})^2\right]_{m'm}, \quad (4)$$

где матрица-столбец $F_{lm}(\mathbf{k})$ — блоховская амплитуда волновой функции дырок в подзоне (l, m, \mathbf{k}) [17].

Поскольку нас интересуют оптические переходы типа $|\pm 3/2\rangle \mapsto |\pm 1/2\rangle$, далее приводим выражения для *N*-фотонного матричного элемента. При расчете $\|M_{m,m'}^{(N)}\|$ учтены следующие фейнмановские диаграммы: для N = 2 $\downarrow \downarrow$, \checkmark , для N = 3 $\downarrow \downarrow \downarrow$, $\lor \downarrow$, $\downarrow \lor$, для N = 4 $\underbrace{1}_{1}$, $\underbrace{1}_{1}$, \\\underbrace{1}_{1}, $\underbrace{1}_{1}$, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, $\underbrace{1}$, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, $\underbrace{1}$, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, $\underbrace{1}$, $\underbrace{1}$, $\underbrace{1}$, $\underbrace{1}$, \\1, $\underbrace{1}$, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, $\underbrace{1}$, \\1, диаграмма 🕹 соответствует однофотонному, а диаграмма <u>V</u> — одновременному поглощению двух фотонов. В частности, вклад в двухфотонный матричный элемент для оптического перехода типа $(\pm 3/2) \Rightarrow (\pm 1/2)$ равен $\sqrt{3Bm_0^2}e_{z'}e'_{\pm}/\hbar$, а для переходов $(\pm 3/2) \Rightarrow (\pm 1/2)$ имеем $\frac{\sqrt{3}}{2}Bm_0^2(e_{\pm}')^2/\hbar$. Это совпадает с результатами, получающимися при явном учете виртуальных состояний в зоне (c, Γ_6) [5]. Таким образом, нетрудно получить следующие выражения для абсолютного значения матричного элемента $M_{{f n'k'},{f nk}}^{(N)},$ полезные для расчета спектральной и температурной зависимости *К*^(*N*)

$$\left\|M_{m,m'}^{(2)}\right\| = \frac{\sqrt{3}}{2} \left(\frac{eA_0}{c\hbar}\right)^2 B \left\|\begin{array}{cc} 6e'_z e'_- & e'^2_-\\ e'^2_+ & 6e'_z e'_+ \\ \end{array}\right|, \quad (5)$$

$$\begin{split} \left\| M_{m,m'}^{(3)} \right\| &= -\frac{\sqrt{3}}{2} \left(\frac{eA_0}{c\hbar} \right)^3 \frac{B^2 k_3}{\hbar \omega} \\ &\times \left\| \frac{e'_+ (136e'_z{}^2 - 13e'_\perp)}{-16e_{z'}e'_-^2} \frac{16e_{z'}e'_+^2}{e'_- (136e'_z{}^2 - 13e'_\perp)} \right\|, \quad (6) \end{split}$$

$$\begin{split} \left\| M_{m,m'}^{(4)} \right\| &= -\frac{\sqrt{3}}{6} \left(\frac{eA_0}{c\hbar} \right)^4 \frac{B^2}{\hbar\omega} \frac{(Bk^2)}{(\hbar\omega)^2} \\ &\times \left\| \frac{4e_{z'}e'_-(18e'_z^2 - 5e'_\perp)}{-3e'_-(12e^2_{z'} - |e'_+|^2)} \frac{3e'_+(12e^2_{z'} - |e'_+|^2)}{4e_{z'}e'_+(18e'_z^2 - 5e'_\perp)} \right\|, \quad (7) \end{split}$$

где $k_3 = k_{N=3}, e'_{\pm} = e_{x'} \pm e_{y'}.$

Тогда с помощью формул (5)–(7), проводя в них угловое усреднение по телесным углам волнового вектора дырок (см. Приложение), получим соотношения для коэффициента ЛЦД для "парциальных" оптических переходов: для трехфотонного поглощения $\eta^{(1+1+1)} = 2.9$,

Температурная зависимость коэффициента однофотонного поглощения света без учета эффекта насыщения поглощения в *p*-GaAs для длин волн излучения $\lambda = 9.5$ (1) и 10.6 μ m (2).

 $\eta^{(1+2;2+1)} = 1.1$, а для четырехфотонного поглощения $\eta^{(1+1+1+1)} = 1.1$, $\eta^{(1+1+2;1+2+1;2+1+1)} = 1.0$, $\eta^{(2+2)} = 2.6$, где верхние индексы описывают порядок поглощения по числу фотонов.

Для исследования температурной зависимости $K^{(N)}(\omega, T)$ запишем выражение для отношения коэффициентов N' и N фотонного поглощения

$$\frac{K^{(N')}}{K^{(N)}} = \sqrt{\frac{N'^3}{N^3}} \Xi^{(N',N)} \exp\left[-(E_1^{(N')} - E_1^{(N)})/k_{\rm B}T\right], \quad (8)$$

где

$$\Xi^{(N',N)} = \frac{\sum_{m'=\pm 1/2, m=\pm 3/2} \left\langle \left| M_{m'm}^{(N')}(\mathbf{k}) \right|^2 \right\rangle}{\sum_{m'=\pm 1/2, m=\pm 3/2} \left\langle \left| M_{m'm}^{(N)}(\mathbf{k}) \right|^2 \right\rangle}.$$
 (9)

В частности, в приближении $\hbar \omega \rangle k_{\rm B} T$ имеем

$$\frac{K^{(4)}}{K^{(1)}} = 4 \exp(-3E_1^{(1)}/k_{\rm B}T) \Xi^{(4,1)}, \qquad (10)$$

где

$$\Xi^{(4,1)} = \frac{\sum\limits_{m'=\pm 1/2, m=\pm 3/2} \left\langle \left| M_{m'm}^{(4)}(\mathbf{k}) \right|^2 \right\rangle}{\sum\limits_{m'=\pm 1/2, m=\pm 3/2} \left\langle \left| M_{m'm}^{(1)}(\mathbf{k}) \right|^2 \right\rangle}$$
$$= \frac{\varepsilon^3}{315} \begin{cases} 12\,298 - \text{для линейной поляризации,} \\ 11\,008 - \text{для циркулярной поляризации,} \end{cases}$$

 $\varepsilon = \frac{eA_0}{c\hbar} \sqrt{B}$, $K^{(1)}$ — коэффициент однофотонного поглощения света без учета эффекта насыщения поглощения [2,3], в температурной зависимости которого имеется экстремальное значение (см. рисунок), определяемое соотношением

$$T_{\text{extr}}^{(N=1)} = \frac{2}{3} \frac{m_{\text{lh}}}{m_{\text{hh}} - m_{\text{lh}}} \frac{\hbar\omega}{k_{\text{B}}}$$

Например, для p-GaAs [4] при $\lambda = 10.6\,\mu\text{m}$ имеем $T_{\text{extr}}^{(N=1)} = 194\,\text{K}.$

Далее рассмотрим нелинейное поглощение света в полупроводнике, обусловленное вертикальными оптическими переходами между подзонами тяжелых и легких дырок валентной зоны и когерентным (резонансным) насыщением поглощения.² Это насыщение обусловлено возникновением фотоиндуцированной добавки в функции распределения дырок в поле сильной электромагнитной волны и приводит к дополнительному вкладу в коэффициент поглощения света.

Тогда в сферическом приближении в эффективном гамильтониане [17,18] для дырок коэффициент многофотонного поглощения света $K^{(N)}(N = 2, 3, 4)$ с учетом эффекта насыщения поглощения определяется выражением

$$K^{(N)} = \frac{2\pi}{\hbar} N\hbar\omega \frac{1}{I} \rho(N\hbar\omega) F(\beta, N, \omega) \\ \times \left(\left\langle \frac{\left| M^{(N)}_{+3/2, +1/2}(\mathbf{k}) \right|^2}{\sqrt{1 + 4 \frac{\alpha_{\omega}}{\hbar^2 \omega^2}} \left| M^{(N)}_{+3/2, +1/2}(\mathbf{k}) \right|^2} \right\rangle \\ + \left\langle \frac{\left| M^{(N)}_{-3/2, -1/2}(\mathbf{k}) \right|^2}{\sqrt{1 + 4 \frac{\alpha_{\omega}}{\hbar^2 \omega^2}} \left| M^{(N)}_{-3/2, -1/2}(\mathbf{k}) \right|^2} \right\rangle \right), \quad (11)$$

где $\alpha_{\omega} = 6\omega^2 T_1^{(1)} T_2^{(1)} \frac{I}{I_0}$, $I_0 = \frac{cn_{\omega}\hbar^3\omega^3}{2\pi|B|}$. Например, для *p*-GaAs и $I_0 = 13\,420\,\text{kW/cm}^2$ при $\hbar\omega = 17\,\text{meV}$, $m_2 = 0.045m_0$. Здесь пренебрегаем волновым вектором фотона, т. е. считаем, что $k' = k_N \cong k \ (n = 1, 2, 3, 4)$.

Из последнего соотношения видно, что резонансное насыщение приводит к уменьшению коэффициента поглощения с ростом интенсивности излучения I по закону \sqrt{I} .

Отметим здесь, что в [3-7] показано, что при малой интенсивности излучения, когда фотоиндуцированным изменением функции распределения лырок можно пренебречь, суммарные вероятности лля $(+3/2, \mathbf{k}) \rightarrow (+1/2, \mathbf{k})$ оптических переходов И $(-3/2, \mathbf{k}) \rightarrow (-1/2, \mathbf{k})$ зависят ОТ степени не поляризации света. С учетом эффекта насыщения, как видно из (11), эти вероятности нужно умножить $\sqrt{1+4 \frac{\alpha_{\omega}}{\hbar^2 \omega^2} \left| M_{\pm 3/2,\pm 1/2}^{(N,\mathrm{lin})}(\mathbf{k}) \right|^2}$ соответственно на $\sqrt{1+4 rac{lpha_{\omega^2}}{\hbar^2 \omega^2} \left| M^{(N, {
m circ})}_{\pm 3/2, \pm 1/2}({f k}) \right|^2}$, за счет этого суммарная вероятность соответствующих переходов будет зависеть от состояния поляризации света.

Также отметим, что при многофотонных переходах промежуточные состояния дырок являются виртуальными. Поэтому нельзя пренебречь интерференцией вкладов в многоквантовый процесс $(m, \mathbf{k}) \rightarrow (m', \mathbf{k})$

² В [3-6] механизмом нелинейности поглощения считается резонансное насыщение однофотонного поглощения.

 $\rightarrow (m'', \mathbf{k}) \rightarrow (m''', \mathbf{k}) \rightarrow \dots (l, \mathbf{k})$ от различных виртуальных состояний $(m', \mathbf{k}), (m'', \mathbf{k}), (m''', \mathbf{k}), \dots$ Это означает, что недостаточно произвести суммирование по m', m'', m''', \dots величины $|M_{m,m',m'',m'''\dots l}(\mathbf{k})|^2$. Сначала следует просуммировать по m, m', m'', m''', \dots матричным элементам многофотонных переходов $|M_{m,m',m'',m'''\dots l}(\mathbf{k})|^2$, а затем возвести в квадрат модуль полученной суммы.

Таким образом, вклад в коэффициент многофотонного поглощения эффекта насыщения определяется как

$$\delta K^{(N)} \propto \sum_{m'=\pm 1/2, m=\pm 3/2} \delta \left| M_{m'm}^{(N)}(\mathbf{k}) \right|^{2}$$

=
$$\sum_{m'=\pm 1/2, m=\pm 3} \frac{\left| M_{m'm}^{(N)}(\mathbf{k}) \right|^{2}}{\sqrt{1+4 \frac{\alpha_{\omega}}{\hbar^{2} \omega^{2}} \left| M_{m'm}^{(N)}(\mathbf{k}) \right|^{2}}} - \left| M_{m'm}^{(N)}(\mathbf{k}) \right|^{2}.$$
(12)

Далее рассмотрим область умеренной интенсивности, где можно использовать теорию возмущений. Тогда, разлагая радикал в (12) в ряд по $4 \frac{\alpha_{\omega}}{\hbar^2 \omega^2} \left| M_{m'm}^{(N)}(\mathbf{k}) \right|^2$, получаем следующие результаты.

При N = 1 имеем следующее полезное для дальнейшего анализа результатов выражение:

$$\delta |M_{m'm}^{(N=1)}(\mathbf{k})|^{2} = -\frac{1}{2} \cdot 4 \frac{\alpha_{\omega}}{\hbar^{2}\omega^{2}} |M_{m'm}^{(1)}(\mathbf{k})|^{4} + \frac{1 \cdot 3}{2 \cdot 4} \left(4 \frac{\alpha_{\omega}}{\hbar^{2}\omega^{2}}\right)^{2} |M_{m'm}^{(1)}(\mathbf{k})|^{6} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \left(4 \frac{\alpha_{\omega}}{\hbar^{2}\omega^{2}}\right)^{3} |M_{m'm}^{(1)}(\mathbf{k})|^{8} + \dots,$$
(13)

где первое слагаемое дает линейный, второе — квадратичный, третье — кубический по интенсивности вклад в коэффициент поглощения (ЛЦД). Тогда

$$\begin{split} \sum_{m'=\pm 1/2,m=\pm 3/2} \left\langle 2 \frac{\alpha_{\omega}}{\hbar^2 \omega^2} \left(\left| M_{m'm}^{(1)}(\mathbf{k}) \right|^2 \right)^2 \right\rangle \\ &= 18 \frac{\alpha_{\omega}}{\hbar^2 \omega^2} \left(\frac{eA_0}{c\hbar} \right)^4 B^4 k^4 \left\langle \left| e'_{\mp} \right|^4 \right\rangle, \\ \sum_{m'=\pm 1/2,m=\pm 3/2} \left\langle \frac{3}{8} \left(4 \frac{\alpha_{\omega}}{\hbar^2 \omega^2} \right)^2 \left(\left| M_{m'm}^{(1)}(\mathbf{k}) \right|^2 \right)^3 \right\rangle \\ &= 162 \left(\frac{\alpha_{\omega}}{\hbar^2 \omega^2} \right)^2 \left(\frac{eA_0}{c\hbar} \right)^6 B^6 k^6 \left\langle \left| e'_{\mp} \right|^6 \right\rangle, \\ \left\langle \frac{5}{16} \left(4 \frac{\alpha_{\omega}}{\hbar^2 \omega^2} \right)^2 \left(\left| M_{m'm}^{(1)}(\mathbf{k}) \right|^2 \right)^4 \right\rangle \\ &= 1620 \left(\frac{\alpha_{\omega}}{\hbar^2 \omega^2} \right)^2 \left(\frac{eA_0}{c\hbar} \right)^8 B^8 k^8 \left\langle \left| e'_{\mp} \right|^8 \right\rangle. \end{split}$$

Проводя угловое усреднение и используя обозначение $\beta_{\omega} = \alpha_{\omega} \left(\frac{eA_0}{c\hbar}\right)^2 \frac{B}{\hbar\omega}$, перепишем последние выражения как

$$-\left\langle \frac{\alpha_{\omega}}{\hbar^2 \omega^2} \left(\left| M_{m'm}^{(1)}(\mathbf{k}) \right|^2 \right)^2 \right\rangle = -\frac{1}{315} \alpha_{\omega} \left(\frac{eA_0}{c\hbar} \right)^4$$

 $\times B^2 \begin{cases} 1512 -$ для линейной поляризации, 1323 -для циркулярной поляризации,

$$\left\langle \frac{3}{8} \left(4 \frac{\alpha_{\omega}}{\hbar^2 \omega^2} \right)^2 \left(\left| M_{m'm}^{(1)}(\mathbf{k}) \right|^2 \right)^3 \right\rangle = \frac{1}{315} \alpha_{\omega} \left(\frac{eA_0}{c\hbar} \right)^4$$

 $\times B^2 \beta_{\omega} \begin{cases} 23\,328 -$ для линейной поляризации, $17\,496 -$ для циркулярной поляризации,

$$\left\langle -\frac{5}{16} \left(4 \frac{\alpha_{\omega}}{\hbar^2 \omega^2} \right)^3 \left(\left| M_{m'm}^{(1)}(\mathbf{k}) \right|^2 \right)^4 \right\rangle = -\frac{1}{315} \alpha_{\omega} \left(\frac{eA_0}{c\hbar} \right)^4$$
$$\times B^2 \beta_{\omega} \begin{cases} 207\,360 - \text{для линейной поляризации,} \\ 134\,460 - \text{для циркулярной поляризации,} \end{cases}$$

Из последних соотношений видно, что каждое слагаемое (13) вносит вклад в суммарный коэффициент поглощения (ЛЦД).

Вклад двухфотонного эффекта насыщения в поглощение определим как

$$\begin{split} \sum_{n'=\pm 1/2,m=\pm 3/2} \left\langle \delta \left| M_{m'm}^{(N=2)}(\mathbf{k}) \right|^2 \right\rangle &= -\frac{9}{4} \frac{\alpha_\omega}{\hbar^2 \omega^2} \left(\frac{eA_0}{c\hbar} \right)^8 \\ &\times B^4 \left\langle \left(|e_{\pm}'^2|^4 + 1296 |e_{\pm}'e_{z'}|^4 \right) \right\rangle = \frac{1}{315} \frac{\alpha_\omega}{\hbar^2 \omega^2} \left(\frac{eA_0}{c\hbar} \right)^8 \\ &\times B^4 \begin{cases} 23\,616 - \text{для линейной поляризации,} \\ 36\,011 - \text{для циркулярной поляризации.} \end{cases} \end{split}$$

Тогда коэффициент ЛЦД для данного случая $\delta \eta^{(N=2)} = 0.7.$

В заключение отметим следующее:

 вероятности многофотонных переходов зависят от степени поляризации света, т.е. имеет место линейноциркулярный дихроизм нелинейного по интенсивности поглощения света в полупроводнике со сложной валентной зоной;

2) температурная зависимость коэффициента *N*-фотонного межподзонного поглощения поляризованного излучения в области частот, где $\hbar \omega \gg k_{\rm B}T$, определяется температурной зависимостью коэффициента однофотонного поглощения, которую следует умножить на $\exp\left[-(N-1)\frac{m_{\rm lh}}{m_{\rm hh}-m_{\rm lh}}\frac{\hbar \omega}{k_{\rm B}T}\right];$

 физическая природа выстраивания импульса фотовозбужденных дырок и ориентация их моментов зависят

Усредняющие величины	Линейная поляризация	Циркулярная поляризация
$ e'_{+} ^{2}$	2/3	2/3
$ e'_{+} ^{4}$	8/15	7/15
$ e'_{+} ^{6}$	16/35	12/35
$ e'_{+} ^{8}$	128/315	83/315
$\overline{e_z'^2}$	1/3	1/3
$\overline{e_z'^4}$	1/5	2/15
$\overline{e_z'^4}$	1/7	2/35
$\overline{e_z'^8}$	1/9	8/315
$ e'_{+} ^{2}e'^{2}_{z}$	2/15	1/5
$ e'_{+} ^{2}e'^{4}_{z}$	2/35	8/105
$ e'_{+} ^{4}e'^{2}_{z}$	8/105	13/105
$ e'_{+} ^{4}e'^{4}_{z}$	8/315	2/45
$ e'_{+} ^{2}e'^{6}_{z}$	2/63	2/63
$ e'_{+} ^{6}e'^{2}_{z}$	16/315	5/63

Выражения для средних величин $e_{\alpha}^{\prime m}$ и $e_{\beta}^{\prime n}$ при разных значениях *m* и *n* и различных поляризациях света ($\alpha, \beta = x, y, z$)

от выбора модели задачи, например от типов оптических переходов.

Исследование многофотонного линейно-циркулярного дихроизма в размерно-квантованных структурах [19,20], где оптические переходы протекают в два этапа, можно произвести аналогичным образом. На первом этапе происходят переходы в двумерном импульсном пространстве, как в объемном полупроводнике, а на втором этапе происходят переходы между размерно-квантованными состояниями. Естественно, каждый из этих этапов имеет свое правило отбора оптических переходов.

Физическая природа неодновременного поглощения двух или более фотонов в таких структурах зависит от выбора модели задачи, например от структуры зоны полупроводника или от направления выращивания структуры.

Эти случаи требуют более подробного рассмотрения, которому будет посвящена отдельная работа.

Приложение

Здесь остановимся на угловых усреднениях по всем направлениям волнового вектора дырки **k**. При этом используем следующую геометрию: выберем проекции вектора поляризации света $\mathbf{e}' = \{e'_x, e'_y, e'_z\}$ на оси x', y', z', связанные с направлением вектора **k** ($\mathbf{k} \uparrow z'$), ось x' лежит в плоскости (\mathcal{N}, \mathbf{k}); θ — угол между векторами \mathcal{N} и **k**.

Тогда угловое усреднение дает полезные для дальнейших расчетов выражения (см. таблицу).

Далее также приводим часто используемые формулы

$$\frac{1}{4\pi} \int_{0}^{\pi} \sin\theta \, d\theta \int_{0}^{2\pi} d\varphi (\mathbf{a} \cdot \mathbf{o}) (\mathbf{b} \cdot \mathbf{o}) = \frac{1}{3} \, (\mathbf{a} \cdot \mathbf{b}),$$

$$\frac{1}{4\pi} \int_{0}^{\pi} \sin\theta \, d\theta \int_{0}^{2\pi} d\varphi (\mathbf{a} \cdot \mathbf{o}) (\mathbf{b} \cdot \mathbf{o}) (\mathbf{c} \cdot \mathbf{o}) (\mathbf{d} \cdot \mathbf{o})$$
$$= \frac{1}{15} [(\mathbf{a} \cdot \mathbf{b}) (\mathbf{c} \cdot \mathbf{d}) + (\mathbf{a} \cdot \mathbf{c}) (\mathbf{d} \cdot \mathbf{b}) + (\mathbf{a} \cdot \mathbf{d}) (\mathbf{c} \cdot \mathbf{b})],$$

где $\mathbf{o}(\theta, \varphi)$ — единичный вектор в направлении, определяемом углами θ и φ ; **a**, **b**, **c**, **d** — произвольные постоянные векторы.

Список литературы

- [1] Е.Л. Ивченко. ФТТ 14, 3489 (1972).
- [2] Р.Я. Расулов. Докт. дис. ФТИ им. А.Ф. Иоффе РАН, СПб. (1993). Гл. 3.
- [3] С.Д. Ганичев, Е.Л. Ивченко, Р.Я. Расулов, И.Д. Ярошецкий, Б.Я. Авербух. ФТТ 35, 198 (1993); Р.Я. Расулов. ФТТ 35, 1107 (1993).
- [4] Д.А. Паршин, А.Р. Шабаев. ЖЭТФ 92, 1471 (1987).
- [5] С.Д. Ганичев, С.А. Емельянов, Е.Л. Ивченко, Е.Ю. Перлин, Я.В. Терентьев, А.В. Федоров, И.Д. Ярошецкий. ЖЭТФ 91, 729 (1986).
- [6] Р.Я. Расулов, Г.Х. Хошимов, Х. Холитдинов. ФТП 30, 274, (1996).
- [7] Р.Я. Расулов. ФТП 22, 2077 (1988).
- [8] Р.Я. Расулов. ФТТ 35, 1674 (1993).
- [9] S. Krishnamurthi, Z.G. Yu, L.P. Gonzalez, S. Guha. J. Appl. Phys. 109, 033102 (2011).
- [10] R.A. Negres, J.M. Hales, A. Kobyakov, D.J. Hagan, E.W. Van Stryland. IEEE J. Quantum Electron. 38, 1205 (2002).
- [11] P.D. Olszak. Ph D Dissertation. College of Optics and Photonics, University of Central Florida, Orlando, Florida (2010). 143 p.
- [12] J. López Gondar, R. Cipolatti, G.E. Marques. Brazil. J. Phys. 36, 960 (2006).
- [13] N.R. Kulish, M.P. Lisitsa, N.I. Malysh. Semicond. Phys. Quantum Electron. Optoelectron. 8, 72 (2005).
- [14] J. He, Y.Qu, H.Li, J. Mi, W. Ji. Opt. Express 13, 9235 (2005).
- [15] W.C. Hurlbut, Y.S. Lee, K.L. Vodopyanov, P.S. Kuo, M.M. Fejer. Opt. Lett. **32**, 668 (2007).
- [16] S. Pearl, N. Rotenberg, H.M. van Driel. Appl. Phys. Lett. 93, 131102 (2008).
- [17] Г.Л. Бир, Г.Е. Пикус. Симметрия и деформационные эффекты в полупроводниках. Наука, М. (1973). 584 с.
- [18] Е.Л. Ивченко, Р.Я. Расулов. Симметрия и реальная зонная структура полупроводников. Фан, Ташкент (1989). 126 с.
- [19] E.L. Ivchenko. Optical spectroscopy of semiconductor nanostructures. Alpha Science International, Ltd., Harrow (2005). Ch. XII. 427 p.
- [20] G.E. Pikus, E.L. Ivchenko. Superlattices and other heterostructures: symmetry and optical phenomena. Springer-Verlag, Berlin-Heidelberg (1995). 657 p.