## 06.1

# Новая углеродная структура в отожженных пленочных покрытиях системы углерод—свинец

# © В.Н. Володин, Ю.Ж. Тулеушев <sup>¶</sup>, Е.А. Жаканбаев, К.В. Цай, О.В. Рофман

Институт ядерной физики МЭ РК, Алматы, Казахстан <sup>¶</sup> E-mail: yuriy.tuleushev@mail.ru

#### Поступило в Редакцию 2 февраля 2016 г.

Ионно-плазменным распылением углерода и свинца впервые получены твердые растворы этих элементов в пленочном покрытии, сосуществующие с аморфным углеродом. При вакуумной термообработке пленок углерод-свинец с концентрацией более 68.5 аt.% Рb последний практически полностью испаряется с образованием покрытия из аморфного углерода. При отжиге 1100°С аморфный углерод кристаллизуется во вновь обнаруженную фазу с гексагональной решеткой с параметрами a = 0.7603 nm и c = 0.8168 nm. Определены рентгенографические данные для идентификации обнаруженной фазы.

### DOI: 10.21883/PJTF.2017.02.44191.16181

Несмотря на то что углерод является одним из самых распространенных элементов, интерес к нему не ослабевает до последнего времени, что позволяет открывать новые его модификации: карбин [1], фуллерены [2] и графен [3]. При этом фазообразование может зависеть от метода обработки углеродсодержащего материала [4], а также состояния и стабильности исходных образцов применительно к пленочным аморфным покрытиям [5].

Формирование материалов ультрадисперсными частицами при ионно-плазменном напылении сопровождается значительным увеличением концентрационных границ взаимной растворимости элементов вследствие эффекта термофлуктуационного плавления [6], примером чему могут служить системы железо-углерод [7] и тантал-кадмий [8], в которых при низкой температуре (менее 150°С) получены не существовавшие ранее твердые растворы–сплавы.

84

В этой связи представилось целесообразным исследование структуры углерода, полученного из аморфного состояния в качестве остатка при испарении свинца в процессе вакуумных отжигов при высокой (до 1100°С) температуре из исходной бинарной системы Pb–C. Исходя из этого, выполнено исследование, имеющее целью получение покрытий системы свинец-углерод и исследование их структуры и фазового состава до и после отжига.

Материал для исследования — пленки системы углерод-свинец, приготовлены соосаждением ультрадисперсных частиц веществ, полученных ионно-плазменным распылением, на холодные подложки из монокристаллического кремния и стекла.

Для формирования образцов пленочных покрытий использованы углерод с содержанием 99.995 mass % основного элемента (спектральночистый углерод) и свинец (99.99 mass %) в виде мишеней диаметром 40 и толщиной 4 mm. При магнетронном распылении в качестве плазмообразующего газа использован аргон, подвергшийся очистке на геттере распыленном титане.

Методика формирования образцов сплавных покрытий заключалась в совместном осаждении частиц углерода и свинца на перемещающиеся относительно потоков плазмы подложки в виде слоев с парциальной толщиной ( $d_{Cd}$  и  $d_C$ ) в пределах нескольких периодов кристаллической решетки до суммарной толщины пленки ( $d_{\Sigma}$ ) 04–1.2  $\mu$ m. Скорость перемещения подложки относительно потоков плазмы 5 · 10<sup>-2</sup> m · s<sup>-1</sup>. Напыление осуществляли одновременно с двух оппозитно расположенных магнетронов, пространство между которыми разделено устройством для перемещения подложек.

Составом покрытия управляли изменением соотношения мощностей, подаваемых на распыляющие углерод и свинец магнетроны. Состав пленок контролировали весовым методом по массе распыленного и осажденного каждого из элементов во время формирования покрытия. Толщину пленки определяли методом резерфордовского обратного рассеяния протонов на тандемном ускорителе УКП-2-1 и расчетным путем на основании количества осажденных элементов и их плотности.

Рентгеноструктурные исследования проведены на дифрактометре D8 Advance фирмы Bruker с медным излучением  $\lambda_{K\alpha} = 0.154051$  nm с графитовым монохроматором. Значение параметров решетки вычислено как среднее при использовании всех дифракционных линий от иденти-фицируемой фазы.

Концентрация Фазы a<sub>Pb</sub>, nm  $d_{\rm Pb}$ , nm  $d_{\rm C}$ , nm углерода  $C_{\rm C}$ , at.% 5.7 Pb  $0.4950 \pm 0.0001$ 3.70 0.05 28.9 Pb  $0.4951 \pm 0.0002$ 1.16 0.10 33.4 Pb  $0.4949 \pm 0.0002$ 0.71 0.08 68.5 Pb + аморфный С  $0.4944 \pm 0.0006$ 0.15 0.08 Рb + аморфный С  $0.4935 \pm 0.0016$ 0.16 77.9 0.12

Таблица 1. Элементный и фазовый состав, параметр решетки свинца и парциальная толщина слоев в пленках системы Pb-C

Электронно-микроскопические исследования выполнены на просвечивающем электронном микроскопе JEOL JEM-2100 с энергодисперсионным детектором X-MAX (Oxford Instr.).

Высокотемпературные отжиги проведены на вакуумной высокотемпературной печи, изготовленной на базе установки УРВТ-2500.

Для исследования сформировано 5 образцов пленок системы С–Рь, концентрация углерода в которых варьировалась от 5.7 до 77.9 at.%. Пленки нанесены на стекло для устранения мешающих расшифровке дифрактограмм рефлексов от подложки, а покрытия с концентрацией углерода 57.5-71.2 at.% — на подложку из монокристаллического кремния для обеспечения возможности последующего вакуумного отжига при температуре до  $1100^{\circ}$ С. Данные об общей и парциальной толщине отдельных слоев свинца и углерода, элементном и фазовом составе исходных покрытий приведены в табл. 1.

Анализ дифрактограмм покрытий системы Pb−C показал, что при концентрации углерода в покрытии от 5.7 до 33.4 at.% свинец имеет табличный параметр решетки, совпадающий с указанным в карточке ASTM № 04-0686. Углерод при этих концентрациях никак себя на дифрактограмме не проявляет. При концентрациях углерода в покрытии 68.5 и 77.9 at.% в фазе свинца возникают напряжения, которые проявляются в увеличении ошибки определения параметра решетки, а среднее значение параметра решетки уменьшается в связи с тем, что атомы углерода имеют меньший атомный радиус, чем атомы свинца [9], хотя в пределах ошибки наблюдается совпадение параметра решетки свинца с его табличным значением. При этом на дифрактограмме наряду с



Рис. 1. Дифрактограмма покрытия системы Pb-C с содержанием углерода 77.9 аt.%: *а* — до отжига, *b* — после отжига 1100°C 4 часа: ♦ — Pb; пунктир — аморфный углерод, ▼ — углерод; ◦ — кремний (подложка).

пиками от фазы свинца отчетливо фиксируется галло от аморфной фазы углерода. На рис. 1, *а* представлена дифрактограмма покрытия, содержащего 77.9 at.% С, на подложку из стекла. Пунктиром выделено галло от аморфного углерода.

| N₂ | $d_{hkl}$ , nm | Int-f | (hkl) |
|----|----------------|-------|-------|
| 1  | 0.2562         | 86    | (202) |
| 2  | 0.2123         | 74    | (212) |
| 3  | 0.1901         | 307   | (220) |
| 4  | 0.1855         | 362   | (221) |
| 5  | 0.1823         | 25    | (310) |
| 6  | 0.1781         | 33    | (311) |
| 7  | 0.1709         | 999   | (303) |
| 8  | 0.1282         | 552   | (404) |

**Таблица 2.** Межплоскостные расстояния *d*<sub>hkl</sub>, относительные интенсивности наблюдаемых линий (Int-f) и предполагаемые индексы Миллера (*hkl*) кристаллографической модификации углерода с гексагональной примитивной решеткой

При отжиге в вакууме покрытий с концентрацией углерода в образцах с содержанием С 33.4 at.% и менее, начиная с 300°С, происходило практически полное испарение свинца из пленки с нарушением сплошности пленочного покрытия. На этом основании все последующие исследования выполнены с пленочными образцами, имеющими в своем составе 68.5–77.9 at.% С.

На рис. 1, b приведена дифрактограмма покрытия системы Pb-C с концентрацией углерода 77.9 at.% после отжига при 1100°С 4 часа. Проведенные отжиги в высоком вакууме при температурах 400-1100°C (в течение одного часа) показали, что свинец испаряется из покрытия и перестает фиксироваться на дифрактограмме уже при 400°С, но углерод при этом остается аморфным. Аморфное состояние углерода сохраняется и после отжигов при 500, 700 и 1000°С. После отжига при 1100°С (рис. 2) на дифрактограмме появились рефлексы, не совпадающие с известными к настоящему времени для углеродных фаз, которые нами отнесены к новой кристаллографической модификации углерода. Подбор индексов и расчет параметров решетки были произведены по программе RTP [10]. В соответствии с расчетами рефлексы описываются гексагональной примитивной решеткой с параметрами *a* = 0.7603 nm и c = 0.8168 nm с дисперсией  $2\Theta = 0.052$ , что можно констатировать как обнаружение новой кристаллографической модификации углерода с с/а = 1.074. Некоторые из наблюдаемых рефлексов совпадают с



**Рис. 2.** Микроструктура и микродифракционная картина покрытия Pb-C с концентрацией углерода 77.9 at.% после отжига 1100°C 4 часа. Стрелкой указана область получения электронограммы.

описанными в работе [11], где на дифрактограмме присутствует еще несколько линий, а индексы Миллера не посчитаны ни для одной из них. Это позволяет предполагать, что авторами [11] были наблюдены дифракционные линии более чем от одной фазы. Межплоскостные расстояния обнаруженной нами фазы углерода, относительные интенсивности наблюдаемых рефлексов и предполагаемые индексы Миллера гексагональной примитивной решетки для идентификации приведены в табл. 2.

Поскольку новая фаза была зарегистрирована рентгенографическим методом в напыленном на кремниевую подложку покрытии после высокотемпературного отжига, то для подтверждения того, что полученная фаза не является продуктом взаимодействия углерода пленочного покрытия с подложкой, проведены исследования на просвечивающем электронном микроскопе (ПЭМ). Анализу подвергнуты фрагменты пленки, отслоившейся при отжиге 1100°С от края образца, размещенные по методу сухого препарирования на медно-палладированной сетке. Съемка произведена при ускоряющем напряжении 200 kV. На участке ПЭМ-изображения исследуемой фазы углерода, образовавшегося после

испарения из пленки свинца и кристаллизации новой фазы, виден участок зерна, в котором ось зоны параллельна электронному пучку (рис. 2). Видно, что плоскости пересекаются под углом  $120^{\circ}$ , чем подтверждается предположение о том, что обнаружена гексагональная фаза углерода. Элементный состав пленки в точке наблюдения, измеренный с помощью энергодисперсионного детектора, дает 99.55 at.% C, 0.23 at.% Pb и 0.22 at.% Si. Предполагаем, что наблюдаемое следовое количество свинца относится к интеркалированным в решетку углерода атомам Pb, которые уже не могут покинуть углеродную фазу при вакуумном отжиге, а кремний относится к загрязнениям от границы раздела подложки и напыленного слоя.

Измеренные по электронограмме (рис. 2, b) межплоскостные расстояния соответствуют в пределах точности измерений данным рентгенографических исследований, симметрия электронограммы подтверждает гексагональность обнаруженной фазы углерода и, в совокупности, существование новой фазы. Предполагается, что на формирование новой кристаллической решетки углерода оказывают влияние интеркалированные атомы свинца. Таким образом, при магнетронном соосаждении углерода и свинца впервые получены гомогенные пленочные покрытия. Установлено, что углерод при соосаждении со свинцом образует рентгеноаморфную фазу, которая при концентрации углерода более 68 at.% регистрируется на дифрактограмме в виде галло. При вакуумной термообработке (при температуре более 300°С) покрытий системы углерод-свинец с концентрацией более 68 at.% Pb, он испаряется и остается покрытие из аморфного углерода. При температуре отжига 1100°C аморфный углерод кристаллизуется во вновь обнаруженную фазу с гексагональной примитивной решеткой с параметрами  $a = 0.7603 \,\mathrm{nm}$  и  $c = 0.8168 \,\mathrm{nm}$ . Определены рентгенографические данные для идентификации обнаруженной фазы.

# Список литературы

- [1] *Сладков А.М., Кудрявцев Ю.П. //* Успехи химии. 1963. № 3: Rus. Chem. Rev. 1963. N 32. P. 229–243.
- [2] Kroto H.W., Heath J.R., O'Brien S.C. et. al. // Nature. 1985. V. 318. P. 162163.
- [3] Novoselov K.S., Geim A.K., Morozov S.V. et al. // Nature. 2005. V. 438. P. 197–200.

- [4] Шмакова Е.С., Лебедев Ю.Н., Нагорный В.Г. // Изв. АН СССР. Неорганические материалы. 1979. Т. 15. № 12. С. 2134–2137.
- [5] Пинскер Г.З. // Изв. АН СССР. Неорганические материалы. 1979. Т. 15. № 10. С. 1713–1717.
- [6] Володин В.Н., Тулеушев Ю.Ж. Размерный эффект, структура и свойства двойных пленочных систем. Караганда: Tengri Ltd, 2014. 245 с.
- [7] *Тулеушев Ю.Ж., Володин В.Н., Озерной А.Н.* и др. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2015. № 8. С. 1–9.
- [8] Тулеушев Ю.Ж., Володин В.Н., Жаканбаев Е.А. // ФММ. 2015. Т. 116. № 1. С. 59–66.
- [9] Кан Р.У., Хаазен П. Физическое металловедение. М.: Металлургия, 1987. Т. 1. С. 477–478.
- [10] Tabular processor for X-ray diffractometry RTP / rtp32.cab, RTP 4.2 для Win32. Англ. версия от 1.02.2014.
- [11] Штеренберг Л.Е., Богданова С.В. // Изв. АН СССР. Неорганические материалы. 1975. Т. 15. № 8. С. 807–811.