Влияние теплового старения на абсорбционные явления в кабельной изоляции сшитого полиэтилена

© М.Э. Борисова, Ю.К. Осина¶

12

Санкт-Петербургский политехнический университет Петра Великого [¶] E-mail: julia npf@list.ru

Поступило в Редакцию 23 июня 2016 г.

Изучены абсорбционные токи зарядки и разрядки образцов сшитого кабельного полиэтилена до и после их теплового старения. Анализ экспериментальных зависимостей проведен на основе эквивалентной схемы Фойгта. С помощью определенных параметров эквивалентной схемы Фойгта рассчитаны частотные зависимости относительной диэлектрической проницаемости, фактора потерь и тангенса угла диэлектрических потерь в области низких частот $\omega = (10^{-3} - 1) \, {\rm s}^{-1}$ и высоких температур. Абсорбционные характеристики и их анализ применены для изучения процессов теплового старения кабельной изоляции из сшитого полиэтилена.

DOI: 10.21883/PJTF.2017.02.44194.16384

Под действием электрического поля и температуры происходит старение изоляции кабелей и выход их из строя. В работе [1] установлена взаимосвязь между сроком службы кабельной изоляции и ее абсорбционными характеристиками. Кроме того, обнаружена корреляция между степенью состаренности изоляции и изменением ее диэлектрических характеристик [2]. Экспериментальное нахождение зависимостей относительной диэлектрической проницаемости $\varepsilon'(\omega)$, фактора потерь $\varepsilon''(\omega)$ и тангенса угла диэлектрических потерь tg $\delta(\omega)$ в области низких частот затруднено из-за большой длительности измерений. Теория абсорбционных явлений в диэлектриках [3] позволяет сократить число испытаний и по измеренным зависимостям токов зарядки $I_{ch}(t)$ и разрядки $I_{dis}(t)$ рассчитать частотные диэлектрические характеристики при низких частотах. Метод абсорбционных характеристик является неразрушающим, позволяет изучить кинетику процессов старения изоляции и в перспективе оценить ресурс работы изделия.

104

Рис. 1. Зависимость $\lg I = f(\lg t)$ исходных (*a*) и состаренных (*b*) пленок ПСПЭ (—) и ССПЭ (-···) при *T*: *I* — 90; *2* — 80; *3* — 70; *4* — 60°С; *5* — разрядный ток при 90°С.

В данной работе изучались временные зависимости абсорбционных токов зарядки $I_{ch}(t)$ и разрядки $I_{dis}(t)$ исходных и подверженных тепловому старению образцов сшитого кабельного полиэтилена (СПЭ). Образцы изготавливались из пленок толщиной $h = 45\,\mu\text{m}$ и диаметром $d = 26\,\text{mm}$, непосредственно срезанных с монолитной изоляции кабеля. Исследовались 2 вида изоляции кабелей — пероксидносшитая (ПСПЭ) композиция марки HFDK 4201 SC компании Dow Wire and Cable и силанольносшитая (ССПЭ) композиция марки LE 4421 (95%) с катали-

Рис. 2. Эквивалентная схема Фойгта.

затором LE 4431 (5%) компании Borealis [4]. Измерения проведены на образцах с электродами из алюминиевой фольги.

Абсорбционные токи $I_{ch}(t)$ и $I_{dis}(t)$ измерялись до установления стационарного сквозного тока I_{thr} , время достижения которого составляло более 2000 s. Измерения проведены при напряженности электрического поля $E = 7 \cdot 10^6$ V/m в изотермических условиях в интервале температур $T = 60-90^{\circ}$ С. Тепловое старение производилось при $T = 90^{\circ}$ С в течение 400 h. На рис. 1, *a* и *b* приведена зависимость lg($I_{ch}-I_{thr}$) = f(lgt)исходных и состаренных образцов СПЭ. При повторных измерениях характер зависимостей I(t) сохраняется. Как видно из рис. 1, *a*, величина абсорбционного тока, а следовательно и накопленный заряд, у исходных пленок ПСПЭ больше, чем у ССПЭ.

После теплового старения у образцов ПСПЭ величина абсорбционного тока уменьшилась, что согласуется с данными работы [5]. У образцов ССПЭ величина тока возросла практически на порядок по сравнению с исходными образцами. Токи оказались симметричны, т.е. $I_{ch}(t) - I_{thr} \approx -I_{dis}(t)$ (рис. 1, *b*). Таким образом, в результате теплового старения свойства изоляции меняются, что сказывается на абсорбционных токах.

При изготовлении кабельной изоляции из СПЭ в ней образуются примесные полярные группы. С этими полярными группами и связано появление релаксационных максимумов на частотных зависимостях tg $\delta(\omega)$. С учетом этого для анализа абсорбционных токов использовалась модель структурно-неоднородного диэлектрика. Этой модели соответствует эквивалентная схема Фойгта (рис. 2) [3].

В параллельно-последовательной эквивалентной схеме Фойгта каждая составляющая релаксационной поляризации моделируется последовательной цепочкой r_ic_i , а все эти цепочки параллельны безынерционной емкости c_n (связана с быстро устанавливающейся поляризацией, измерялась на *LCR*-измерителе E7-8 при 1000 Hz) и сопротивлению утечки r_n . Выражения для абсорбционных токов, соответствующие схеме Фойгта, при условии полной зарядки диэлектрика имеют вид [4]

$$I_{ch}(t) - I_{thr} = -I_{dis}(t) = I_{thr} \sum_{i=1}^{n-1} \frac{r_n}{r_i} \exp\left(-\frac{t}{\vartheta_i}\right),$$
$$I_{thr} = \frac{U_p}{r_n},$$

где I_{thr} — сквозной ток; r_i — резистор в релаксационной цепочке; U_p — поляризующее напряжение; $\vartheta_i = c_i r_i$ — время релаксации, i = 1, 2, ..., (n-1).

Экспериментально полученные зависимости $I_{ch} - I_{thr} = f(t)$ образцов СПЭ (рис. 1) описываются суммой двух экспонент с временами релаксации ϑ_1 и ϑ_2 и предэкспоненциальными множителями I_{01} и I_{02} , т. е. шестиэлементной эквивалентной схемой Фойгта, параметры которой определяются выражениями [4]

$$r_n = \frac{U_p}{I_{thr}}, \quad c_n = \frac{\varepsilon_0 \varepsilon}{h}, \quad \vartheta_n = c_n r_n = \frac{\varepsilon_0 \varepsilon}{\gamma},$$

 $c_i = \frac{\varepsilon_0 \varepsilon_{si} S}{h}, \quad r_i = \frac{\vartheta_i}{c_i} = \frac{h \vartheta_i}{\varepsilon_0 \varepsilon_{si} S},$

где ε — безынерционная диэлектрическая проницаемость; ϑ_n — время релаксации; ε_{si} — релаксационная диэлектрическая проницаемость каждой ячейки; γ — удельная проводимость; *S* — площадь электрода; c_i — вклад в емкость *i*-й релаксационной составляющей.

Пользуясь функцией комплексной переменной проводимости \dot{Y} и параметрами, определенными из эквивалентной схемы Фойгта, получаем выражения для расчета диэлектрических характеристик $\varepsilon'(\omega)$, $\varepsilon''(\omega)$

Рис. 3. Зависимость tg $\delta = f(\omega)$ исходных (*a*) и состаренных (*b*) образцов ПСПЭ (—) и ССПЭ ($-\cdot - \cdot -$) при *T*: *1* — 90, *2* — 80, *3* — 70, *4* — 60°С.

и tg $\delta(\omega)$ [6]:

$$\varepsilon'(\omega) = \frac{c_n}{c_0} + \frac{c_1}{c_0(1+\omega^2\vartheta_1^2)} + \frac{c_2}{c_0(1+\omega^2\vartheta_2^2)},$$
$$c_0 = \frac{\varepsilon_0 S}{h},$$
$$\varepsilon''(\omega) = \frac{1}{\omega r_n c_0} + \frac{\omega^2 \vartheta_1^2}{\omega r_1 c_0(1+\omega^2 \vartheta_1^2)} + \frac{\omega^2 \vartheta_2^2}{\omega r_2 c_0(1+\omega^2 \vartheta_2^2)}, \quad (1)$$

$$\operatorname{tg} \delta(\omega) = \frac{\varepsilon''(\omega)}{\varepsilon'(\omega)}$$

На рис. З приведены рассчитанные в области низких частот $\omega = (10^{-3}-1) \, \mathrm{s}^{-1}$ зависимости tg $\delta(\omega)$ исходных и подверженных тепловому старению образцов ПСПЭ и ССПЭ. Установлено, что область дисперсии ε' , максимум фактора потерь ε'' и tg δ лежат в диапазоне $\omega = 10^{-3}-10^{-2} \, \mathrm{s}^{-1}$. Увеличение ε' с уменьшением частоты связано с накоплением абсорбционного заряда в СПЭ, вследствие чего возрастает эффективная абсорбционная емкость образца. По мере роста потерь, обусловленных сквозной проводимостью, вклад релаксационных потерь в величину ε'' и tg δ уменьшается. На зависимостях tg $\delta(\omega)$ релаксационный максимум выражен неявно, так как вклад проводимости (1-е слагаемое выражения (1)) существенно больше, чем релаксационной составляющей. Рост фактора диэлектрических потерь ε'' в области низких частот обусловлен собственной проводимостью диэлектрика [7]. Показано, что величина tg δ в интервале $T = 60-70^{\circ}$ С у исходных образцов ПСПЭ практически в 2 раза меньше, чем у ССПЭ.

Тепловое старение привело к возрастанию диэлектрических характеристик во всем исследуемом диапазоне частот, причем у состаренных образцов ССПЭ величина tg δ оказалась в 2.5 раза больше, чем у ПСПЭ.

При старении происходит увеличение концентрации кислородосодержащих групп, что приводит к повышению структурной неоднородности изоляции и увеличению проводимости и поляризованности полимера. Рост диэлектрических характеристик после теплового старения в образцах ССПЭ связан с окислением боковых групп и групп основной цепи. Полярность силоксановой связи Si–O в образцах ССПЭ выше, чем связи С–С у ПСПЭ, что и объясняет более высокие потери в состаренных образцах ССПЭ.

Характер рассчитанных зависимостей $\varepsilon'(\omega)$, $\varepsilon''(\omega)$, tg $\delta(\omega)$ согласуется с литературными данными [8,9]. Полученные нами зависимости диэлектрических характеристик аналогичны тем, которые имеют место в кабелях из СПЭ [10]. Следовательно, изучение абсорбционных характеристик можно использовать как метод диагностики работы кабеля.

Итак, измеренные в работе зависимости $I_{ch} - I_{thr} = f(t)$ проанализированы на основе эквивалентной схемы Фойгта, учитывающей потери, обусловленные релаксационной поляризацией и проводимостью диэлектрика. Рассчитаны характеристики $\varepsilon'(\omega)$, $\varepsilon''(\omega)$ и tg $\delta(\omega)$ в области низких частот $\omega = (10^{-3} - 1) \, \text{s}^{-1}$ и высоких температур.

Установлено, что тепловое старение сшитого ПЭ приводит к увеличению диэлектрических потерь. Показано, что величина tg δ у исходных и состаренных пленок ПСПЭ практически в 2.5 раза меньше, чем у пленок ССПЭ.

Список литературы

- [1] Saha T.K., Zheng T.Y. // IEEE Trans. Power Delivery. 2003. V. 18. N 1. P. 128– 135.
- [2] Bowler N., Shuaishuai L. // Int. J. Prognost. Health Management. 2015. V. 6. P. 1–12.
- [3] Борисова М.Э., Койков С.Н., Марченко М.С. // Электричество. 1995. № 6. С. 62-67.
- [4] Осина Ю.К., Борисова М.Э. // Письма в ЖТФ. 2015. Т. 41. В. 15. С. 1-7.
- [5] Stancu C., Notingher P.V., Notingher jr. P. // Proc. 7th International Conference on Insulated Power Cables. June 24–28, 2007. P. 758–763.
- [6] Борисова М.Э., Галюков О.В., Цацынкин П.В. // Тр. 5 Междунар. конф. "Электромеханика, электротехнологии и электроматериаловедение". 2003. Алушта. С. 17–20.
- [7] Gorur G. Raju. Dielectrics in Electric Fields. New York: Basel, 2003. P.183, 198–199.
- [8] Doina E.G. // J. Mater. Sci. Eng. A. 2014. V. 4 (1). P. 18-26.
- [9] Fothergill J.C., Dodd S.J., Dissado L.A. // IEEE Transact. Dielectr. Electr. Insulat. 2011. V. 18. Iss. 5. P. 1544–1553.
- [10] Drapeau J.-F., Daniel J., Parpal J.-L. et al. // Jicable. 2007. P. 1-6.