Повышение точности определения компенсации примесей в чистом, слабокомпенсированном германии по величине поля пробоя

© В.Ф. Банная

Московский педагогический государственный университет (МПГУ), 119991 Москва, Россия E-mail: enikitina@sci.pfu.edu.ru

(Получена 10 мая 2016 г. Принята к печати 16 мая 2016 г.)

Показано, что измерение поля электрического пробоя E_{np} в классически сильном магнитном поле (H) при T = 4.2 К позволяет определять величину степени компенсации K в чистом германии с K < 50% значительно точнее, чем при H = 0. Введен параметр $S = E_{np}/H$ и рассчитана его зависимость S = f(K), полученная кривая позволяет определить K, если известны H и E_{np} . Для уменьшения сопротивления образцов рекомендуется проводить измерения при наличии примесной подсветки. Показано, что при малых интенсивностях такого возбуждения величина E_{np} не меняется.

DOI: 10.21883/FTP.2017.03.44197.8315

Зависимость поля низкотемпературного примесного пробоя $(E_{\rm np})$ в чистом германии от степени компенсации примесей (K) подробно изучена в работах[1–4]. Показано, что в этих условиях $(T = 4.2 {\rm K}, N_a + N_d \lesssim 5 \cdot 10^{14} {\rm \, cm^{-3}}$, отсутствие подсветки) $E_{\rm np}$ зависит от K $(E_{\rm np} = f(K))$. В этих работах даны теоретические обоснования и представлены соответствующие зависимости для Ge *n*- и *p*-типов, проверенные на большом числе образцов. Эти зависимости лежат в основе экспресс-метода определения $K = N_a/N_d$ (для *n*-типа проводимости), где N_a — концентрация акцепторов, N_d — концентрация доноров.

Однако чувствительность этого метода, а следовательно, и точность определения K неодинакова для слабои и сильнокомпенсированных образцов. Назовем область компенсаций с $K \leq 50\%$ слабой, а с K > 50% сильной. Это связано с существенно разной крутизной зависимости $E_{\rm np}(K)$ в этих областях. Так, при изменении K от ~ 10 до 50% $E_{\rm np}$ меняется от ~ 3 В/см до 4.5 В/см в *n*-Ge и от ~ 2 до 3.5 В/см в *p*-Ge. Для сравнения, в интервале компенсаций от 50 до 90% эти изменения составляют: от 4.5 до 10.8 В/см в *n*-Ge и от 3.5 до 7.5 В/см в *p*-Ge. (Данные получены из обработки результатов работ [2,3]).

При компенсациях K > 90% наблюдается так называемое затягивание E_{np} , обусловленное "включением" механизма рассеяния на оптических фононах [4].

Точность определения степени компенсации примесей в чистом Ge из кривых $E_{\rm np} = f(K)$ можно значительно повысить, проводя измерения проводимости образцов $\sigma = f(E)$ в магнитном поле. Подробные исследования влияния магнитного поля (*H*) на электрический пробой в *n*- и *p*-Ge при T = 4.2 К представлены в работе [5]. Показано, что в области классически сильных магнитных полей с ростом *H* наблюдается возрастание $E_{\rm np}$. Это связано с тем, что поперечное магнитное поле "охлаждает" носители заряда, уменьшая их среднюю энергию, что приводит к уменьшению вероятности ударной ионизации и как следствие к увеличению $E_{\rm np}$. Зависимость $E_{\rm np}(H)$ носит линейный характер, так как в выражениях для вероятностей ударной ионизации и термической рекомбинации эти поля входят в комбинации $E_{\rm np}/H$, причем с ростом K это отношение растет [5]. Этот факт и позволяет повысить точность определения K, исходя из увеличения крутизны зависимости $E_{\rm np}(K)$, измеренной в магнитном поле.

На рис. 1 представлены кривые $E_{np}(K)$, полученные при H = 11600 э. Для сравнения приведены аналогичные зависимости для H = 0. (Все расчеты выполнены по данным работы [5]).

Видно, что в указанном магнитном поле, в интервале компенсаций $10-50\% E_{np}$ меняется от ~ 40 до 70 В/см в *p*-Ge и от ~ 36 до 60 В/см в *n*-Ge.

Чтобы учесть влияние H введем параметр $S = E_{np}/H$, который также зависит от величины K. На рис. 2 представлены кривые S = f(K) для n- и p-Ge при $K \le 50\%$, рассчитанные по данным работы [5] (точки экспериментальные данные). Видно, что, зная величину

Рис. 1. Зависимость $E_{np}(K)$ для чистых образцов Ge при T = 4.2 К и термовозбуждении: 1 - n-Ge, 2 - p-Ge, H = 11600 э; I' - n-Ge, 2' - p-Ge, H = 0.

Рис. 2. Зависимость параметра крутизны S = f(K) для *n*-Ge (кривая 1) и *p*-Ge (кривая 2).

Рис. 3. Зависимость $\sigma(E)$ для *n*-Ge при T = 4.2 K: I — в темновых условиях; 2 — при фоновой подсветке (T = 300 K).

магнитного поля, в котором проводятся измерения E_{np} и зависимость S(K), можно определить K в случае слабокомпенсированных образцов значительно точнее, чем при H = 0.

Гальваномагнитные измерения чистого Ge при T = 4.2 K в условиях только термогенерации сопряжены с трудностями, обусловленными большим сопротивлением образцов (удельное сопротивление (ρ) образцов чистого Ge при гелиевых температурах $\rho \approx 10^9$ OM · cm). Включение магнитного поля приводит к дополнительному увеличению ρ , так как Ge обладает большим магнитосопротивлением. Ситуацию можно значительно упростить, уменьшить сопротивление образцов, проводя измерения в условиях примесной подсветки (например, фонового при T = 300 K).

Возникает вопрос — будет ли примесное фотовозбуждение влиять на величину $E_{\rm np}$. На рис. 3 представлены типичные зависимости $\sigma(E)$ для образцов *n*-Ge, измеренные в темновых условиях и при наличии фоновой подсветки (σ — удельная электропроводность образцов).

Видно, что наличие подсветки приводит к возрастанию σ больше чем в 100 раз, однако $E_{\rm np}$ в пределах точности измерений в обоих случаях совпадает.

Фоновая подсветка вызывает появление в зоне проводимости неравновесных носителей в результате ионизации примесей излучением. Полная концентрация носителей равна сумме концентраций равновесной и неравновесной. Увеличение концентрации неравновесных носителей в зоне приводит к накоплению электронов в возбужденных состояниях примесных центров n_i. При достаточно больших n_i следует ожидать уменьшение величины E_{np} , так как основным процессом может стать ионизация возбужденных состояний. Однако при не слишком больших интенсивностях подсветки величина *п*_b близка к числу электронов в зоне, т.е. в этом случае сохраняется ситуация, когда $(n + n_i) \ll N_a, N_d - N_a,$ соответствующая темновому случаю. Таким образом, при не слишком больших уровнях генерации фоновый подсвет не приводит к изменению величины E_{np}.

Таким образом, проводя измерение E_{np} при не слишком больших уровнях примесной подсветки в классически сильных магнитных полях при T = 4.2 К и используя зависимость S(K), можно значительно повысить точность определения K в слабокомпенсированном чистом *n*- и *p*-Ge.

Список литературы

- В.Ф. Банная, Л.И. Веселова, Е.М. Гершензон, В.Р. Гринберг. ФТП, 5, 155 (1971).
- [2] В.Ф. Банная, Л.И. Веселова, Е.М. Гершензон, В.А. Чуенков. ФТП, 7, 1972 (1973).
- [3] В.Ф. Банная, Л.И. Веселова, Е.М. Гершензон, Ю.А. Гурвич. ФТП, 10, 452 (1976).
- [4] В.Ф. Банная, Е.М. Гершензон, Л.И. Веселова. ФТП, 13, 46 (1979).
- [5] В.Ф. Банная, Л.И. Веселова, Е.М. Гершензон, В.А. Чуенков. ФТП, 10, 338 (1976).

Редактор А.Н. Смирнов

Improving the accuracy of determination of compensation of impurites in pure weakly compensated germanium largest breakdown field

V.F. Bannaya

Moscow State University of Education (MSPU), 119991 Moscow, Russia

Abstract The article shows that the measurement field of electric breakdown E_{np} of the Insulation in a classically strong magnetic field (*H*) when T = 4.2 K allows to determine the value of the degree of compensation To net in germanium K < 50% is much more accurate than when H = 0. Parameter $S = E_{np}/H$ the dependence of S = f(K) is introduced calculated; the curve allows to determine *K*, if *H* and E_{np} is known. To reduce the resistance of the samples it recommended to carry out measurements in the presence of the impurity illumination. It is shown that at low excitation intensities of such magnitude E_{np} does not change.