## 07

# Концентраторы солнечного излучения в паре с многопереходными фотоэлектрическими преобразователями в наземных гелиоэнергетических установках. Часть 2

© Е.А. Ионова,<sup>1</sup> М.В. Уланов,<sup>1</sup> Н.Ю. Давидюк,<sup>2</sup> Н.А. Садчиков<sup>1</sup>

<sup>1</sup> Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия <sup>2</sup> Санкт-Петербургский Академический университет РАН, 194021 Санкт-Петербург, Россия

e-mail: ionova@mail.ioffe.ru

(Поступило в Редакцию 23 июня 2016 г.)

Настоящая работа посвящена определению условий совместной работы пар "фотоэлектрический преобразователь-концентратор солнечного излучения", используемых в гелиоэнергетических установках с концентраторами. Рассмотрены трехкаскадные фотопреобразователи на основе материалов  $A^3B^5$  с различным распределением солнечного излучения по спектральным интервалам. Концентраторы солнечного излучения выполнены в виде линз Френеля со структурой силикон-на-стекле. Преломляющий профиль линз на основе силиконовой резины Wacker RT604 характеризуется значительным изменением показателя преломления от температуры. Определено влияние геометрических параметров линз Френеля, а также их рабочей температуры на характеристики концентрирования солнечного излучения в заданных спектральных интервалах. Рассчитаны параметры концентраторов, которые в паре с фотоэлектрическим преобразователем могут обеспечить эффективное функционирование гелиоэнергетической установки.

DOI: 10.21883/JTF.2017.04.44318.1951

#### Введение

В настоящей работе рассматривается эффективность преобразования солнечного излучения гелиоэнергетическими установками (ГЭУ) с высокоэффективными (КПД > 35%) трехкаскадными фотопреобразователями (ФЭП) на основе гетероструктур. Конструкция ГЭУ включает каркас, оснащенный приводами двуосевого слежения за Солнцем, и установленные на нем фотоэлектрические модули, каждый из которых содержит множество идентичных пар концентратор-ФЭП [1]. Концентратор представляет собой линзу Френеля квадратной формы из прозрачной силиконовой резины (СР), закрепленную на основании из стекла [2]. Ориентированный перпендикулярно направлению на Солнце концентратор перенаправляет падающее на него излучение на фоточувствительную область ФЭП, находящуюся в фокусе концентратора. В настоящей работе продолжается исследование пары концентратор-ФЭП повторяющегося элемента фотоэлектрического модуля. От ее свойств зависит эффективность преобразования солнечной энергии и соответственно стоимость единицы вырабатываемой мощности.

В первой части настоящей работы [3] было предложено решение проблемы эффективного концентрирования излучения с учетом особенностей трехкаскадной структуры ФЭП. В рамках этого решения были исследованы оптические характеристики СР, задано определение эффективности пары (ЭП) концентратор-ФЭП, предложен метод определения оптимального значения  $n_c$  — расчетного показателя преломления, параметра формулы для расчета углов наклона преломляющих поверхностей концентратора.

Также была рассмотрена конкретная пара концентратор –  $\Phi$ ЭП с ФЭП1 (табл. 1) и концентратором с фокусным расстоянием F = 80 mm, стороной концентратора a = 40 mm и шириной преломляющей грани s = 0.25 mm. Для этой пары в условиях расчетной температуры  $T_c = 25^{\circ}$ С был определен оптимальный расчетный показатель преломления  $n_c = 1.4076$ , обеспечивающий максимальную эффективность пары концентратор –  $\Phi$ ЭП1, равную 90.92%.

Во второй части работы проводится сравнение двух пар с концентраторами со сходными свойствами и отличающимися ФЭП — ФЭП1 и ФЭП2. Спектральные характеристики ФЭП1 и ФЭП2, умноженные на спектр СИ AM1.5D, составляют мультиплицированные спектры (МС) для трех активных *p*-*n*-переходов (далее переходов). Спектры МС1-3 для ФЭП1 и ФЭП2 приведены на рис. 1, *c*, *d* в первой части работы [3]; они отличаются незначительно. Остальные параметры этих ФЭП приведены в табл. 1. ФЭП1 и ФЭП2 имеют разные размеры и формы фоточувствительной области (круг и квадрат), а также у них отличаются плотности фототока, генерируемого в каждом из трех p-n-переходах ( $J_{1-3}$ ) при освещении неконцентрированным СИ со спектром AM1.5D и плотностью мощности 1000 W/m<sup>2</sup>. В [3] было показано, что на величину ЭП  $\eta$  влияют только отно-

| ФЭП    | Размер, форма<br>фоточувствительной области | Структура                        | Плотность фототока <i>J</i> , mA/cm <sup>2</sup><br>для трех <i>p</i> - <i>n</i> -переходов |                |                |
|--------|---------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------|----------------|----------------|
|        |                                             |                                  | 1                                                                                           | 2              | 3              |
| 1<br>2 | Круг, ø 1.7 mm<br>Квадрат, 3×3 mm           | GaInP/GaAs/Ge<br>GaInP/GaInAs/Ge | 13.14<br>15.71                                                                              | 13.29<br>14.90 | 20.36<br>18.09 |

Таблица 1. Параметры ФЭП1 и ФЭП2

шения плотностей фототока  $J_{1-3}$ , а не их абсолютные значения:

$$\eta = \min(\eta_1 k_1, \eta_2 k_2, \eta_3 k_3) 100\%, \tag{1}$$

где  $\eta_1, \eta_2, \eta_3$  — доли прошедшего через концентратор и попавшего на фоточувствительную область ФЭП излучения из соответствующего MC<sub>1-3</sub>, а величины  $k_1 = J_1/J_{\text{min}}, k_2 = J_2/J_{\text{min}}, k_3 = J_3/J_{\text{min}}$  — увеличивающие коэффициенты для  $\eta_{1-3}$ . Индекс min относится к наименьшей из трех плотностей фототока. Для ФЭП1 и ФЭП2 коэффициенты  $k_{1-3}$  составляют соответственно 1/1.01/1.55 и 1.05/1/1.21 для трех *p*-*n*-переходов.

Для выявления влияния свойств ФЭП на характеристики пары концентратор в паре с ФЭП2 должен иметь параметры, пропорционально зависимые от параметров концентратора в паре с ФЭП1. В паре концентратор—ФЭП1 диаметр фоточувствительной области составлял 1.7 mm, фокус концентратора F == 80 mm, ширина ступени концентратора s зависела от F как F/320, а сторона концентратора  $a - - \kappa a F/2$ .

Квадратной форме  $3 \times 3$  mm фоточувствительной области ФЭП2 соответствует диаметр 3 mm. В таком случае в паре концентратор — ФЭП2 концентратор должен иметь следующие параметры: F = 140.8 mm, a = 70.4 mm, s = 0.44 mm.

В фотоэлектрическом модуле ФЭП2 ориентирован так, что его диагональ параллельна диагонали концентратора.

В [3] описан вычислительный алгоритм, с помощью которого для пар концентратор—ФЭП определяются распределения фотонов из  $MC_{1-3}$  по фоточувствительной области ФЭП, и с их помощью определяется ЭП  $\eta$ , распределения локальной концентрации (ЛК) СИ в виде  $MC_{1-3}$ , максимумы ЛК. В настоящей работе дополнительно будут определены следующие характеристики.

Во-первых, это распределения генерированных носителей тока (ГНТ) внутри трех активных p-n-переходов ФЭП, которые соответствуют распределениям фотонов из MC<sub>1-3</sub> по фоточувствительной области ФЭП, умноженным на соответствующие коэффициенты  $k_{1-3}$ . Нетождественные распределения ГНТ в этих слоях вызывают латеральные токи вдоль слоя, увеличивающие резистивные потери ФЭП. Из-за видоизменения спектра СИ в течение светового дня нетождественность этих распределений неизбежна, но общие резистивные потери будут тем меньше, чем больше будут соответствовать друг другу распределения ГНТ в трех активных слоях при "среднем" спектре AM1.5D.

Во-вторых, будет рассмотрена характеристика пары концентратор —  $\Phi$ ЭП, позволяющая обозначить требования к точности выполнения фотоэлектрического модуля, — это зависимость ЭП  $\eta$  от расфокусировки, связанной с отклонением от фокусного расстояния между концентратором и ФЭП вдоль оптической оси в двух направлениях.

В-третьих, функционирование ГЭУ в условиях окружающей среды характеризует величина изменения ЭП  $\eta$  при расфокусировке из-за изменения температуры концентратора. Действительно, особенностью СР как оптического материала является значительное объемное расширение с ростом температуры. Ему соответствует значительное изменение дисперсионной зависимости показателя преломления, приводящее к размытию светового пятна в фокусе концентратора при температурах, отличающихся от температуры  $T_c$ , для которой концентратор был рассчитан. При этом часть излучения может выйти за пределы ФЭП и ЭП понизится.

#### 1. Пара концентратор – ФЭП1

В разд. 1 продолжено исследование характеристик пары концентратор-ФЭП1, начатое в [3]. Были вычислены распределения ГНТ в трех переходах ФЭП1. Они показаны в сечении плоскостью, проходящей через оптическую ось и диагональ концентратора (кривые 1-3, рис. 1, а). Вертикальная штриховка идет от участков кривых с наименьшим среди трех переходов числом ГНТ: от центра до радиуса 0.28 mm это третий *p*-*n*переход, до радиуса 0.42 mm — второй, далее — первый. Поэтому направление движения ГНТ вдоль активных слоев в первом и втором переходах — от центра ФЭП к краю, в третьем переходе — наоборот, от края к центру. Разница между объемами под распределениями ГНТ и штрихованной областью пропорциональна доле ГНТ, составляющих латеральные токи. С помощью этого графика можно оценить степень нетождественности распределений ГНТ в активных слоях.

Для пары концентратор —  $\Phi$ ЭП1 с указанными параметрами с помощью вычислительного алгоритма определена зависимость ЭП  $\eta/100\%$  от расфокусировки вдоль оптической оси (сплошная линия, рис. 2, *a*). Условно варьировалось расстояние между концентратором и ФЭП



**Рис. 1.** Распределения ГНТ в трех *p*-*n*-переходах (зависимости *1*-3) в относительных единицах, построенные вдоль радиуса ФЭП, параллельного диагонали концентратора. Зависимости построены вдоль радиуса ФЭП1 *r* = 0.85 mm (*a*) и вдоль диагонали ФЭП2 от 0 до 2.12 mm (b). Штриховка отмечает число ГНТ, не образующих латеральные токи.



**Рис. 2.** Зависимость долей  $\eta_1$  и  $\eta_2$  (кривые 1 и 2) прошедшего через концентратор и попавшего на фоточувствительную область ФЭП1 излучения из MC<sub>1</sub> и MC<sub>2</sub>, умноженных на коэффициенты  $k_1 = 1.0$  и  $k_2 = 1.01$  соответственно, от отклонения расстояния между концентратором и ФЭП1 от фокусного на величину  $\Delta$  (*a*) и от температуры концентратора (*b*). Сплошная линия — эффективность пары  $\eta/100\%$ .

от сближения на  $-2 \,\mathrm{mm}$  до  $F = 80 \,\mathrm{mm}$  к отдалению на +2 mm и для каждого его значения определялись доли  $\eta_{1-3}$  прошедшего через концентратор и попавшего на фоточувствительную область ФЭП излучения из МС1-3. Концентратор обеспечивает наибольшую собранность части светового пятна, преобразуемой первым переходом, при расстоянии между ним и ФЭП 79-80 mm (рис. 2, кривая 1). При этом часть светового пятна, преобразуемая вторым переходом, будет размыта, и тогда ЭП  $\eta$  совпадет с зависимостью для  $\eta_2$  с коэффициентом  $k_2 = 1.01$ , как с наименьшей (рис. 2, кривая 2). В точке, соответствующей фокусному расстоянию 80 mm ( $\Delta = 0$  mm), значения  $\eta_1$  и  $\eta_2$  1.01 сравняются, обеспечив максимум ЭП. При расстоянии между концентратором и ФЭП больше 80 mm ЭП будет определяться  $\eta_1$ . Наибольшая собранность части светового пятна, преобразуемой вторым переходом, начинается с расстояния 80.8 mm. Результаты вычислений показывают, что исследуемая пара достаточно чувствительна к неточностям сборки: ЭП  $\eta$  остается больше 90% только в интервале отклонений от фокуса -0.15 - +0.45 mm и опускается ниже 85% при расфокусировке за пределами -0.65- + 1.55 mm.

Дополнительно в этом расчете можно рассматривать изменение положения  $\Phi$ ЭП относительно концентратора как способ продемонстрировать влияние дисперсии показателя преломления СР на свойства концентратора. А также показать, что в многопереходных ФЭП каждому p-n-переходу соответствует свое оптимальное фокусное расстояние концентратора, и определить его значение.

Результаты расчета ЭП  $\eta/100\%$  исследуемой пары при расфокусировке, вызванной изменением температуры концентратора, представлены на рис. 2, *b* (сплошная линия). С помощью вычислительного алгоритма определялись доли  $\eta_{1-3}$  попавшего на фоточувствительную область ФЭП1 излучения из MC<sub>1-3</sub> при условном варьировании температуры концентратора в интервале 0–50°С. Соответственно температуре варьировалась дисперсионная зависимость показателя преломления СР (формулы (1)–(3) в [3]). Расчет показал, что при нагреве концентратора относительно температуры  $T_c = 25°$ С, для которой он был рассчитан, ЭП определяется зависимостью  $k_2\eta_2(T)$ , при охлаждении ЭП определяется  $k_1\eta_1(T)$ , где  $k_1 = 1.0, k_2 = 1.01$ .

Действительно, как было показано выше, лучи с длинами волн в области поглощения первого p-n-перехода пересекаются на оптической оси на меньшем, чем F, расстоянии, а лучи, относящиеся ко второму переходу, пересекаются на расстоянии, большем F. Тогда при нагреве концентратора и соответственно уменьшении показателей преломления СР  $n(\lambda)$  точки пересечения лучей сдвинутся вдоль оптической оси в направлении от концентратора. При этом в фокусной плоскости часть светового пятна, преобразуемая вторым переходом, значительно размоется, а  $\eta_2$  уменьшится. Наоборот, при охлаждении концентратора точки пересечения лучей на оптической оси приблизятся к концентратору и в фокусной плоскости наибольшее размытие будет у светового пятна, относящегося к первому p-n-переходу. В точке  $T_c = 25^{\circ}$ С на графике зависимости  $k_1\eta_1(T)$  и  $k_2\eta_2(T)$ сравнялись при наибольшем значении ЭП.

Результаты расчета показывают сильную зависимость характеристик пары концентратор — ФЭП1 от отклонения температуры концентратора от расчетной температуры  $T_c$ : ЭП  $\eta$  остается больше 90% в узком интервале 19.8—26.5°С и опускается ниже 85% при температуре за пределами интервала 6.7—32.6°С.

Зависимости  $\eta_3(\Delta)$  и  $\eta_3(T)$ , умноженные на  $k_3 = 1.55$ , показывают избыточное количество поглощенных фотонов, поэтому не приведены на графике.

#### 2. Концентратор для ФЭП2

Основные параметры концентратора (F, a, s) для  $\Phi$ ЭП2 задавались, исходя из пропорциональности параметрам пары концентратор— $\Phi$ ЭП1. Тем не менее у пары концентратор— $\Phi$ ЭП2 имеются существенные отличия:

 – большая площадь фоточувствительной области, так как к круглой форме области добавляются угловые зоны квадрата;

 – большее фокусное расстояние в абсолютных значениях;

– среди коэффициентов  $k_{1-3}$ , относящихся к трем *p*–*n*-переходам, присутствует увеличивающий коэффициент для первого *p*–*n*-перехода, а не для второго ( $k_1 = 1.05$ ;  $k_2 = 1.0$ ), в отличие от пары концентратор–ФЭП1, где  $k_1 = 1.0$  и  $k_2 = 1.01$ ;

- в форме спектральных характеристик переходов ФЭП и соответственно в форме MC.

Первые три отличия являются преимуществами пары концентратор—ФЭП2, что отразится в ее характеристиках.

Как и в [3], для известного набора параметров (F, a, s,  $T_c = 25^{\circ}$ C) и для каждого из значений параметра  $n_c$  от 1.38 до 1.42 с шагом 0.001 были определены углы наклона преломляющих поверхностей концентратора (формула (5) в работе [3]). Для этих концентраторов был произведен расчет относящихся соответственно к трем p-n-переходам долей  $\eta_{1-3}$ , прошедшего через концентратор и попавшего на фоточувствительную область ФЭП2 излучения. Расчет проводился для спектров MC<sub>1-3</sub>, определенных для спектральной характеристики ФЭП2 (рис. 1, d [3]).

Зависимости  $\eta_{1-3}(n_c)$  приведены на рис. 3, *a*, их форма повторяет форму тех же зависимостей для пары концентратор— $\Phi$ ЭП1 (рис. 3, *a* в [3]). Имеются "предпочтительные" для каждого перехода интервалы значений  $n_c$ , обусловленные каскадной структурой ФЭП и дисперсией показателя преломления СР. Из-за пропорциональности параметров рассматриваемых пар значения предпочтительных для каждого *p*-*n*-перехода интервалов также почти совпа-



**Рис. 3.** a — число фотонов  $\eta_{1-3}$ , прошедших концентратор и попавших на фоточувствительную область ФЭП2, в долях от падающих на концентратор фотонов из МС<sub>1-3</sub> в зависимости от параметра расчета концентратора  $n_c$  (кривые 1-3 для трех p-n-переходов); b — зависимости из части (a), умноженные на коэффициенты  $k_{1-3}$ : для первого p-n-перехода  $k_1 = 1.05$ , для второго  $k_2 = 1.0$ , для третьего  $k_3 = 1.21$ .

дают. Для первого p-n-перехода оптимальный  $n_c = 1.405 - 1.414$  (1.406 - 1.412), для второго оптимальный  $n_c = 1.393 - 1.408$  (1.395 - 1.406), для третьего 1.389 - 1.404 (1.390 - 1.402) (в скобках указаны соответствующие данные для пары концентратор – ФЭП1). Небольшое уширение оптимальных интервалов  $n_c$  авторы связывают с бо́льшим в абсолютных значениях фокусным расстоянием в паре концентратор – ФЭП2.

Влияние формы фоточувствительной поверхности ФЭП лучше оценить, сравнивая зависимости  $\eta_1(n_c)$  для световых пятен, относящихся к первым p-n-переходам ФЭП1 и ФЭП2, как самым размытым и имеющим большие оптические потери. В зависимости для первого p-n-перехода ФЭП1 максимальная  $\eta_1 = 0.9128$  (рис. 3, *a* [3]), а в зависимости для первого p-n-перехода ФЭП2 максимальная  $\eta_1 = 0.9235$  (рис. 3, *a*). Разница в 0.0107 связана только со сменой формы фоточувствительной области ФЭП с круглой на квадратную и увеличением ее площади за счет углов квадрата.

Расчетный показатель преломления  $n_c$  для расчета оптимального для ФЭП2 концентратора определялся по графику, на котором зависимости  $\eta_{1-3}(n_c)$ , приведенные на рис. 3, *a*, умножены на соответствующие коэффициенты  $k_{1-3}$  (рис. 3, *b*). Зависимость  $\eta_3(n_c)k_3$ , так же как и для пар с ФЭП1, показывает самую большую долю поглощенных фотонов в рассматриваемом интервале  $n_c$ . На рис. 3, *b* ход зависимости ЭП  $\eta(n_c)/100\%$  совпадает с ходом самой низкой кривой по шкале: это участки кривых  $\eta_1(n_c)$  (1) и  $\eta_2(n_c)$  (2), продублированные стрелками. Зона максимума зависимости ЭП  $\eta(n_c)/100\%$ 

Журнал технической физики, 2017, том 87, вып. 4

представляет собой широкий пологий участок на интервале  $n_c = 1.398 - 1.408$ , что затрудняет выбор оптимального расчетного показателя преломления  $n_c$  для концентратора с заданными параметрами *F*, *a*, *s*. Для выбора оптимального  $n_c$  предлагается рассмотреть зависимости ЭП  $\eta$  от расфокусировок для разных  $n_c$ .

На рис. 4 представлены результаты исследований пар с ФЭП2 и концентраторами, рассчитанными для трех значений  $n_c = 1.400$ , 1.403, 1.406. Это зависимости ЭП  $\eta$  от температуры концентратора в диапазоне  $0-50^{\circ}$ С и зависимости ЭП  $\eta$  от сдвига концентратора вдоль оптической оси от -4 до +4 mm. Значение  $n_c$  — среднее на пологой части зависимости  $\eta_2(n_c)$  (рис. 3, b), равное 1.403, ожидаемо оказалось оптимальным, так как для обеих расфокусировок по температуре и расстоянию вдоль оптической оси в указанных диапазонах соответствующая ЭП  $\eta$  оказалась наибольшей.

#### Исследование концентратора для ФЭП2

Рассмотрим влияние расфокусировок на ЭП  $\eta$  концентратор — ФЭП2 с  $n_c = 1.403$  (рис. 4, кривые 2). Зависимости  $\eta(\Delta)$  представляют собой объединение частей зависимости  $\eta_2(\Delta)$  и зависимости  $\eta_1(\Delta)$ , умноженной на коэффициент  $k_1 = 1.05$ , где  $\eta_2(\Delta)$  — возрастающий участок, плавно переходящий в пологую часть, а  $\eta_1(\Delta)k_1$  — убывающая часть, соединенная с пологой не плавно. Аналогично для зависимости  $\eta(T)$ .

Расположение оптимального  $n_c = 1.403$  в середине пологой части зависимости  $\eta(n_c)$  на рис. 3, *b* обеспечило наличие пологих частей  $\eta(\Delta)$  и  $\eta(T)$  в результатах исследования на рис. 4, что положительно отразилось на характеристиках пары концентратор-ФЭП2 при расфокусировках. Действительно, исследуемая пара не чувствительна к неточностям сборки: ЭП  $\eta$  остается больше 90% в интервале отклонений от фокуса  $\Delta$  от -3.04до 3.16 mm и опускается ниже 85% при расфокусировке, большей интервала исследования -4.0-4.0 mm. Рассматриваемая пара отличается наличием интервала расстояний между концентратором и ФЭП -1.2-2.0 mm и интервала температур 12.5–32.5°С, в которых ЭП  $\eta$ постоянна при значении выше 92%. При этом зависимость ЭП  $\eta$  от отклонения от расчетной температуры  $T_c = 25^{\circ}$ С выражена слабо:  $\eta$  остается больше 90% в интервале 5-45°C и опускается ниже 85% при температуре за пределами интервала исследования  $0-50^{\circ}$ С.

Расчет распределения фотонов из MC<sub>1-3</sub> в фокусной плоскости для температуры  $T_c$  показал следующие результаты: в случае предельно большого ФЭП2  $\eta_{1-3}$ равны 0.9247/0.9256/0.9261, для настоящего размера ФЭП2 (3 × 3 mm)  $\eta_{1-3} = 0.9096/0.9253/0.9215$ . Результаты умножения  $\eta_{1-3}$  на коэффициенты  $k_{1-3}$  будут относиться между собой как 0.9596/0.9253/1.1187 и тогда ЭП  $\eta$  рассматриваемой пары составляет 92.53%.



**Рис. 4.** Зависимость ЭП  $\eta$  пары концентратор—ФЭП2 при расфокусировках из-за отклонения  $\Delta$  расстояния между концентратором и ФЭП от фокусного (*a*) и из-за изменения температуры концентратора относительно расчетной  $T_c = 25^{\circ}$ C (*b*) для трех вариантов концентраторов  $n_c$ : I = 1.400, 2 = 1.403, 3 = 1.406.

На рис. 5 (слева) для трех *p*-*n*-переходов представлены распределения ЛК СИ в фокусной плоскости вдоль диагонали ФЭП2 от 0 до 2.12 mm. Максимумы ЛК составили 2451×/2800×/2431×. Пропорциональное равенство пар с ФЭП1 и ФЭП2 отразилось в том, что максимумы ЛК для первого и второго переходов близки к показанным для пары с ФЭП1 значениям 2634×/2508× [3]. Однако распределение ЛК для третьего p-n-перехода пары с ФЭП2 более "собранное" и максимум ЛК намного больше максимума ЛК для пары с ФЭП1, составляющего 1276× [3]. Это связано с отличиями в зависимостях  $\eta_{1-3}(n_c)$ : при оптимальном для пары с  $\Phi$ ЭП2  $n_c = 1.403\eta_3$  близко максимуму (рис. 3, *b*), а оптимальному для пары с  $\Phi \Im \Pi 1 \ n_c = 1.4076$  соответствует низкая  $\eta_3$  на убывающем участке зависимости  $\eta_3(n_c)$ (рис. 3, b [3]). Это отличие не имеет практического значения ввиду избытка ГНТ в третьих *p*-*n*-переходах.

На рис. 5 также представлены двумерные схемы изменения ЛК в сфокусированном световом пятне отдельно для трех p-n-переходов. Первая смена цвета (концентрация от 1 до  $400^{\times}$ ) обозначает общую форму светового пятна на координатной сетке, следующие смены цвета через  $800^{\times}$  демонстрируют скорость роста ЛК к центру. Наглядно показано, как из-за дисперсии показателя преломления СР отличаются размеры световых пятен и скорости роста ЛК к центру для трех переходов. При сравнении выступающих за границы ФЭП частей светового пятна на схеме для второго перехода (рис. 5, *b*) и на аналогичной схеме, приведенной в [3], для пары концентратор–ФЭП1, видно преимущество квадратной формы ФЭП над круглой.



**Рис. 5.** Зависимости величины локальной концентрации *С* солнечного излучения от расстояния вдоль диагонали ФЭП2, построенные для трех p-n-переходов (линии 1-3) (слева). Схемы светового пятна для трех p-n-переходов ФЭП2 (a-c), где первая с краю смена заливки показывает изменение локальной концентрации от 1 до 400<sup>×</sup>, а последующие смены заливки показывают увеличение локальной концентрации на 800<sup>×</sup>; границы фоточувствительной области ФЭП2 показаны штриховой линией.

Степень тождественности распределений ГНТ в трех p-n-переходах для пар с ФЭП1 и ФЭП2 можно сравнить с помощью рис. 1. Фокусное расстояние в паре концентратор—ФЭП2 больше, а с ростом фокусного

| F, mm | a, mm | <i>x<sub>c</sub></i> , обратный параметр расхода ФЭП | ЭП, % | ЛК <sub>тах</sub> · 10 <sup>-3</sup> ,<br>1/2/3 <i>p</i> - <i>n</i> -переходы | Уменьшение ЭП, % |                               |
|-------|-------|------------------------------------------------------|-------|-------------------------------------------------------------------------------|------------------|-------------------------------|
|       |       |                                                      |       |                                                                               | при 15/35°С      | при $F - 2/F + 2 \mathrm{mm}$ |
| 140   | 70    | 451                                                  | 92.53 | 2.5/2.8/2.5                                                                   | 0.1/0.1          | 0.4/0.1                       |
|       | 80    | 589                                                  | 92.22 | 3.0/3.5/2.8                                                                   | 0.7/0.8          | 1.5/2.0                       |
|       | 90    | 746                                                  | 91.67 | 3.5/4.1/2.9                                                                   | 1.6/1.6          | 2.6/3.8                       |
|       | 100   | 921                                                  | 90.74 | 3.9/4.8/3.1                                                                   | 5.7/4.0          | 5.0/7.0                       |
|       | 110   | 1115                                                 | 88.37 | 4.6/5.4/2.6                                                                   | 5.2/7.5          | 8.8/6.0                       |
| 120   | 60    | 331                                                  | 92.56 | 2.6/2.8/1.9                                                                   | 0.1/0.0          | 0.5/0.0                       |
|       | 70    | 451                                                  | 92.19 | 3.1/3.6/2.8                                                                   | 0.1/0.1          | 0.6/0.1                       |
|       | 80    | 589                                                  | 91.64 | 3.6/4.3/3.1                                                                   | 1.2/1.0          | 2.3/3.1                       |
|       | 90    | 746                                                  | 90.63 | 4.2/5.0/3.0                                                                   | 3.5/3.3          | 5.2/5.4                       |
|       | 100   | 921                                                  | 88.90 | 4.7/5.8/3.1                                                                   | 6.2/5.4          | 7.2/8.0                       |
| 100   | 50    | 230                                                  | 92.56 | 2.6/2.8/1.9                                                                   | 0.0/0.0          | 0.0/0.0                       |
|       | 60    | 331                                                  | 92.14 | 3.3/3.6/2.0                                                                   | 0.1/0.1          | 1.0/0.0                       |
|       | 70    | 451                                                  | 91.41 | 3.8/4.6/3.1                                                                   | 0.1/0.2          | 1.4/2.2                       |
|       | 80    | 589                                                  | 90.30 | 4.5/5.5/2.9                                                                   | 2.0/2.1          | 4.6/4.7                       |
| 80    | 40    | 147                                                  | 92.57 | 2.6/2.7/1.7                                                                   | 0.1/0.0          | 0.0/0.0                       |
|       | 50    | 230                                                  | 92.00 | 3.4/3.8/2.1                                                                   | 0.1/0.0          | 0.2/0.0                       |
|       | 60    | 331                                                  | 91.01 | 4.3/5.0/2.6                                                                   | 0.1/0.1          | 1.7/0.2                       |

Таблица 2. Свойства пар концентратор-ФЭП2 с разными сочетаниями фокусных расстояний F и размеров концентратора а

Примечание.  $x_c$  — обратный параметр расхода чипов ФЭП, ЭП  $\eta$ ,% — эффективность преобразования излучения, ЛК<sub>тах</sub> — максимальная локальная концентрация для трех p-n-переходов, уменьшение ЭП  $\eta$ ,% при температуре концентратора  $T_c = 15$  и 35°С, уменьшение ЭП  $\eta$ ,% при сближении концентратора и ФЭП2 на 2 mm и их отдалении на 2 mm.

расстояния распределения ГНТ для трех переходов становятся ближе между собой по форме. Поэтому разница между объемами под распределениями и объемом под штрихованной областью у пары концентратор— $\Phi$ ЭП2 явно меньше (рис. 1, *b*), а значит у этой пары меньшие латеральные токи и резистивные потери.

### Характеристики ряда концентраторов в паре с ФЭП2

Таким образом, установлено, что ФЭП2 обеспечивает лучшие характеристики соответствующей паре с концентратором. Выше рассматривалась пара с концентратором, имеющим относительно большое фокусное расстояние F = 140.8 mm и небольшой размер стороны концентратора a = F/2. Практический интерес представляют пары концентратор—ФЭП2 с меньшим фокусным расстоянием, обеспечивающим меньшую строительную высоту фотоэлектрического модуля, и с большим размером стороны концентратора a, что даст меньший расход чипов ФЭП.

С помощью описанного вычислительного алгоритма [3], следуя порядку определения оптимального показателя преломления  $n_c$  по максимуму зависимости  $\eta(n_c)$ и расфокусировкам — температурной и вдоль оптической оси (рис. 3, 4), — были определены свойства 17 пар концентратор—ФЭП2. Все концентраторы рассчитывались для  $T_c = 25^{\circ}$ С, оптимального  $n_c$ , определенного для каждого концентратора, и ширины ступеней преломляющей поверхности s = 0.25 mm. Результаты расчета представлены в табл. 2, в столбцах которой приведены обратный параметр расхода (ОПР) чипов  $x_c$ , равный отношению площади концентратора к площади чипа  $\Phi$ ЭП2 ( $x_c = 0.092a^2$ ), ЭП  $\eta$ ,%, значения максимальной ЛК для трех p-n-переходов. В последних двух столбцах приводятся величины, на которые уменьшилась ЭП  $\eta$  при охлаждении/нагреве концентратора на 10°С и при сближении/отдалении концентратора и ФЭП2 на 2 mm.

Исследовались пары с F = 140, 120, 100, 80 mm и набором значений *а* для каждого фокусного расстояния, начинающимся с величины F/2 и продолжающимся с шагом 10 mm, пока значение ЭП  $\eta$  не начнет резко уменьшаться из-за выхода части излучения за пределы ФЭП или из-за того, что угол наклона крайней конической поверхности концентратора превысит угол полного внутреннего отражения.

Материал табл. 2 может прямо использоваться при выборе параметров конструкции фотоэлектрических модулей для ГЭУ, также с его помощью могут быть выявлены связи между параметрами и характеристиками концентраторов. Например, увеличение ОПР  $x_c$  сопровождается ухудшением характеристик: уменьшением ЭП  $\eta$ , увеличением максимума ЛК и потерь при расфокусировках. При равном параметре  $x_c$  характеристики тем хуже, чем меньше фокусное расстояние. Выбор параметров конструкции фотоэлектрических модулей следует проводить, принимая во внимание способность конкретных ФЭП функционировать в условиях высокой ЛК, условия эксплуатации ГЭУ и требования к ее конструкции. Пары концентратор –  $\Phi$ ЭП2 с сочетаниями размеров *F* и *a* = *F*/2, как и в рассмотренном выше случае, показывают максимально возможную при учете отражения света от концентратора ЭП  $\eta$  примерно 92.5%, небольшие пологие максимумы ЛК, около 2500×, незначительные отклонения при расфокусировках. Среди этих пар, наибольшим является значение параметра  $x_c = 451$  — в паре с фокусом 140 mm.

Для фокусного расстояния 140 mm, но большей стороны концентратора a = 110 mm, ОПР  $x_c$  возрастает до 1115. В этом случае ЭП  $\eta$  уменьшится до 88.37%, максимум ЛК для второго перехода составит уже 5400<sup>×</sup>, а потери при расфокусировках будут 5–9%.

Наименьший интерес с точки зрения экономии материала ФЭП представляет группа пар с фокусом 80 mm. Но небольшое фокусное расстояние — это малая высота фотоэлектрического модуля, дающая преимущества при конструировании ГЭУ. Возможно, эта особенность в совокупности с высокой ЭП  $\eta$  и отсутствием потерь при расфокусировках будет ценнее, чем экономия материала ФЭП.

Также, удовлетворяя своему набору условий, и любая другая пара концентратор — ФЭП2 из табл. 2 может стать повторяемой ячейкой фотоэлектрического модуля.

#### Заключение

Оценка пары концентратор — ФЭП как составной единицы реальной ГЭУ проводится при анализе характеристик двух уровней значимости. Характеристики первого уровня — ЭП  $\eta$ , обратный параметр расхода чипов  $x_c$ , — напрямую влияют на энерго-экономические свойства ГЭУ, т.е. на генерируемую мощность и стоимость ГЭУ. Характеристики второго уровня значимости — степень тождественности распределений ГНТ в трех переходах, максимумы ЛК, изменение ЭП при расфокусировках, — не должны рассматриваться отдельно от характеристик, полученных экспериментально, от реальных условий функционирования ГЭУ и условий ее выполнения.

В настоящей работе было проведено исследование двух пар концентратор—ФЭП, где у ФЭП1 круглая форма фоточувствительной области, а у ФЭП2 — квадратная, при этом у концентраторов в парах были выбраны пропорционально соответствующие параметры.

Эффективность пары  $\eta$  концентратор—ФЭП1 составила 90.92%, концентратор—ФЭП2 — 92.53%, в этом случае на фоточувствительную область попало практически все, прошедшее через концентратор, СИ из МС. Также из-за разницы в формах фоточувствительных областей ФЭП обратный параметр расхода чипов в паре с ФЭП2 получается больше: 456, против 400 [3] для пары с ФЭП1.

Очевидно, что к квадратному концентратору в большей степени подходит квадратная форма фоточувствительной области ФЭП. Но так как на область светового пятна, относящуюся к углам концентратора, приходятся хвосты распределений ЛК, увеличение ЭП в паре концентратор—ФЭП2 по сравнению с парой концентратор—ФЭП1 достаточно незначительное. При этом в общем увеличении ЭП на 1.6% примерно 1.1% составляет вклад смены формы фоточувствительной области, а остальные 0.5% — влияние исходных свойств этих ФЭП, а именно коэффициентов  $k_{1-3}$ .

Основной результат настоящей работы состоит в установлении на примере двух исследованных пар влияния на качество концентрирования свойств ФЭП: плотностей фототоков  $J_{1-3}$  p-n-переходов. После деления параметров J на минимальный из них получается набор  $k_1$ ,  $k_2$ ,  $k_3$  из двух повышающих коэффициентов и единицы. Коэффициенты для третьего перехода у обоих ФЭП повышающие, они обеспечивают избыточную концентрацию ГНТ в переходе, поэтому в представленных в работе зависимостях ЭП  $\eta$  пропорциональна  $\eta_1$  или  $\eta_2$ , как наименьшим.

Повышающие коэффициенты для ФЭП1 и ФЭП2 относятся соответственно ко второму ( $k_2 = 1.01$ ) и первому ( $k_1 = 1.05$ ) p-n-переходам. Как показано на рис. 3, a (стрелки) и на рис. 3, a в [3], зависимости  $\eta_{1-3}(n_c)$  для пар с ФЭП1 и ФЭП2 имеют подобный вид, и имеющие наименьшие значения участки зависимостей  $\eta_1(n_c)$  и  $\eta_2(n_c)$  для обеих пар показывают возрастание, сменяющееся убыванием, без пологой части. Для пары концентратор-ФЭП1 ход зависимости ЭП  $\eta(n_c)$ , рассчитываемый с учетом повышающих коэффициентов, имеет вид также без пологой части вблизи максимума.

В случае пары концентратор—ФЭП2 участки кривых  $k_1\eta_1(n_c)$  и  $\eta_2(n_c)$  образуют зависимость ЭП  $\eta(n_c)$  с широкой пологой частью вблизи максимума, которая будет находиться на участке кривой  $\eta_2(n_c)$ .

Аналогично в зависимостях ЭП от температуры концентратора и расфокусировки вдоль оптической оси  $\eta(T)$  и  $\eta(\Delta)$  в случае пары с ФЭП2 имеется широкая пологая часть вблизи максимума, а в случае пары с ФЭП1 эти зависимости представляют собой возрастание, сменяющееся убыванием, без пологой части. В итоге в паре концентратор—ФЭП2 обеспечивается практически нулевое уменьшение ЭП в широких интервалах температур 12.5–32.5°С и отклонений расстояния между ФЭП2 и концентратором от фокусного (-1.2 - + 2.0 mm). В паре с ФЭП1 ЭП  $\eta$  остается больше 90% в узком интервале температур (19.8–26.5°С) и в узком интервале отклонений от фокуса (-0.15 - + 0.45 mm).

Кроме того, пара концентратор— $\Phi$ ЭП2 показала меньшие резистивные потери из-за большей тождественности распределений ГНТ для трех p-n-переходов.

Можно заключить, что в наземной концентраторной фотовольтаике следует использовать ФЭП, в котором плотности фототока  $J_{1-3}$  для отдельных p-n-переходов относятся так, что повышающий коэффициент соответствует первому p-n-переходу, так как из-за дисперсии показателя преломления материала концентратора

именно на спектральный участок, соответствующий первому p-n-переходу, приходится наибольшее размытие светового пятна.

Теоретическое исследование концентраторов солнечного излучения произведено при поддержке РФФИ (грант № 14–08–00623). Экспериментальные исследования оптических свойств концентраторов солнечного излучения выполнены при поддержке Российского научного фонда (грант № 14–29–00178).

#### Список литературы

- Rumyantsev V.D., Davidyuk N.Yu., Ionova E.A., Larionov V.R., Malevskiy D.A., Pokrovskiy P.V., Sadchikov N.A., Andreev V.M. Proc. of the 5<sup>th</sup> Intern. Conf. on Solar Concentrators for the Generation of Electricity, Palm Desert, California USA, 2008.
- [2] Андреев В.М., Давидюк Н.Ю., Ионова Е.А., Покровский П.В., Румянцев В.Д., Садчиков Н.А. // ЖТФ. 2010.
  Т. 80. Вып. 2. С. 118–125.
- [3] Ионова Е.А., Уланов М.Ю., Давидюк Н.Ю., Садчиков Н.А. // ЖТФ. 2016. Т. 86. Вып. 12. С. 87–94.