Эффективная площадь энергетического взаимодействия плазмы глубоко подкритического СВЧ разряда с возбуждающим его электромагнитным полем

© К.В. Александров, Л.П. Грачев, И.И. Есаков, А.А. Раваев, Л.Г. Северинов

Московский радиотехнический институт РАН, 117519 Москва, Россия [¶] e-mail: grachev@mrtiran.ru

(Поступило в Редакцию 29 сентября 2016 г.)

Описаны результаты экспериментов по зажиганию электрического разряда в воздухе в радиопрозрачном герметичном объеме. Разряд зажигается в квазиоптическом линейно поляризованном СВЧ пучке с глубоко подкритическим уровнем поля и разряд инициируется закрепленным над экраном электромагнитным вибратором. Обработка полученных результатов позволила рассчитать эффективную площадь энергетического взаимодействия разрядной плазмы с возбуждающим его СВЧ полем. Показано, что эта площадь существенно превышает площадь поперечного сечения области разряда.

DOI: 10.21883/JTF.2017.05.44441.2050

Введение

Исследования газового электрического разряда, зажигаемого в поле квазиоптического СВЧ пучка [1], показали, что при сравнительно высоких газовых давлениях pон реализуется в высокотемпературной форме [2]. Это позволяет рассматривать пути его практического применения, например, для поджига газовых горючих смесей, в том числе и в их высокоскоростных потоках [3,4].

В работе [2] исследовался разряд при исходной амплитуде электрической составляющей поля E_0 в линейно поляризованном СВЧ пучке с ТЕМ структурой поля, на много порядков меньшей минимального пробойного (критического) уровня $E_{\rm cr}$, необходимого для безэлектродного электрического пробоя воздуха в пространственно однородном и непрерывном во времени СВЧ поле. В описанных в этой работе опытах пробой инициировался параллельным вектору Е электромагнитного (ЭМ) поля СВЧ пучка линейным "полуволновым" ЭМ вибратором. Вибратор закреплялся над помещенным в пучок металлическим экраном, перпендикулярным волновому вектору k СВЧ пучка. При этом расстояние от вибратора до плоскости экрана h было существенно меньшим четверти длины волны ЭМ поля λ .

На практике возникает вопрос, какая же энергия выделяется в плазме реализующегося в этом случае глубоко подкритического СВЧ разряда? Ответить на этот вопрос можно, если ввести понятие и количественно определить величину эффективной площади $S_{\rm ef}$ энергетического взаимодействия разряда с ЭМ полем СВЧ пучка. Действительно, если известна амплитуда электрической составляющей исходного поля СВЧ пучка E_0 в предполагаемой области зажигания разряда, то локальное значение плотности потока ЭМ энергии П, протекающей через поперечное сечение этой области, определится выражением

$$\Pi = E_0^2 / (2Z_0), \text{ W/cm}^2, \tag{1}$$

где $Z_0 = 120\pi$; Ω — волновое сопротивление "свободного" пространства, а размерность поля E_0 , V/cm. При рассчитанной величине П темп выделения энергии в разрядной плазме

$$P_{\rm dis} = \Pi \cdot S_{\rm eff} \mathbf{W}.$$
 (2)

Это выражение и вводит понятие эффективной площади S_{eff} энергетического взаимодействия разрядной плазмы с ЭМ полем.

В работе [5] величина площади $S_{\rm eff}$ была оценена по результатам экспериментов. Они выполнялись с трубчатым вибратором резонансной длины, расположенным на расстоянии $h = \lambda/4$ над плоскостью экрана, т.е. в пучности поля падающей на экран и отраженной от него ЭМ волн. Вибратор продувался потоком воздуха. СВЧ разряд горел в кормовой области вибратора. В спутном следе горящего разряда снималось поперечное распределение температуры торможения потока. Это позволило оценить мощность $P_{\rm dis}$ и по рассчитанной величине П определить величину площади $S_{\rm eff}$. Она оказалась существенно больше площади продольного сечения разрядной области, т.е. в ее формировании участвует и инициирующий пробой газа ЭМ вибратор.

В настоящей работе описываются эксперименты, по результатам которых оценивается площадь $S_{\rm eff}$ для СВЧ разряда, инициированного резонансным ЭМ вибратором, закрепленным над помещенным в квазиоптический СВЧ пучок экраном, но на расстоянии от его плоскости $h \ll \lambda/4$. Как констатировано в работе [2], именно такой способ инициации электрического пробоя газа позволяет зажигать СВЧ разряд в ЭМ поле с $E_0 \ll E_{\rm cr}$. В описываемой работе экспериментальная

методика оценки $S_{\rm eff}$ отличалась от используемой в работе [5]. В данных исследованиях разряд зажигался в герметичном объеме, и по мере горения разряда измерялось увеличение давления воздуха Δp в этом объеме.

Описываемые исследования были стимулированы результатами работы [5], которые позволяли надеяться на высокую эффективность энергетического взаимодействия разрядной плазмы с полем ЭМ пучка при данном способе инициации электрического пробоя газа. В результате может существенно расшириться зона поиска путей практического применения этого вида разряда.

Экспериментальная установка

Эксперименты выполнялись на описанной в работе [5] установке.

Установка содержит СВЧ генератор магнетронного типа. Он генерирует ЭМ колебания на частоте $f = 2.44 \, \text{GHz. B}$ "свободном" пространстве им соответствует длина волны излучения $\lambda = 12.3$ cm. В экспериментах генерируемая мощность P_{gen} находилась в диапазоне (1-1.5) kW. В них использовались одиночные СВЧ импульсы с прямоугольной огибающей длительностью τ_{pul} в несколько десятков долей секунды. Генерируемое магнетроном ЭМ излучение распространяется по прямоугольному волноводу с внутренним сечением 9 × 4.5 cm. Волноводный тракт оканчивается рупорной антенной в форме обелиска длиной 15 ст. Ее излучающий раскрыв имеет размер 9 × 9 ст. Линейно поляризованная СВЧ волна излучается вертикально вниз в герметичную ЭМ безэховую рабочую камеру. Давление воздуха в ней *p_c* может устанавливаться в диапазоне от 10 Torr до атмосферного значения и контролируется с точностью ±1.5 Тогг. При этом при уменьшении давления в камере давление во внутреннем объеме рупорной антенны отслеживает давление p_c . Давление же в волноводе, к которому подсоединен рупор, продолжает оставаться атмосферным. Для этого в сечении их сочленения установлена герметизирующая радиопрозрачная стеклотекстолитовая пластина толщиной 2 mm.

В опытах в рабочей камере симметрично оси ЭМ пучка располагался дюралевый диск — экран диаметром 160 mm и толщиной 10 mm. Его обращенная к излучающему раскрыву плоскость перпендикулярна волновому вектору излучения **k** и удалена от раскрыва рупора на расстояние H = 71 mm. На экране, как проиллюстрировано на рис. 1, симметрично оси ЭМ пучка может располагаться дополнительный радиопрозрачный цилиндрический объем. Его внутренний диаметр равен 75 mm, а расстояние от экрана до внутренней плоскости верхнего торцевого ситаллового диска толщиной 6 mm равно 23 mm. Таким образом, объем этой полости $V = 10^2$ cm³. В зависимости от экспериментальных требований этот объем может быть или негерметичным и давление в нем будет отслеживать давление

Рис. 1. Экспериментальная схема: 1 — ЭМ вибратор, 2 — вспомогательный объем, 3 — излучающий рупор, 4 — СВЧ разряд, 5 — вспомогательный разрядник.

в рабочей камере p_c , или герметичным и выдерживать внутреннее избыточное давление Δp до 2.5 atm. В опытах давление Δp можно измерять. Электрический сигнал с измерительного датчика подается на вход "запоминающего" осциллографа.

Внутри дополнительного объема, как показано на рис. 1, симметрично оси ЭМ пучка и параллельно его вектору Е может помещаться линейный ЭМ вибратор. Он выполняется из дюралюминиевого листа толщиной 2 mm и крепится к экрану на центральной стойке. Ее ширина вдоль вибратора равна 10 mm. Ширина плеч вибратора равна 4 mm. Стойка обеспечивает зазор между плечами вибратора и плоскостью экрана h = 4.3 mm. Этот размер для каждого плеча в опытах выдерживался с точностью 0.1 mm. С целью обеспечения резонансной длины вибратора его полная длина 2l, начиная с $2l_{\text{max}} = 65$ mm > $(\lambda/2)$, в опытах уменьшалась с шагом в 1 mm при сохранении равенства длин плеч.

В дополнительном объеме около его боковой поверхности может быть реализован вспомогательный искровой разряд длительностью в сотые доли секунды в миллиметровом зазоре между высоковольтным вспомогательным электродом и поверхностью экрана.

Результаты экспериментов

Эксперименты можно условно разделить на несколько этапов. На первом измерялась амплитуда исходного поля $E_{0 \text{ init}}$ в предполагаемом месте расположения дополнительного объема. На втором этапе определялась степень ослабления этого поля внутри дополнительного объема, т. е., по существу, амплитуда поля E_0 . На следующем определялась резонансная длина вибратора $2l_{\text{res}}$. И на заключительном этапе измерялся временной темп роста давления воздуха в герметичном объеме $\Delta p(t)$ в процессе горения инициированного вибратором резонансной длины СВЧ разряда.

Опыты по измерению $E_{0 \text{ init}}$ проводились при снятом с экрана дополнительном объеме. В них на оси ЭМ пучка на расстоянии от плоскости экрана $h = 31 \text{ mm} \approx \lambda/4$ на пенопластовой стойке параллельно вектору Е помещался "короткий" цилиндрический алюминиевый ЭМ вибратор со сферически закругленными концами диаметром 2a = 5.6 mm и длиной 2l = 22.4 mm, т.е. при отношении $\eta = 2l/2a = 4$. В эксперименте определялось максимальное давление воздуха в рабочей камере установки $p_c = p_{br}$, при котором данный вибратор обеспечивал пробой воздуха в СВЧ импульсе с $\tau_{\text{pul}} = 0.4 \text{ s}.$

В этом опыте выяснилось, что при $p_c \leq p_{br}$ разряд зажигается в каждом СВЧ импульсе только при синхронном с ним включении вспомогательного разряда. Последнее объяснимо. Плазма вспомогательного разряда является источником сравнительно жесткого ультрафиолетового (УФ) излучения [6]. В опытах оно обеспечивает в течение τ_{pul} наличие начальных электронов около одной из полюсных поверхностей инициатора.

Измерения дали значение $p_{br} = 15$ Torr. Оно по формуле

$$2E_{0\text{ init}} = \frac{E_{\text{cr}}}{\chi} \,\xi \tag{3}$$

позволяет рассчитать поле $E_{0 \text{ init}}$ [7]. В этой формуле двойка учитывает, что измерения выполнялись в пучности прямой и отраженной от экрана волн; поле

$$E_{\rm cr} = 42 p_{br} \sqrt{1 + (\omega/\nu_c)^2}, \, {\rm V/cm}$$
 (4)

— критическое поле пробоя, где ω — круговая частота поля, а

$$\nu_c = 4 \cdot 10^9 p_{br}, \ 1/s \tag{5}$$

— частота столкновений плазменных электронов с молекулами воздуха; коэффициент $\chi = E_{\rm pol}/2E_{0\,init}$ учитывает степень усиления поля на полюсах вибратора; коэффициент $\xi > 1$ учитывает существенную пространственную неоднородность поля $E_{\rm pol}$. В формулах (4) и (5) размерность p_{br} — Torr.

В анализируемом эксперименте при $\lambda = 12.3 \text{ cm}$ частота $\omega = 1.53 \cdot 10^{10} \text{ l/s}$, а при $p_{br} = 15 \text{ Torr}$ частота $v_c = 6 \cdot 10^{10} \text{ l/s}$, т.е. разрядная плазма является существенно столкновительной с $v_c \gg \omega$, следовательно, поле $E_{\rm cr} = 42 p_{br} = 630 \text{ V/cm}$. Для используемого в опыте вибратора со значением $\eta = 4$ коэффициент $\chi = 10$, а коэффициент $\xi = 2.15$ [7]. Таким образом, измерения дали $E_{0 \text{ init}} = 67.5 \text{ V/cm}$.

Поле E_0 внутри дополнительного объема ослаблено по сравнению с $E_{0 \text{ init}}$. Определение величины поля E_0 также выполнялось экспериментально. В этих опытах первоначально при снятом дополнительном объеме на поверхности экрана симметрично оси ЭМ пучка и вдоль вектора его электрической составляющей помещался

Рис. 2. Резонансная кривая инициирующего пробой воздуха ЭМ вибратора, закрепленного над проводящим экраном при $h < \lambda/4$.

вибратор с 2a = 2.25 mm и 2l = 55 mm > $2l_{res}$. Вибратор располагался на пенопластовой опоре, которая обеспечивала высоту его оси над плоскостью экрана h = 10 mm. В опытах такой вибратор обеспечивал пробой воздуха при давлении $p_c = p_{br1} = 615$ Torr. Значение p_{br1} по существу соответствует измеренному ранее полю $E_{0 \text{ init}}$. Затем вибратор "накрывался" дополнительным объемом, негерметизированным относительно объема рабочей камеры установки. В этом случае вибратор инициировал пробой воздуха уже при давлении $p_c = p_{br2} = 520$ Torr. Рассчитанное по формулам (3)-(5) отношение возбуждающих его полей $E_{0 \text{ init}}/E_0$ дало значение 1.18. Таким образом, $E_0 = 57.5$ V/cm.

На следующем этапе экспериментов определялась резонансная длина $2l_{\rm res}$ помещаемого в дополнительный объем и механически закрепленного на экране ЭМ вибратора. Как указывалось, его длина в опытах постепенно уменьшалась с шагом 1 mm, начиная от $2l_{\rm max} = 65$ mm, и при каждом значении 2l определялось давление p_{br} . Результаты этих опытов приведены на рис. 2. Из них видно, что первоначально давления p_{br} растут; в диапазоне 2l = (59-61.5) mm вибратор инициирует пробой воздуха и при атмосферном давлении;

Рис. 3. Осциллограммы изменения давления воздуха в герметичном объеме, обусловленного горением СВЧ разряда.

затем значения p_{br} падают. По рис. 2 резонансную длину вибратора можно определить величиной $2l_{res} = 60.5$ mm.

На заключительном этапе опытов измерялось временное изменение давления воздуха в герметичном объеме $\Delta p(t)$, обусловленное процессом горения разряда, инициированного вибратором резонансной длины. Характерные осциллограммы, иллюстрирующие результаты этих опытов, приведены на рис. 3. На нем горизонтальный масштаб равен 0.1 s/div, а вертикальный задан калибровочными опытами. В этих опытах, начиная от $\Delta p = 0$ и с шагом 0.2 atm, устанавливались конкретные значения Δp , и включалась развертка луча осциллографа. Соответствующие "линии" на рис. 3 и дают масштаб по вертикальной оси.

В контрольных опытах без СВЧ импульса включался вспомогательный разрядник. При его срабатывании чувствительность схемы измерения Δp не позволяла фиксировать изменения давления воздуха в герметичном вспомогательном объеме.

Обсуждение результатов экспериментов

На рис. 3 приведены осциллограммы при $\tau_{pul} = 0.15$ и 0.6 s. Из них следует, что с момента загорания разряда в течение $\Delta t \approx 0.13$ s в герметичном объеме происходит линейный рост избыточного давления со скоростью $\Delta p/\Delta t = 0.68 \text{ atm}/0.13 \text{ s} = 5.23 \text{ atm/s}$. Учитывая, что 1 atm = $10^5 \text{ N/m}^2 \equiv 10^5 \text{ J/m}^3$, это значение $\Delta p/\Delta t = 5.23 \cdot 10^5 \text{ J/(m}^3 \text{ s})$. Величина герметичного объема $V = 10^2 \text{ cm}^3$, следовательно, темп выделения тепловой энергии в разрядной плазме $P_{\text{dis}} = (\Delta p/\Delta t) V = 52.3 \text{ J/s}$. Измеренная амплитуда электрической составляющей поля в исходном CBЧ пучке $E_0 = 57.5 \text{ V/cm}$ по формуле (1) дает значение плотности потока ЭМ энергии $\Pi = 4.4 \text{ J/(s} \cdot \text{cm}^2)$. Следовательно, по (2) площадь $S_{\text{eff}} = 12 \text{ cm}^2$.

Осциллограмма, соответствующая $\tau_{pul} = 0.6$ s, показывает, что в данной экспериментальной постановке при времени горения разряда, большем 0.13 s, темп выделения тепловой энергии в разрядной плазме начинает замедляться. Это связано с влиянием конвективных процессов, обусловленных нагревом воздуха в разрядной области. Контрольные эксперименты по зажиганию такого вида разряда в неподвижном воздухе без герметичного объема показали, что при увеличении времени горения разряда в оздух, естественно, включая и его заряженные компоненты, из области разряда начинает "всплывать". Это приводит к изменению схемы взаимодействия CBЧ излучения с ЭМ вибратором.

Заключение

Таким образом, полученные экспериментальные результаты и их теоретическая обработка дали масштаб величины эффективной площади энергетического взаимодействия плазмы глубоко подкритического СВЧ разряда, возбужденного полем квазиоптического СВЧ пучка и инициированного расположенным сравнительно близко к экрану при $h < \lambda/4$ и закрепленным на нем линейным ЭМ вибратором $S_{\text{eff}} = 12 \text{ cm}^2$. Описанные в работе [5] опыты с $h = \lambda/4$ дали значение $S_{\rm eff} = 10 \, {\rm cm}^2$. Естественно предположить, что в каждом конкретном случае в зависимости от величины h и конструктивного исполнения вибратора величина S_{eff} может меняться, но ее масштаб сохранится и будет существенно больше площади поперечного сечения разрядной области. Определенный масштаб размера S_{eff} открывает возможность оценки перспективности практического применения такого вида разряда. При этом более перспективным является зажигание его в газовых потоках [3,4], которые будут нейтрализовать нежелательные конвективные процессы и снимут ограничения на продолжительность горения разряда.

Список литературы

- Грачев Л.П., Есаков И.И., Мишин Г.И., Никитин М.Ю., Ходатаев К.В. // ЖТФ. 1985. Т. 55. Вып. 2. С. 389–391.
- [2] Александров К.В., Грачев Л.П., Есаков И.И., Раваев А.А., Северинов Л.Г., Яковлев А.Ю. // ЖТФ. 2016. Т. 86. Вып. 4. С. 28–33.
- [3] Esakov I.I., Grachev L.P., Khodataev K.V., Vinogradov V.A., Van Wie David M. // Ieee Transaction on Plasma Science. 2006. Vol. 34. N 6. P. 2497–2506.
- [4] Bychkov D.V., Esakov I.I., Grachev L.P., Khodataev K.V., Van Wie D.M. // 47rd AIAA Aerospace Sciences Meeting and Exhibit, Orlando, USA. 2009. AIAA P. 2009–1551.
- [5] Бычков Д.В., Грачев Л.П., Есаков И.И. // ЖТФ. 2009. Т. 79. Вып. 3. С. 39–45.
- [6] Богатов Н.А., Голубев С.В., Зорин В.Г. // Физика плазмы. 1986. Т. 12. Вып. 11. С. 1369–1375.
- [7] Александров К.В., Грачев Л.П., Есаков И.И. // ЖТФ. 2007.
 Т. 77. Вып. 12. С. 26–30.