Термический гистерезис при плавлении и кристаллизации макрообъектов

© В.Д. Александров, Е.А. Покинтелица, А.Ю. Соболев

Донбасская национальная академия строительства и архитектуры, 286123 Макеевка, Донбасс, Россия e-mail: Ink0013@gmail.com

(Поступило в Редакцию 4 июля 2016 г.)

05

На основании термограмм нагревания и охлаждения, с учетом фазовых превращений типа плавлениекристаллизация, проанализированы различные термические гистерезисные процессы для макрообъектов. Выявлено два вида термического гистерезиса при равновесной и неравновесной кристаллизации. Показаны пути изменения энергии Гиббса в обоих случаях.

DOI: 10.21883/JTF.2017.05.44445.1965

В последнее время большое внимание уделяется температурным гистерезисам (TГ) при плавлении и кристаллизации малых частиц [1–4]. В основном их связывают с размерными зависимостями различных физических характеристик (температуры и энтальпии плавления, теплоемкости, поверхностного натяжения и др.). Перенесем наше внимание к макрообъектам и проанализируем наличие ТГ у них. Если гистерезисные эффекты имеют место, то возникает вопрос о том, чем они могут быть обусловлены, поскольку о влиянии размерных факторов в данном случае говорить не приходится.

Анализ многочисленных работ по изучению процессов плавления и кристаллизации сплошь и рядом указывает на возможность наличия, либо на отсутствие ТГ [5–10]. Термограммы плавления и кристаллизации обычно записываются в одном направлении. Петля термического гистерезиса формируется при совмещении кривых нагревания и охлаждения с учетом прямого и обратного фазовых переходов. Начертим схематические термограммы при обычной записи в координатах температура T — время т при нагреве и охлаждении. Для построения и анализа петель гистерезиса развернем кривые охлаждения на 180° относительно оси симметрии и (-) обозначают направления записей. Примем, что за один цикл (С) происходят процессы нагревания и охлаждения, за полцикла от нуля до $\frac{1}{2}C$ идет нагревание, а от $\frac{1}{2}C$ до C — охлаждение.

Начнем с "простого" цикла (рис. 1, a), характеризующего нагрев по пути $a \to b \to c \to d_k$ с плавлением $(b \to c)$ при T_L , и охлаждение по пути $d_k \to e \to f \to g$ с равновесной кристаллизацией $(e \to f)$ при температуре T_s , равной температуре плавления T_L .

При зеркальном отражении пунктирная линия охлаждения совпадает с кривой нагревания. Видно, что нет петли гистерезиса и нет разницы между температурами плавления T_L и кристаллизации T_S , а также между энтальпиями плавления ΔH_{LS} и кристаллизации ΔH_{SL} , т. е. $T_S = T_L$, $\Delta H_{LS} = \Delta H_{SL}$.

На кривых нагревания и охлаждения, показанных на рис. 1, а, не обозначены эндо- и экзотермические явления поглощения и выделения теплоты, сопровождающие соответствующие фазовые переходы. Рассмотрим реальные формы кривых (рис. 1, b), учитывающие эти процессы. Как видим, при правильной записи кривые нагревания и охлаждения не накладываются друг на друга, как на рис. 1, a. И если температура кристаллизации T_S совпадает с температурой плавления Т_L, то площади фигур bcdb (эндоэффект) и sff'b (экзоэффект) смещены друг относительно друга. Вопрос в том, характеризует ли подобное смещение тепловой гистерезис. Кстати, при записи эндо- и экзотермических эффектов плавления и кристаллизации методом дифференциального термического анализа (ДТА) соответствующие пики также смещаются друг относительно друга [5–7].

Проанализируем теперь термограммы нагревания и охлаждения в случае, когда равновесная кристаллизация происходит при температуре $T_S < T_L$. На рис. 2, *а* показаны подобные кривые, на которых нет участков, характеризующих поглощение и выделение теплоты фазовых переходов. Сопоставляя кривые нагревания (сплошная линия) в период от нуля до $\frac{1}{2}C$ с кривой охлаждения (пунктирная линия) в период от $\frac{1}{2}C$ до *C*, видим отчет-

Рис. 1. Схематические термограммы, характеризующие отсутствие температурного гистерезиса без учета (a) и с учетом (b) энтальпий фазовых переходов.

Рис. 2. Термограмма, характеризующая термический гистерезис первого рода (*a*), и схема изменения энтальпий фазовых превращений (*b*).

ливую фигуру петли гистерезиса *bchkb*. Особо отметим тот факт, что как плавление, так и кристаллизация являются изотермическими. Таким образом, при наличии своеобразного переохлаждения ΔT_{LS}^- имеет место равновесная кристаллизация при T_S .

Назовем явление, рассмотренное на рис. 2, термическим гистерезисом первого рода (ТГ-I). Схема изменения энтальпий плавления и кристаллизации при ТГ-I, исходя из рис. 2, a, представлена на рис. 2, b.

Из нее следует, что энтальпия плавления ΔH_{LS} отличается от энтальпии кристаллизации ΔH_{SL} . Для установления связи между ΔH_{LS} и ΔH_{SL} обратимся к петле гистерезиса (рис. 2, *a*). Она состоит из двух изотерм *bc*, *hk* и двух участков с нагревом $(k \rightarrow b)$ твердой фазы и охлаждением $(c \rightarrow h)$ жидкой фазы. Тогда для кругового процесса $k \rightarrow b \rightarrow c \rightarrow h \rightarrow k$ очевидно

$$c_p^S \Delta T_{LS}^- + \Delta H_{LS} = c_p^L \Delta T_{SL}^- + \Delta H_{SL},$$

откуда в первом приближении вычисляем энтальпию кристаллизации ΔH_{SL} по формуле

$$\Delta H_{SL} = \Delta H_{LS} - \Delta c_p \Delta T_{LS}^-.$$

Гистерезис второго рода (ТГ-II) возникает при сопоставлении процессов плавления и неравновесной кристаллизации из переохлажденного состояния. Проанализируем термограммы нагревания $a \to b \to c \to d$ и охлаждения $d \to e_k \to e \to f \to g$, показанные на рис. 3, *a*.

В данном случае кристаллизация начинается при температуре T_{\min} (точка e_k), затем за счет взрывной кристаллизации температура поднимается до температуры плавления T_L . В результате затвердевает лишь часть β жидкой фазы. Далее идет изотермическая докристаллизация оставшейся части $(1 - \beta)$ расплава за время τ_3 по пути $e \rightarrow f$ при температуре $T_S = T_L$. При наложении кривых виден гистерезисный эффект в виде заштрихованного треугольника cee_kc . Подобное явление характерно только для начальной стадии кристаллизации макрообъектов, т.е. для этапа зародышеобразования за инкубационный период τ_1 и время τ_2 коагуляции зародышей [8]. Если уменьшать массу вещества, то кристаллизация может завершиться либо в точке e (по пути $d \rightarrow e_k \rightarrow e \rightarrow g'$), либо в точке e_k (по пути $d \rightarrow e_k \rightarrow g''$) и т.д. Для микро- и наночастиц температура начала кристаллизации может опускаться гораздо ниже T_{\min} , что приведет к возрастанию величины термического гистерезиса.

Схема изменения энтальпий при ТГ-II (рис. 3, b) в соответствии с термограммой рис. 3, a показывает, что общая энтальпия кристаллизации состоит из трех составляющих (энтальпий ΔH_1 зародышеобразования, ΔH_2 коагуляции и ΔH_3 докристаллизации): $\Delta H_{SL} = \Delta H_1 + \Delta H_2 + \Delta H_3$.

Еще более замысловатые гистерезисные фигуры вырисовываются при наложении друг на друга кривых нагревания и охлаждения, получаемых в реальных условиях при температуре докристаллизации T_S , равной температуре плавления T_L , а также комбинированного гистерезиса, сочетающего в себе термические гистерезисы первого и второго рода при $T_S < T_L$. При комбинированном гистерезисе $\Delta H_{LS} \neq \Delta H_{SL}$, $T_S < T_L$, T_L — const, T_S — const, $\Delta T_L^- = \Delta T_{LS}^- + \Delta T_S^-$, где ΔT_L^- и ΔT_S^- переохлаждения относительно температур T_L и T_S , а $\Delta T_{LS}^- = T_L + T_S$.

Рис. 3. Термограмма, характеризующая термический гистерезис второго рода (*a*) и схема изменения энтальпий фазовых превращений (*b*).

Рис. 4. Зависимость энергий Гиббса для жидкой (G_L) и твердой (G_S) фаз от температуры при ТГ-I и ТГ-II.

Рассмотрим пути изменения энергий Гиббса для жидкой G_L и твердой G_S фаз (рис. 4) при повышении и понижении температуры.

Очевидно, что пути $(a \rightarrow b \rightarrow c \rightarrow d)$ и $(d \rightarrow e \rightarrow f \rightarrow g)$ соответственно в отсутствие ТГ будут проходить точно так же, как и на термограмме рис. 1, *а*. Если направление изменения энергии Гиббса в одну сторону $(a \rightarrow b \rightarrow c \rightarrow d)$ не совпадает с направлением в обратную сторону $(d \rightarrow c \rightarrow h \rightarrow k \rightarrow g)$ в соответствии с рис. 2, *a*, то образуется петля *bhkb* термического гистерезиса ТГ-I на рис. 4. Получается, что при наличии движущей силы кристаллизации ΔG_{LS} и переохлаждения ΔT_{LS}^{-} , процессы затвердевания при T_S , и плавления при T_L происходят изотермически, т. е. равновесно.

Для анализа поведения энергий Гиббса в случае ТГ-II проанализируем функции $G_L(T)$ и $G_S(T)$. С учетом процесса зародышеобразования кривая $G_L(T)$ ниже температуры плавления T_L должна сближаться к кривой $G_S(T)$ по пути $b \rightarrow e_k$. При равновесной кристаллизации путь изменения энергий Гиббса $d \rightarrow c \rightarrow b \rightarrow g$ совпадает с направлением в обратную сторону при нагревании $a \rightarrow b \rightarrow c \rightarrow d$, как и на термограммах рис. 1 и 2. После охлаждения расплава неравновесной кристаллизации от температуры T_{min} и охлаждения твердой фазы до точки e_k энергия G(T) должна меняться в направлении $d \rightarrow e_k \rightarrow e \rightarrow b \rightarrow g$, а при нагревании (с учетом плавления) по пути $a \rightarrow b \rightarrow c \rightarrow d$. Вместе эти кривые образуют своеобразную гистерезисную фигуру. Для изображения путей изменения функции G(T) после начала кристаллизации возможны варианты. Либо она должна меняться по направлению $M \to N$, тогда завершение процесса затвердевания должно происходить при температуре T_{min} с дальнейшим подъемом температуры от T_{\min} до T_L , чего в принципе быть не может, либо по направлению $M \rightarrow b(c)$. Однако в данном случае не учитываются процессы зародышеобразования, а структура жидкости остается идеальной, как и при температуре выше температуры плавления. С учетом процесса зародышеобразования кривая $G_L(T)$ ниже температуры плавления T_L должна сближаться к кривой $G_S(T)$ по пути $b \rightarrow e_k$. Следует учитывать еще одно немаловажное обстоятельство: весь процесс затвердевания состоит из трех составных частей — зародышеобразования за инкубационный период τ_1 , коагуляции зародышей за время т2 и дальнейшей изотермической кристаллизации за время т₃. Коагуляции зародышей начинаются только в случае достижения критической границы метастабильного состояния, т.е. температуры T_{min} в одной точке e_k с последующим быстрым подъемом температуры до Т_L (по прямой $e_k \to e$). Эти этапы и особенности должны также быть отражены на графиках $G_L(T)$ и $G_S(T)$. Поэтому остается один вариант, показанный на рис. 4. На этом рисунке отражены и три составные части изменения энергии Гиббса при затвердевании: ΔG_1 на этапе зародышеобразования, ΔG_2 на этапе коагуляции зародышей, ΔG_3 на этапе докристаллизации.

В данном случае проявляется своеобразная петля (см. замкнутую заштрихованную область, ограниченную пунктиром), свидетельствующая о гистерезисном характере изменения энергий Гиббса, так как при нагревании они меняются по направлению $a \to b(c) \to d$, а при охлаждении по направлению $d \to e_k \to e(f) \to a(g)$.

Имеется "весомый" аргумент трактовки термических гистерезисных явлений, основанный на том факте, что твердые тела при плавлении практически не перегреваются, а жидкости кристаллизуются после достижения определенных переохлаждений. В работе [11] было показано, что при образовании зародышей жидкой фазы при плавлении и зародышей кристаллов при кристаллизации имеет место гистерезисный эффект, связанный с дефектами кристалла в виде дислокаций. Наличие дефектов в кристалле "облегчает" их плавление, а для образования кристалла с дефектами и их удержания в зародыше требуется дополнительная энергия, что затрудняет и задерживает процесс формирования реальных кристаллов. Возможно, гистерезисные эффекты при плавлении и кристаллизации как раз и связаны с реальной структурой конденсированных сред.

Список литературы

- Соколов Д.Н., Сдобников Н.Ю., Комаров П.В., Самсонов В.М. // Строение и свойства металлов и шлаковых расплавов: в 4 т: Труды XIII Рос. конф. Екатеринбург. 2011. РАН. Секция физ.-хим. основ металлург. процессов. 2011. С. 26–29.
- [2] Климов В.А., Тимофеева И.О., Ханин С.Д., Шадрин Е.Б. и др. // ЖТФ. 2002. Т. 72. Вып. 9. С. 67–74.
- [3] Замулин И.С., Гафнер С.Л. // Матер. Междунар. научнотехн. конф. М. Intermatic, 2012. Ч. 1. С. 15–18.
- [4] Борыняк Л.А., Чернышов А.П. // Научный вестник Новосибирского гос. техн. ун-та. 2014. № 1 (54). С. 172–179.
- [5] Берг Л.Г. Введение в термографию. М.: Наука, 1969. 480 с.

- [6] Уэнландт У. Термические методы анализа. М.: Мир, 1978. 527 с.
- [7] Шестак Я. Теория термического анализа. М.: Мир, 1987. 456 с.
- [8] Александров В.Д. Кинетика зародышеобразования и массовой кристаллизации переохлажденных расплавов и аморфных сред. Донецк: Донбасс, 2011. 591 с.
- [9] Александров В.Д., Покинтелица Е.А. Кластерно-коагуляционная кристаллизация переохлажденных жидкостей. Теория кристаллизации расплавов. Palmarium Academic Publishing, 2015. 176 с.
- [10] Кидяров Б.И. Кинетика образования кристаллов из жидкой фазы. Новосибирск: Наука, 1979. 79 с.
- [11] Александров В.Д., Соболь О.В. // ЖФХ, 2007. Т. 81. № 11. С. 2100–2103.