05

Влияние зон Гинье–Престона на динамический предел текучести сплавов при ударно-волновом нагружении

© В.В. Малашенко

Донецкий физико-технический институт им. А.А. Галкина, 83114 Донецк, Украина e-mail: malashenko@fti.dn.ua

(Поступило в Редакцию 21 июня 2016 г.)

Теоретически исследовано движение ансамбля краевых дислокаций при ударно-волновом воздействии на сплав, содержащий зоны Гинье–Престона. Получено аналитическое выражение вклада зон Гинье–Престона в величину динамического предела текучести и показано, что этот вклад зависит от плотности подвижных дислокаций. Численные оценки показали, что образование этих зон приводит к существенному увеличению динамического предела текучести сплавов.

DOI: 10.21883/JTF.2017.05.44458.1948

Техника ударных волн является мощным инструментом изучения материалов при экстремально высоких скоростях деформирования с хорошо контролируемыми условиями нагружения [1,2]. Импульсы ударной нагрузки создаются в образцах исследуемых материалов ударниками, разогнанными с помощью взрывных устройств, пневматических ствольных установок [3,4], воздействием высокоинтенсивного лазерного или корпускулярного излучения [5], а также методом динамического канальноуглового прессования [6,7]. При этом скорость пластической деформации достигает значений $10^3 - 10^7 \, \mathrm{s}^{-1}$, а дислокации совершают надбарьерное скольжение и движутся со скоростями $v \ge 10^{-2}$ с, где c — скорость распространения поперечных звуковых волн в кристалле. Это так называемая динамическая область, в которой дислокация преодолевает встречающиеся на ее пути препятствия без помощи термических флуктуаций.

Существенное влияние на движение дислокаций, а следовательно, и на механические свойства кристаллов, оказывает динамическое взаимодействие дислокаций с зонами Гинье–Престона, образующимися в сплавах в результате искусственного или естественного старения [8].

В работах [8,9] методом молекулярной динамики анализировалось движение краевой дислокации в упругом поле зон Гинье-Престона. В настоящей работе показано, что возрастание плотности подвижных дислокаций при высокоскоростном деформировании приводит к возникновению эффекта сухого трения при их динамическом взаимодействии с зонами Гинье-Престона, в результате чего возрастает динамический предел текучести сплава.

Пусть бесконечные краевые дислокации совершают скольжение под действием постоянного внешнего напряжения σ_0 в положительном направлении оси *OX* с постоянной скоростью v в кристалле, содержащем хаотически распределенные зоны Гинье–Престона. Линии дислокаций параллельны оси *OZ*, их векторы Бюргерса b = (b, 0, 0) одинаковы и параллельны оси *OX*.

Плоскость скольжения дислокаций совпадает с плоскостью *XOZ*. Положение *k*-ой дислокации определяется функцией

$$X_k(y = 0, z, t) = vt + w_k(y = 0, z, t).$$
 (1)

Здесь $w_k(y = 0, z, t)$ — случайная величина, описывающая изгибные колебания дислокации, возбужденные ее взаимодействием с хаотически распределенными дефектами. Среднее значение этой величины по длине дислокации и по хаотическому распределению дефектов равно нулю.

Зоны Гинье–Престона будем считать одинаковыми, имеющими радиус R, и распределенными случайным образом в плоскостях, параллельных плоскости скольжения дислокации *XOZ*. Такая ситуация реализуется, например, в сплавах Al–Cu, где зоны Гинье–Престона имеют форму пластинок моноатомной толщины [9].

Уравнение движения *k*-ой дислокации может быть представлено в следующем виде:

$$m\left\{\frac{\partial^2 X}{\partial t^2} - c^2 \frac{\partial^2 X}{\partial z^2}\right\} = b\left[\sigma_0 + \sigma_{xy}^G\right] + F_k - B \frac{\partial X}{\partial t}, \quad (2)$$

где σ_{xy}^G — компонента тензора напряжений, создаваемых на линии дислокации зонами Гинье-Престона, F_k сила, действующая на дислокацию со стороны остальных дислокаций ансамбля, m — масса единицы длины дислокации (массы всех дислокаций считаем одинаковыми), c — скорость распространения в кристалле поперечных звуковых волн, B — константа демпфирования, обусловленная фононными, магнонными или электронными механизмами диссипации. Здесь, как и в работах [10–13], будем считать выполненным условие $[Bbv/(mc^2)] \ll 1$, позволяющее пренебречь влиянием константы B на силу торможения дислокации структурными дефектами.

Воспользовавшись методом, развитым в работах [10-13], силу динамического торможения (drag) движущейся краевой дислокации зонами Гинье-Престона вычислим по формуле

$$F_{\rm def} = \frac{n_G b^2}{8\pi^2 m} \int d^3 q |q_x| \cdot \left| \sigma_{xy}^G(q) \right|^2 \delta(q_x^2 v^2 - \omega^2(q_z)), \quad (3)$$

где $\omega(q_z)$ — спектр дислокационных колебаний, $\sigma_{xy}^G(q)$ — Фурье-образ компоненты тензора напряжений, созданных зонами Гинье–Престона, n_G — объемная концентрация этих зон.

В рассматриваемом нами случае спектр дислокационных колебаний имеет вид

$$\omega^2(q_z) = c^2 q_z^2 + \Delta^2. \tag{4}$$

При ударно-волновом воздействии на кристалл плотность подвижных дислокаций значительно возрастает и может достигать значений $\rho = 10^{15} \,\mathrm{m}^{-2}$. Именно коллективное взаимодействие дислокаций в этом случае вносит главный вклад в формирование спектральной щели, величина которой, согласно [10], определяется формулой

$$\Delta = \Delta_{\rm dis} = \pi b \sqrt{\frac{\mu \rho}{6\pi m(1-\gamma)}} \approx c \sqrt{\rho}, \qquad (5)$$

где μ — модуль сдвига, γ — коэффициент Пуассона. Выполняя вычисления, получим, что в интервале $v < v_G = R\Delta_{dis}$ сила динамического торможения дислокации зонами Гинье–Престона приобретает характер сухого трения и ее вклад в величину динамического предела текучести может быть описан выражением

$$\tau_G = \frac{n_G \mu \eta^2 b R}{(1-\gamma)^2 \sqrt{\rho}},\tag{6}$$

где η — размерный фактор. Полученное выражение справедливо при скоростях движения дислокации $v < v_G$. Оценим величину характерной скорости v_G . Для значений $\rho = 10^{15}$ m⁻², $b = 3 \cdot 10^{-10}$ m, $c = 3 \cdot 10^3$ m/s, $R = 3 \cdot 10^{-9}$ m получим $v_G = 10^{-1}$ c.

Выполним численную оценку вклада исследуемого механизма диссипации в величину динамического предела текучести. Для типичных значений $\mu = 5 \cdot 10^{10}$ Ра, $\eta = 10^{-1}$, $b = 3 \cdot 10^{-10}$ m, $R = 3 \cdot 10^{-9}$ m, $n_G = 4 \cdot 10^{24}$ m⁻³, $\gamma = 0.3$ получим $\tau_G = 10^8$ Ра, т.е. вклад динамического торможения зонами Гинье–Престона может составлять десятки процентов.

Проведенный анализ показывает, что при ударноволновом нагружении сплавов зоны Гинье–Престона могут оказывать существенное влияние на процесс пластической деформации.

Список литературы

- Канель Г.И., Фортов В.Е., Разоренов С.В. // УФН. 2007. Т. 177. Вып. 8. С. 809–830.
- [2] Lee J., Veysset D., Singer J., Retsch M., Saini G., Thomas E. // Nature Commun. 2012. N 3. P. 1164–1173.

- [3] Жиляев П.А., Куксин А.Ю., Стегайлов В.В., Янилкин А.В. // ФТТ. 2010. Т. 52. Вып. 8. С. 1508–1512.
- [4] Zaretsky E.B., Kanel G.I. // J. Appl. Phys. 2013. Vol. 114.
 P. 083511.
- [5] Tramontina D., Bringa E., Erhart P., Hawreliak J., Germann T., Ravelo R., Higginbotham A., Suggit M., Wark J., Park N., Stukowski A., Tang Y. // High Energy Density Phys. 2014. Vol. 10. P. 9–15.
- [6] Бородин И.Н., Майер А.Е. // ЖТФ. 2013. Т. 83, Т. 8. С. 76– 80.
- [7] Зельдович В.И., Шорохов Е.В., Добаткин С.В., Фролова Н.Ю., Хейфец А.Э., Хомская И.В., Насонов П.А., Ушаков А.А. // ФММ. 2011. Т. 111. № 2. С. 439–447.
- [8] Singh C.V., Warner D.H. // Acta Material. Vol. 58. N 17.
 P. 5797–5805.
- [9] Куксин А.Ю., Янилкин А.В. // МТТ. 2015. № 1. С. 54–65.
- [10] Малашенко В.В. // ФТТ. 2014. Т. 56. Вып. 8. С. 1528–1530.
- [11] Малашенко В.В. // ФТТ. 2015. Т. 57. Вып. 12. С. 2388–2390.
- [12] Малашенко В.В. // Письма в ЖТФ. 2012. Т. 38. Вып. 19. С. 61-65.
- [13] Malashenko V.V. // Phys. B: Phys. Cond. Mat. 2009. Vol. 404.
 2. P. 3890–3892.