Оптимизация составной охлаждающей ветви

© И.А. Драбкин

AO "Гиредмет", 119017 Москва, Россия E-mail: igordrabk@gmail.com

(Получена 27 декабря 2016 г. Принята к печати 12 января 2017 г.)

Предложен способ расчета составной охлаждающей термоэлектрической ветви в одномерном приближении методом тепловых балансов с эффективными значениями термоэлектрических параметров: электропроводности σ , коэффициента термоэдс α и теплопроводности κ . Данный метод позволяет точно учесть температурные зависимости σ , α , κ . Влияние контактных сопротивлений на результирующую эффективность также учитывается точно. Показан способ перехода от расчета ветви к расчету термоэлемента.

DOI: 10.21883/FTP.2017.07.44651.37

Составная охлаждающая термоэлектрическая ветвь может обеспечивать увеличение максимальной разности температур ΔT_{max} , получаемой на ветви [1]. Методы расчета таких ветвей достаточно сложны [2] и трудоемки. В работе [3] были получены точные выражения для тепловых балансов на концах термоэлектрической ветви при температурно-зависимых термоэлектрических параметрах. Эти выражения содержат эффективные значения этих параметров — электропроводности σ , коэффициента термоэдс α , теплопроводности κ , которые рассчитываются исходя из температурного поля в ветви. В данной работе дается обобщение метода эффективных тепловых балансов, позволяющее решать любую задачу оптимального построения термоэлектрических охладителей. Предложенная расчетная процедура более проста и позволяет учесть влияние контактных сопротивлений, которыми ранее пренебрегали, хотя они могут существенно ограничивать возможности составной ветви.

Для описания процессов внутри ветви надо решить уравнение [4]

$$(\nabla, \kappa \nabla T) + (\mathbf{j}, \mathbf{j})\rho - T(\mathbf{j}, \nabla \alpha) = 0, \qquad (1)$$

где T — температура ветви, **j** — плотность тока, ρ — удельное сопротивление. Пусть для определенности, что не ограничивает общности, рассматривается p-ветвь. Пусть на горячем конце ветви длиной L и сечением s температура T_h . За счет пропускания тока создается разность температур $\Delta T = T_h - T_c$, где T_c температура холодного конца ветви. На холодный конец поступает тепловой поток плотностью Q_c , а с горячего снимается Q_h . Ограничимся одномерным случаем, и пусть ось x направлена от холодного конца ветви к горячему, тогда плотность тока j и плотность теплового потока Q будут отрицательны, в соответствии с рис. 1. В уравнениях теплового баланса они положительны, поэтому заменим j = -j и Q = -Q. Уравнение (1) в этом случае принимает вид

$$\frac{d}{dx}\left(\kappa\frac{dT}{dx}\right) + j^2\rho + Tj\frac{d\alpha}{dx} = 0.$$
 (2)

В [3] было показано, что, решая (2), можно получить уравнения теплового баланса в виде

$$\begin{cases} Q_c = \alpha_{c.\text{eff}} T_c j - j^2 L \rho_{c.\text{eff}} - \frac{\overline{\kappa} \Delta T}{L} \\ Q_h = \alpha_{h.\text{eff}} T_h j + j^2 L \rho_{h.\text{eff}} - \frac{\overline{\kappa} \Delta T}{L} \end{cases}, \quad (3)$$

где $\alpha_{h.eff}$, $\rho_{h.eff}$, $\alpha_{c.eff}$, $\rho_{c.eff}$ — эффективные значения α и ρ соответственно для горячего и холодного концов ветви, а $\overline{\kappa}$ — среднее по ветви значение теплопроводности. Выражения для самих эффективных значений имеют вид

$$\alpha_{h.\text{eff}} = \alpha(T_h) + \frac{1}{T_h} \int_0^L T \frac{d\alpha(T)}{dT} \frac{dT(y)}{dy} \hat{R}(y) dy, \quad (4)$$

$$\alpha_{c.\text{eff}} = \alpha(T_c) - \frac{1}{T_c} \int_0^L T \frac{d\alpha(T)}{dT} \frac{dT(y)}{dy} \hat{L}(y) dy, \quad (5)$$

$$\rho_{h.\text{eff}} = \frac{1}{L} \int_{0}^{L} \rho\left(T(y)\right) \hat{R}(y) dy + \frac{R_{\text{cont}}}{L}, \qquad (6)$$

$$\rho_{c.\text{eff}} = \frac{1}{L} \int_{0}^{L} \rho\left(T(y)\right) \hat{L}(y) dy + \frac{R_{\text{cont}}}{L},\tag{7}$$

$$\hat{R}(y) = \frac{\overline{\kappa}}{L} \int_{y}^{L} \frac{dx}{\kappa(x)},$$
(8)

$$\hat{L}(y) = \frac{\overline{\kappa}}{L} \int_{0}^{y} \frac{dx}{\kappa(x)},$$
(9)

$$\overline{\kappa} = L \Big/ \int_{0}^{L} \frac{dx}{\kappa (T(x))}, \tag{10}$$

где символами T(x) или T(y) обозначено распределение температуры вдоль ветви, получаемое из решения уравнения (2), а операторы $\hat{R}(y)$ и $\hat{L}(y)$ равны отношению

Рис. 1. Схема термоэлектрической ветви.

теплового сопротивления ветви соответственно справа и слева от точки Y к суммарному тепловому сопротивлению ветви, $R_{\rm cont}$ — контактное сопротивление на концах ветви.

Выражения (4)–(10), в отличие от [1], записаны для удельных сопротивлений и удельной теплопроводности; кроме того, из-за другого направления оси *x* изменился знак перед вторым членом в (4) и (5). Подчеркнем, что в уравнениях (3) опущен множитель 1/2 перед теплом Джоуля, который представляет собой значения $\rho_{h.eff}$, $\rho_{c.eff}$ для температурно-независимых коэффициентов. Между эффективными величинами α и ρ существуют соотношения [3]

$$\alpha_{h.\text{eff}}T_h - \alpha_{c.\text{eff}}T_c = \overline{\alpha}\Delta T, \qquad (11)$$

$$\rho_{h.\text{eff}} + \rho_{c.\text{eff}} = \overline{\rho} + \frac{2R_{\text{cont}}}{L}, \qquad (12)$$

где

$$\overline{\alpha} = \frac{1}{\Delta T} \int_{T_c}^{T_h} \alpha dT, \qquad (13)$$

$$\overline{\rho} = \frac{1}{L} \int_{0}^{L} \rho(T(x)) dx.$$
(14)

В случае зависимости эффективных значений α , ρ и $\overline{\kappa}$ от каких-либо скрытых параметров (концентрации носителей заряда, положения уровня Ферми и т.п.) выражения (4)–(10) можно дифференцировать по этим параметрам и тем самым производить оптимизацию по $Z = \alpha^2/\kappa\rho$. Следует подчеркнуть, что, так как имеется по три эффективных значения α и ρ , относящихся к холодному и горячему концам ветви, а также их средние значения, для достижения максимальной разности температур необходимо использовать $Z_c = \alpha_{c.eff}^2/\overline{\kappa}\rho_{c.eff}$, а для максимального холодильного коэффициента — $\overline{Z} = \overline{\alpha}^2/\overline{\kappa\rho}$.

Рассмотрим теперь составную ветвь из *N* секций. Нумерация секций и координаты границ ясны из рис. 2.

Обозначим термоэлектрические параметры *i*-секции (i = 1, 2, ..., N) как $\alpha_i(T_i)$, $\rho_i(T_i)$, $\kappa_i(T_i)$, где T_i — температура внутри *i*-секции. Соответствующие значения холодных и горячих температур *i*-секции обозначим как $T_{c,i}$ и $T_{h,i}$. Эффективные значения этих термоэлектрических параметров определим по аналогии с выражениями (4)-(10). Для этого надо при интегрировании по координате заменить пределы интегрирования $0 \rightarrow L_{i-1}$, $L \rightarrow L_i$, а множитель 1/L перед знаком интеграла необходимо заменить на $1/(L_i - L_{i-1})$. Интегрирование по температуре нужно осуществлять в пределах $T_{c,i}$ и $T_{h,i}$, разность температур на *i*-секции равна $\Delta T_i = T_{h,i} - T_{c,i}$. В дальнейшем принадлежность эффективных параметров *i*-секции обозначим индексом, отделенным запятой: $\rho_{h.eff,i}$, $\alpha_{c.eff,i}$, $\rho_{h.eff,i}$, $\rho_{c.eff,i}$. Среднее значение теплопроводности *i*-секции обозначим $\overline{\kappa_i}$. Для операторов \hat{R}_i и \hat{L}_i , относящихся к *i*-секции, справедливы выражения

$$\hat{R}_{i}(y) = \frac{\overline{\kappa}_{i}}{L_{i} - L_{i-1}} \int_{y}^{L_{i}} \frac{dx}{\kappa_{i}(x)},$$
$$\hat{L}_{i}(y) = \frac{\overline{\kappa}_{i}}{L_{i} - L_{i-1}} \int_{L_{i-1}}^{y} \frac{dx}{\kappa_{i}(x)},$$
(15)

где

$$\overline{\kappa}_i = (L_i - L_{i-1}) / \int_{L_{i-1}}^{L_i} \frac{dx}{\kappa_i(T(x))}, \qquad (16)$$

а тепловое сопротивление *i*-секции, отнесенное к единице сечения, равно

$$R_{t,i} = \frac{L_i - L_{i-1}}{\overline{\kappa}_i}.$$
(17)

После того как определены эффективные параметры секций, можно вычислить эффективные параметры ветви, состоящей из N секций: $\alpha_{hN.eff}$, $\alpha_{cN.eff}$, $\rho_{hN.eff}$, $\rho_{cN.eff}$. Для эффективных значений α получаем

$$\alpha_{cN.\text{eff}} = \alpha_N(T_{c,N}) - \frac{1}{T_{c,N}} \sum_{i=1}^{i=N} \left(\hat{L}_{ta,i} \Delta_{1,i} + \frac{R_{t,i}}{R_{ta}} \Delta_{2,i} \right) - \frac{1}{T_{c,N}} \sum_{i=2}^{i=N} \hat{L}_{ta,i} \Delta_{3,i},$$
(18)

$$\alpha_{hN,\text{eff}} = \alpha_1(T_{h,1}) + \frac{1}{T_h} \sum_{i=1}^{i=N} \left(\hat{R}_{ta,i} \Delta_{1,i} + \frac{R_{t,i}}{R_{ta}} \delta_{2,i} \right) + \frac{1}{T_h} \sum_{i=2}^{i=N} \hat{R}_{ta,i} \Delta_{3,i},$$
(19)

где $R_{ta} = \sum_{i=1}^{i=N} R_{t,i} (L_i - L_{i-1})$ — полное тепловое сопротивление ветви, отнесенное к единице сечения, а

Рис. 2. Схема составной ветви.

 $\hat{R}_{ta,i} = \sum_{k=i+1}^{N} R_{t,i} / R_{ta}$ и $\hat{L}_{ta,i} = \sum_{k=1}^{k=i-1} R_{t,i} / R_{ta}$ — относительное тепловое сопротивление ветви соответственно

тельное теплювое сопротивление ветви соответственно справа и слева от *i*-секции. Для $\hat{L}_{ta,i}$ и $\hat{R}_{ta,i}$ имеет место тождество

$$\hat{R}_{ta,i} + \hat{L}_{ta,i} + \frac{R_{t,i}}{R_{ta}} = 1.$$
 (20)

Кроме того, $\hat{R}_{ta,N} = 0$ и $\hat{L}_{ta,1} = 0$. Остальные использованные в (18) и (19) обозначения таковы:

$$\Delta_{1,i} = \alpha_{c,i} T_{c,i} - \alpha_{h,i} T_{h,i} - \overline{\alpha}_i \Delta T_i,$$

$$\Delta_{2,i} = \alpha_{h,i} T_h^{(i)} - \alpha_{c.\text{eff},i} T_{c,i},$$

$$\Delta_{3,i} = (\alpha_{h,i} - \alpha_{c,i-1}) T_{c,i},$$

$$\delta_{2,i} = \alpha_{h.\text{eff},i} T_{h,i} - \alpha_{h,i} T_{h,i}.$$
(21)

Для эффективных значений сопротивлений составной ветви можно получить

$$\rho_{c.\text{eff}} = \sum_{i=1}^{i=N} \hat{L}_{t,i} \overline{\rho}_i + \frac{1}{L} \sum_{i=2}^{i=N} \hat{L}_{t,i} (R_{\text{cont},i-1} + R_{\text{cont},i}) + \frac{1}{R_{ta}} \sum_{i=1}^{i=N} R_{t,i} \rho_{h.\text{eff},i}, \qquad (22)$$

$$\rho_{h.\text{eff}} = \sum_{i=1}^{i=N} \hat{R}_{t,i} \overline{\rho}_i + \frac{1}{L} \sum_{i=2}^{i=N} \hat{R} (R_{\text{cont},i-1} + R_{\text{cont},i}) + \frac{1}{R_{ta}} \sum_{i=1}^{i=N} R_{t,i} \rho_{h.\text{eff},i}.$$
(23)

Можно показать, что эффективные значения ρ и α на концах ветви связаны между собой формулами, аналогичными выражениям (11)–(14).

Порядок расчета секционированной ветви таков.

Пусть мы секционируем ветвь для того, чтобы получить максимальное значение ΔT_{max} . Нам надо найти оптимальный ток и оптимальные длины секций. Вначале мы решаем уравнение (2). К граничным условиям необходимо добавить условия сочленения секций. Будем считать, что на границе секций отсутствует скачок температур, а тепловой поток, выходящий из *i*-секции, поступает в (*i* – 1)-секцию, увеличиваясь на джоулево тепло, выделяющееся на контактном сопротивлении. Подробно техника решения такого уравнения дается в работе [2]. При этом вместо уравнения второго порядка решаются два уравнения первого порядка для dT/dx и dQ/dx. Следует только иметь в виду, что используемые в данной работе уравнения отличаются знаком *i*. После того как решение найдено в достаточно большом количестве точек, вычисление интегралов, входящих в эффективные значения термоэлектрических параметров, не представляет труда. Значение $\Delta T_{\rm max}$ находится по стандартным формулам [1]. Затем вычисляются производные от $Z_c = \alpha_{cN.eff}^2 R_{ta} / \rho_{cN.eff}$ по границам секций L_i , $i = 1, 2, \ldots, N-1$. Границы секций L_i изменяют в соответствии со знаком производной. После этого делается аналогичный расчет для *n*-ветвей. Согласование по плотности тока для *p*- и *n*-ветвей осуществляется изменением сечения ветвей или, если это нецелесообразно, в качестве плотности тока берется их среднее арифметическое. Если же различие в плотностях тока для ветвей различного типа велико и изменять сечение ветвей по каким-то конструктивным соображениям нецелесообразно, то вычисляется Z_c термоэлемента и ищется его максимум по границам секций L_i .

Таким образом находятся основные характеристики составной ветви: оптимальный ток и оптимальные длины секций. Связь эффективных значений на концах ветви со средними по ветви значениями (11)-(14) значительно облегчает отладку программ. Описанная процедура проще, чем используемый в [2] метод максимума Понтрягина, так как там вместо системы двух уравнений для dT/dx и dQ/dx необходимо решать систему из четырех уравнений.

Список литературы

- А.Л. Вайнер, Н.В. Коломоец, Э.М. Лукишкер, В.М. Ржевский. ФТП, 11, 546 (1977).
- [2] Л.И. Анатычук, В.А. Семенюк. Оптимальное управление свойствами термоэлектрических материалов и приборов (Черновцы, Прут, 1992).
- [3] И.А. Драбкин, З.М. Дашевский. В сб.: Термоэлектрики и их применения (СПб., 2000) с. 292.
- [4] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников (М., Наука, 1977) гл. I, с. 20.

Редактор Л.В. Шаронова

Optimization of segmented cooling Leg

I.A. Drabkin

JSC "Giredmet", 119017 Moscow, Russia

Abstract A method of calculating the segmented thermoelectric cooling leg in one-dimensional approximation by means of thermal balance with effective values of thermoelectric parameters — conductivity σ , the Seebeck coefficient α and thermal conductivity κ — is presented. This method accurately accounts for the temperature dependences of σ , α , κ . The effect of contact resistances on the efficiency is also taken into account accurately. Application of the method for calculation of performance of thermoelement is also presented.