# Математическое моделирование процессов тепло- и массопереноса в цилиндрическом канале в зависимости от коэффициента аккомодации тангенциального импульса

© О.В. Гермидер, В.Н. Попов<sup>¶</sup>

Северный (Арктический) федеральный университет им. М.В. Ломоносова, 163002 Архангельск, Россия <sup>¶</sup> e-mail: v.popov@narfu.ru

(Поступило в Редакцию 23 декабря 2016 г. В окончательной редакции 11 апреля 1017 г.)

Рассмотрены процессы тепло- и массопереноса в длинном цилиндрическом канале с использованием зеркально-диффузной модели граничного условия Максвелла. В качестве основного уравнения, описывающего кинетику процесса, использовано уравнение Вильямса. В канале поддерживается постоянный градиент температуры. В широком диапазоне изменения числа Кнудсена получены значения потоков тепла и массы через поперечное сечение канала в зависимости от коэффициента аккомодации тангенциального импульса. Построены профили потока тепла. Проведено сравнение с аналогичными результатами, представленными в открытой печати.

DOI: 10.21883/JTF.2017.11.45116.2145

#### Введение

В связи с развитием направления в динамике разреженного газа, которое связано с разработкой современных технологий MEMS, особое значение приобретают исследования процессов тепло- и массопереноса в микро- и наноканалах в зависимости от модели взаимодействия молекул газа с поверхностью канала [1]. Наиболее известной моделью граничных условий является зеркально-диффузное граничное условие Максвелла. В модели Максвелла функция распределения молекул газа, отраженных от стенок канала, имеет вид [2]

$$f^{+}(\mathbf{r}'_{s}, \mathbf{v}) = (1 - \alpha)f^{-}(\mathbf{r}'_{s}, \mathbf{v} - 2\mathbf{n}(\mathbf{nv})) + \alpha f_{s}(\mathbf{r}'_{s}\mathbf{v}), \quad \mathbf{nv} > 0,$$
(1)

$$f_s(\mathbf{r}'_s, \mathbf{v}) = n(z') \left(\frac{m}{2\pi k_B T(z')}\right)^{3/2} \exp\left(-\frac{m}{2k_B T(z')} \mathbf{v}^2\right),$$
(2)

где  $\alpha$  — коэффициент аккомодации тангенциального импульса,  $f^{-}(\mathbf{r}'_{s}, \mathbf{v} - 2\mathbf{n}(\mathbf{nv}))$  — функция распределения молекул газа, падающих на стенки,  $\mathbf{r}'_s$  — радиус-вектор точек на стенках канала, п — вектор нормали к боковой поверхности, направленный в сторону газа,  $f_s(\mathbf{r}'_s, \mathbf{v})$  локально равновесная функция распределения. Коэффициент аккомодации тангенциального импульса в модели зеркально-диффузного отражения Максвелла (1) определяет вероятность того, что молекула отразится от стенки диффузно. Таким образом, если  $\alpha = 1$ , то зеркально-диффузное граничное условие переходит в модель диффузного отражения. В случае зеркального отражения коэффициент аккомодации тангенциального импульса имеет нулевое значение.

Другой моделью, описывающей взаимодействие молекул газа с поверхностью, является модель Чер-

чиньяни-Лэмпис (Cercignani-Lampis, CL), в которой учитываются два параметра: коэффициент аккомодации тангенциального импульса α<sub>τ</sub> и коэффициент аккомодации кинетической энергии  $\alpha_n$ , связанной с компонентой скорости v<sub>n</sub> направленной по нормали к поверхности. В модели CL функция распределения молекул газа, отраженных от поверхности канала, имеет вид [3]

$$f^{+}(\mathbf{r}'_{s}, \mathbf{v}) = \frac{1}{|\mathbf{v}_{n}|} \int_{\mathbf{v}'_{n} < 0} |\mathbf{v}'_{n}| f^{-}(\mathbf{r}'_{s}, \mathbf{v}') R(\mathbf{v}' \to \mathbf{v}) d\mathbf{v}',$$

$$R(\mathbf{v}' \to \mathbf{v}) = \frac{m^{2} \mathbf{v}_{n}}{4\pi^{2} \alpha_{n} \alpha_{\tau} (2 - \alpha_{\tau}) (k_{B}T)^{2}}$$

$$\times \int_{0}^{2\pi} \exp\left(\frac{\sqrt{1 - \alpha_{n}} m \mathbf{v}_{n} \mathbf{v}'_{n}}{k_{B}T \alpha_{n}} \cos\phi\right) d\phi$$

$$\times \exp\left(\frac{m(\mathbf{v}_{n}^{2} + (1 - \alpha_{n}) \mathbf{v}'_{n}^{2})}{2k_{B}T \alpha_{n}} - \frac{m(\mathbf{v}_{\tau} - (1 - \alpha_{\tau}) \mathbf{v}'_{\tau})^{2}}{2k_{B}T \alpha_{\tau} (2 - \alpha_{\tau})}\right),$$

где  $R(\mathbf{v}' \rightarrow \mathbf{v})$  — ядро рассеяния,  $\mathbf{v}', \mathbf{v}$  — векторы скорости падающих и отраженных молекул газа от стенок канала. При  $\alpha_{\tau} = 1$  и  $\alpha_n = 1$  отражение молекул от поверхности канала является диффузным. В случае  $\alpha_{\tau} = 0$  и  $\alpha_n = 0$  отражение становится зеркальным.

В рамках модели зеркально-диффузного отражения Максвелла в работах [4-6] исследовалось влияние коэффициента аккомодации тангенциального импульса на тепловой и массовый потоки в канале, образованного двумя бесконечными параллельными пластинами. Для цилиндрического канала результаты вычислений потоков массы и тепла с использованием зеркально-диффузных граничных условий Максвелла и S-модели кинетического уравнения Больцмана приведены в [6], в [7] — на основе БГК. Полученные в [8,9]

>

значения коэффициента аккомодации тангенциального импульса показали, что для легких газов, таких как азот, аргон и гелий, коэффициент аккомодации может отличаться от единицы, тогда как для тяжелых газов, например криптона и ксенона, коэффициенты ближе к единице [6]. Для загрязненной поверхности взаимодействие газ-поверхность ближе к диффузному рассеянию, чем взаимодействие в случае специально обработанной гладкой поверхности. Химическая чистка поверхности увеличивает отклонение коэффициента аккомодации от единицы. Если же рассматривается взаимодействие молекул достаточно тяжелого газа с гладкой поверхностью, то можно допускать полную аккомодацию молекул газа поверхностью. В частности, диффузная модель отражения была использована в работах [10-12] для получения значений потоков тепла и массы в прямоугольном канале, в [13] в канале треугольного сечения, в [14–17] в цилиндрическом канале, в [18] в канале эллиптического сечения. В [14-16] результаты получены с использованием численного интегрирования S-модели кинетического уравнения Больцмана. Вместе с тем интерес представляет применение точных аналитических методов. Аналитическое решение уравнения Вильямса в задачах о тепловом крипе в прямоугольном и цилиндрическом каналах получено в [12,17] соответственно. Моделирование процесса массопереноса с граничными условиями Черчиньяни-Лэмпис (Cercignani-Lampis, CL) в прямоугольном канале осуществлялось в [19].

В настоящей работе в отличие от [14–17] получено выражение для потоков тепла и массы в цилиндрическом канале в задаче о тепловом крипе при использовании зеркально-диффузной модели отражения молекул поверхностью канала. В широком диапазоне изменения числа Кнудсена найдены значения потоков тепла и массы в зависимости от коэффициента аккомодации тангенциального импульса.

# Постановка задачи. Математическая модель

Рассмотрим цилиндрический канал радиусом R'. Предположим, что в канале поддерживается постоянный градиент температуры, направленный вдоль его оси Oz'. Для нахождения функции распределения молекул газа по координатам и скоростям воспользуемся уравнением Вильямса [20], которое в цилиндрической системе координат записывается в виде

$$\mathbf{v}_{\rho} \, \frac{\partial f}{\partial \rho'} + \frac{\mathbf{v}_{\varphi}}{\rho'} \, \frac{\partial f}{\partial \varphi} + \mathbf{v}_{z} \, \frac{\partial f}{\partial z'} + \frac{\mathbf{v}_{\varphi}^{2}}{\rho'} \, \frac{\partial f}{\partial \mathbf{v}_{\rho}} \\ - \frac{\mathbf{v}_{\rho} \mathbf{v}_{\varphi}}{\rho'} \, \frac{\partial f}{\partial \mathbf{v}_{\varphi}} = \frac{\omega}{\gamma l_{g}} \, (f_{*} - f), \tag{3}$$

$$f_* = n_* \left(\frac{m}{2\pi k_B T_*}\right)^{3/2} \exp\left(-\frac{m}{2k_B T_*} \left(\mathbf{v} - \mathbf{u}_*\right)^2\right).$$

Здесь  $\mathbf{r}' = \mathbf{r}'(\rho', \varphi, z'), \rho', \varphi, z'$  — координаты молекул газа в цилиндрической системе координат в конфигурационном пространстве;  $v_{\rho}, v_{\varphi}, v_z$  — проекции вектора скорости **v** на оси цилиндрической системы координат,  $\omega = |\mathbf{v} - \mathbf{u}(\mathbf{r}')|, \mathbf{u}(\mathbf{r}')$  — массовая скорость газа,  $l_g = \eta_g \beta^{-1/2}/p$  — средняя длина свободного пробега молекул газа, p и  $\eta_g$  — давление и коэффициент динамической вязкости газа,  $\gamma = 5\sqrt{\pi}/4, \beta = m/(2k_BT_0),$ m — масса молекулы газа,  $k_B$  — постоянная Больцмана,  $T_0$  — температура газа в некоторой точке, принятой в качестве начала координат. Параметры  $n_*, \mathbf{u}_*$  и  $T_*$  в функции  $f_*$  выбираем из условия, что модельный интеграл столкновений удовлетворял законам сохранения числа частиц, импульса и энергии [20]:

$$\int \omega M_j f_* d^3 \mathbf{v} = \int \omega M_j f d^3 \mathbf{v}, \quad j = 0 - 4, \qquad (4)$$

где  $M_0 = 1$ ,  $M_1 = mv_x$ ,  $M_2 = mv_y$ ,  $M_3 = mv_z$ ,  $M_4 = mv^2/2$ .

В качестве граничного условия на стенках канала используем модель зеркально-диффузного отражения Максвелла (1).

Рассмотрим установившееся движение газа в канале. Предполагаем, что изменение температуры является малым

$$G_T = \frac{1}{T_0} \frac{dT}{dz}, \quad |G_T| \ll 1,$$
 (5)

где  $G_T$  — безразмерный градиент температуры,  $T_0$  — температура в начале координат, z = z'/R'.

Раскладывая в ряд по градиенту температуры *G<sub>T</sub>* выражение (2) и ограничиваясь линейными членами в разложении, получим

$$f_s(\mathbf{r}'_s, \mathbf{v}) = f_0(C) \left[ 1 + G_T z \left( C^2 - \frac{5}{2} \right) \right].$$
 (6)

Здесь  $f_0(C) = n_0(\beta/\pi)^{3/2} \exp(-C^2)$  — абсолютный максвеллиан,  $\mathbf{C} = \beta^{1/2} \mathbf{v}$  — безразмерная скорость молекул газа.

Функцию f линеаризуем относительно локально равновесной функции распределения  $f_s(\mathbf{r}'_s, \mathbf{v})$ . Принимая во внимание равенство (6) и используя R' в качестве масштаба длины, получим

$$f(\mathbf{r}', \mathbf{v}) = f_0(C) \left( 1 + G_T z \left( C^2 - \frac{5}{2} \right) + h(\rho, \mathbf{C}) \right),$$
$$\rho = \rho' / R'. \tag{7}$$

Полагая  $n_* = n_0 + \delta n_*$ ,  $T_* = T_0 + \delta T_*$ ,  $\mathbf{U}_* = \beta^{1/2} \mathbf{u}_*$ , линеаризуем функцию  $f_*$ :

$$f_{*}(\mathbf{r}', \mathbf{v}) = f_{0}(C) \left( 1 + \frac{\delta n_{*}}{n_{0}} + 2\mathbf{C}\mathbf{U}_{*} + \left(C^{2} - \frac{3}{2}\right) \frac{\delta T_{*}}{T_{0}} \right).$$
(8)

Здесь *n*<sub>0</sub> — концентрация молекул газа в начале координат. Принимая во внимание, что течение газа по каналу имеет осесимметричный характер, в пространстве скоростей перейдем к сферической системе координат:  $C_p = C \cos \psi \sin \theta$ ,  $C_{\varphi} = C \sin \psi \sin \theta$ ,  $C_z = C \cos \theta$ . Подставляя выражения (7) и (8) в (3) и учитывая соотношения (4), для нахождения функции  $h(\rho, \mathbf{C})$  приходим к уравнению

$$\left(\left[\cos\psi\frac{\partial h}{\partial\rho} - \frac{\sin\psi}{\rho}\frac{\partial h}{\partial\psi}\right]\sin\theta + G_T\left(C^2 - \frac{5}{2}\right)\cos\theta\right)\gamma Kn$$
$$= \frac{1}{2\pi}\int C'\exp(-C'^2)k(\mathbf{C},\mathbf{C}')h(\rho,\mathbf{C}')d^3\mathbf{C}' - h(\rho,\mathbf{C}),$$
(9)

где  $k(\mathbf{C}, \mathbf{C}') = 1 + 3\mathbf{C}\mathbf{C}'/2 + (C^2 - 2)(C'^2 - 2)/2$ ,  $Kn = l_g/R'$ . Принимая во внимание, что отношение левой и правой частей уравнения (9) равно  $\gamma Kn$ , положим

$$h(\rho, \mathbf{C}) = G_T \left( C^2 - \frac{5}{2} \right) \cos \theta K n \gamma Z(\rho, \mu_1, \mu_2), \quad (10)$$

где  $\mu_1 = \cos \psi, \, \mu_2 = \sin \theta.$ 

Подставляя (10) в (9), приходим к уравнению относительно  $Z(\rho, \mu_1, \mu_2)$ :

$$\gamma Kn \left( \cos \psi \frac{\partial Z}{\partial \rho} - \frac{\partial Z}{\partial \psi} \frac{\sin \psi}{\rho} \right) \sin \theta + Z(\rho, \mu_1, \mu_2) + 1 = 0,$$
(11)

с граничным условием

$$Z(1, \mu_1, \mu_2) = (1 - \alpha)Z(1, -\mu_1, \mu_2), \quad \mu_1 < 0.$$
 (12)

Решение уравнения (11) с граничным условием (12) ищем методом характеристик [21]. Система уравнений характеристик для уравнения (11) имеет вид

$$\frac{d\rho}{\gamma Kn\sin\theta\cos\psi} = -\frac{\rho d\psi}{\gamma Kn\sin\theta\sin\psi} = -\frac{dZ}{Z+1} = dt.$$
(13)

Интегрируя систему уравнений характеристик (13), находим первые два независимых интеграла:

$$\rho |\sin \psi| = C_1, \quad (Z(\rho, \mu_1, \mu_2) + 1) \exp\left(\frac{\rho \mu_1}{\gamma K n \mu_2}\right) = C_2.$$
(14)

Исключая постоянные интегрирования  $C_1$  и  $C_2$  из (14) с использованием граничного условия (12), получаем

$$Z(\rho, \mu_1, \mu_2) = W(\rho, \mu_1, \mu_2) - 1$$

 $W(\rho, \mu_1, \mu_2) =$ 

$$\frac{\alpha \exp(-w_1(\rho, \mu_1, \mu_2))}{\exp(w_2(\rho, \mu_1, \mu_2)) - (1 - \alpha) \exp(-w_2(\rho, \mu_1, \mu_2))}$$
$$w_1(\rho, \mu_1, \mu_2) = \frac{\rho \mu_1}{\gamma K n \mu_2},$$
$$w_2(\rho, \mu_1, \mu_2) = \frac{\sqrt{1 - \rho^2(1 - \mu_1^2)}}{\gamma K n \mu_2}.$$

Журнал технической физики, 2017, том 87, вып. 11

Таким образом, функция распределения  $f(\mathbf{r}', \mathbf{v})$ , определяемая выражением (7), построена. Исходя из статистического смысла функции распределения, находим компоненту вектора потока тепла и массовую скорость газа в канале [2]:

$$q_{z}'(\rho') = \frac{m}{2} \int \left( \mathbf{v}_{z} - u_{z}(\rho') \right) \left| \mathbf{v} - \mathbf{u}(\rho') \right|^{2}$$
$$\times f(\mathbf{r}', \mathbf{v}) d^{3}\mathbf{v} = \frac{p_{0}}{\beta^{1/2}} q_{z}(\rho), \qquad (15)$$

$$u_z(\rho') = \frac{1}{n(z')} \int \mathbf{v}_z f(\mathbf{r}', \mathbf{v}) d^3 \mathbf{v} = \frac{U_z(\rho)}{\beta^{1/2}}, \qquad (16)$$

где  $q_z(\rho)$ ,  $U_z(\rho)$  — безразмерные компоненты вектора потока тепла и массовой скорости газа в канале соответственно

$$q_{z}(\rho) = \frac{1}{\pi^{3/2}} \int \exp(-C^{2})C_{z} \left(C^{2} - \frac{5}{2}\right)$$

$$\times \left(G_{T}z \left(C^{2} - \frac{5}{2}\right) + h(\rho, \mathbf{C})\right)d^{3}\mathbf{C} = -\frac{3G_{T}\gamma Kn}{2\sqrt{\pi}}$$

$$\times \left(1 - \frac{3}{4\pi} \int_{0}^{\pi} \cos^{2}\theta \sin\theta d\theta \int_{0}^{2\pi} W(\rho, \mu_{1}, \mu_{2})d\psi\right), \quad (17)$$

$$U_{z}(\rho) = \pi^{-3/2} \int C_{z} \exp(-C^{2})$$

$$\times \left(G_{C}z \left(C^{2} - \frac{5}{2}\right) + h(\rho, \mathbf{C})\right)d^{3}\mathbf{C} = \frac{G_{T}\gamma Kn}{2}$$

$$\times \left(G_T z \left(C^2 - \frac{3}{2}\right) + h(\rho, \mathbf{C})\right) d^3 \mathbf{C} = \frac{37747}{3\sqrt{\pi}}$$
$$\times \left(1 - \frac{3}{4\pi} \int_0^{\pi} \cos^2 \theta \sin \theta d\theta \int_0^{2\pi} W(\rho, \mu_1, \mu_2) d\psi\right).$$

Приведенные потоки тепла и массы находим согласно [6] как

$$J_{Q} = \frac{4\beta^{1/2}}{R'^{2}p_{0}} \int_{0}^{R'} q'_{z}(\rho')\rho'd\rho',$$
$$J_{M} = \frac{2mn_{0}}{R'^{2}\beta^{1/2}p_{0}} \int_{0}^{R'} u_{z}(\rho')\rho'd\rho'.$$

Используя выражения (15) и (16) для компоненты вектора потока тепла и массовой скорости газа в канале, получим

$$J_Q = 4 \int_0^1 q_z(\rho) \rho d\rho, \qquad (18)$$

$$J_M = 4 \int_0^1 U_z(\rho) \rho d\rho. \qquad (19)$$

Значения  $J_M/G_T$  при различных значениях  $\alpha$  и Kn

| Kn     | α      |        |        |        |        |        |        |
|--------|--------|--------|--------|--------|--------|--------|--------|
|        | 1      |        |        | 0.8    |        | 0.6    |        |
|        | (19)   | [6]    | [14]   | (19)   | [6]    | (19)   | [6]    |
| 0.0001 | 0.0001 | —      | _      | 0.0001 | —      | 0.0001 | _      |
| 0.0010 | 0.0008 | -      | -      | 0.0008 | -      | 0.0008 | -      |
| 0.0100 | 0.0083 | _      | 0.0116 | 0.0083 | _      | 0.0083 | —      |
| 0.1000 | 0.0765 | 0.1014 | 0.1020 | 0.0779 | 0.0962 | 0.0792 | 0.0908 |
| 0.5000 | 0.2705 | 0.3016 | 0.3027 | 0.2968 | 0.3118 | 0.3242 | 0.3230 |
| 1.0000 | 0.3881 | 0.3959 | 0.3968 | 0.4537 | 0.4372 | 0.5271 | 0.4865 |
| 2.0000 | 0.4977 | 0.4779 | 0.4784 | 0.6221 | 0.5648 | 0.7755 | 0.6769 |
| 5.0000 | 0.6080 | 0.5675 | —      | 0.8183 | 0.7244 | 1.1087 | 0.9435 |
| 10.000 | 0.6632 | 0.6210 | 0.6209 | 0.9288 | 0.8297 | 1.3193 | 1.1341 |
| 100.00 | 0.7376 | 0.7243 | 0.7210 | 1.0942 | 1.0530 | 1.6718 | 1.5775 |
| 1000.0 | 0.7502 | 0.7486 | 0.7469 | 1.1252 | 1.1166 | 1.7450 | 1.7237 |
| 10000  | 0.7520 | _      | _      | 1.1283 | _      | 1.7550 | _      |

Из сравнения выражений (17) и (18) следуют равенства

$$U_z = -\frac{2}{9}q_z, \quad J_M = -\frac{2}{9}J_Q.$$
 (20)

Значения приведенного потока массы  $J_M/G_T$  вычислены согласно (19) в зависимости от коэффициента аккомодации тангенциального импульса  $\alpha$  методом численного интегрирования Монте-Карло для всего диапазона изменения числа Кнудсена. Реализация алгоритма данного метода произведена с применением системы компьютерной алгебры Maple 17. Результаты вычислений представлены в таблице.

#### Анализ результатов

Анализ данных, представленных в таблице, показал, что приведенный поток массы зависит от коэффициента аккомодации тангенциального импульса, причем наибольшее отклонение значений наблюдается при приближении к свободномолекулярному режиму. Уменьшение коэффициента аккомодации тангенциального импульса приводит к увеличению массового потока через поперечное сечение канала.

Для режима течения, близкого к свободномолекулярному ( $Kn \gg 1$ ), выражения (18) и (19) для приведенных потоков тепла и массы могут быть представлены в виде рядов по малому параметру  $Kn^{-1}$ . В этом случае, ограничиваясь членами разложения прядка  $Kn^{-2}$ , получим

$$J_{Q} = -\frac{6(2-\alpha)}{\alpha\sqrt{\pi}} - \frac{2\sqrt{\pi}\left(\alpha^{2} + 6(1-\alpha)\right)}{5\alpha^{2}} \frac{1}{Kn} \ln\left(\frac{1}{Kn}\right),$$
$$J_{M} = -\frac{2}{9} J_{Q}.$$
 (21)

Линейные члены относительно  $Kn^{-1}$  в (21) определяют приведенные потоки тепла и массы через поперечное сечение цилиндрического канала под действием





**Рис. 1.** Профиль вектора потока тепла в канале  $q_z(\rho)/G_T$  при  $\alpha = 1, \ Kn = 10^3$ .



**Рис. 2.** Профиль вектора потока тепла в канале  $q_z(\rho)/G_T$  при  $\alpha = 0.6, Kn = 10^3$ .

постоянного градиента температуры в свободномолекулярном режиме и совпадают при  $\alpha = 1$  с выражениями  $J_Q = -6/\sqrt{\pi}$  и  $J_M = 4/(3\sqrt{\pi})$  из работы [6] при использовании диффузной модели отражения молекул газа от поверхности.

Для режимов течения, близких к гидродинамическому, анализ выражений (18) и (19) приводит к следую-



**Рис. 3.** Профиль вектора потока тепла в канале  $q_z(\rho)/G_T$  при  $\alpha = 1, Kn = 1.$ 



**Рис. 4.** Профиль вектора потока тепла в канале  $q_z(\rho)/G_T$  при  $\alpha = 0.6, Kn = 1.$ 

щим результатам:

$$J_Q = -\frac{15G_T K n}{4}, \quad J_M = \frac{5G_T K n}{6}.$$
 (22)

Таким образом, для режимов, близких к гидродинамическому режиму, приведенные потоки тепла и массы не зависят от коэффициента аккомодации тангенциального импульса. Последнее утверждение подтверждается результатами, приведенными в таблице для *Kn* < 0.0010, а выражение для  $J_Q/G_T$  в (22) совпадает с приведенным в работе [17]. Из выражения (22) для  $J_M/G_T$  вытекает, что коэффициент теплового скольжения равен 5/6, что совпадает со значением, найденным в [22]. Как следует из таблицы, полученные в настоящей работе результаты отличаются от аналогичных результатов, полученных в работах [6,14] в рамках S-модели кинетического уравнения Больцмана. Отличие обусловлено тем фактом, что значения макропараметров газа в канале существенно зависят от выбора модели интеграла столкновений [6].



**Рис. 5.** Профиль вектора потока тепла в канале  $q_z(\rho)/G_T$  при  $\alpha = 1, Kn = 0.5$ .



**Рис. 6.** Профиль вектора потока тепла в канале  $q_z(\rho)/G_T$  при  $\alpha = 0.1, Kn = 0.5.$ 

Профили распределения *z*-компоненты вектора потока тепла по сечению канала, рассчитанные согласно (17) в зависимости от коэффициента аккомодации тангенциального импульса молекул газа, показаны на рис. 1-6. Рис. 1, 3, 5 описывают процессы теплопереноса через поперечное сечение канала в случае полной аккомодации молекул газа на поверхности. Из представленных рисунков видно, что распределение компоненты вектора потока тепла имеет минимум в начале координат. При  $Kn \gg 1$  и  $\alpha = 1$  профиль вектора потока тепла представляет собой параболоид вращения с осью, совпадающей с осью цилиндра. При *Кn* « 1 профиль вектора потока тепла образует плоскость, перпендикулярную оси цилиндра, отклонение от которой имеет место в тонком пристеночном слое (слое Кнудсена), что совпадает с выводами работы [17].

## Заключение

В рамках кинетического подхода найдено решение задачи о переносе тепла и массы газа в цилиндрическом канале под действием постоянного градиента температуры с использованием диффузно-зеркальной модели отражения Максвелла. Построены профили вектора потока тепла в зависимости от коэффициента аккомодации тангенциального импульса, вычислены значения потока тепла через поперечное сечение канала в широком диапазоне изменения числа Кнудсена. Проведено сравнение с аналогичными результатами при полной аккомодации молекул на стенках канала.

Работа выполнена при поддержке гранта РФФИ по научному проекту № 16-29-15116 офи\_м.

### Список литературы

- [1] Ухов А.И., Борисов С.Ф., Породнов Б.Т. // Теплофизика и аэромеханика. 2010. Т. 17. № 1. С. 141–150.
- [2] Коган М.Н. Динамика разреженного газа. Кинетическая теория. М.: Наука, 1967. 440 с.
- [3] Cercignani C., Lampis M. // Transport Theory Statist. Phys. 1971. Vol. 1. P. 101–114.
- [4] Гулакова С.В., Попов В.Н. // ЖТФ. 2015. Т. 85. № 4. С. 1–6.
- [5] Siewert C.E. // Z. Angew. Math. Phys. 2003. Vol. 54. P. 273– 203.
- [6] Шарипов Ф.М., Селезнев В.Д. Движение разреженных газов в каналах и микроканалах. Екатеринбург: УрО РАН, 2008. 230 с.
- [7] Lo S.S., Loyalka S.K., Storvick T.S. // J. Chem. Phys. 1984.
   Vol. 81. P. 2439–2949.
- [8] Ewart T., Graur I., Perrier P., Meolans J.G. // Microfluidics and Nanofluidics. 2007. Vol. 26. N 6. P. 689–695
- [9] Silva E., Rojas-Cardenas M., Deschamps C.J. // International J. Refrigeration. 2016. Vol. 66. P. 121–132.
- [10] Sharipov F.M. // J. Vac. Sci. Technol. A. 1999. Vol. 17. N 5. P. 3062–3066.
- [11] Titarev V.A., Shakhov E.M. // Comput. Math. Math. Phys. 2010. Vol. 50. N 7. P. 1221–1237.

- [12] Гермидер О.В., Попов В.Н., Юшканов А.А. // ЖТФ. 2016.
   Т. 86. № 6. С. 37–41.
- [13] Naris S., Valougeorgis D. // European J. Mechanics B / Fluids. 2008. Vol. 27. P. 810–822.
- [14] Siewert C.E., Valougeorgis D. // J. Quantitative Spectroscopy & Radiative Transfer. 2002. Vol. 72. P. 531–550.
- [15] Taheri P., Bahrami M. // Phys. Rev. 2012. Vol. 86. P. 1-9.
- [16] Kamphorst C.H., Rodrigues P., Barichello L.B. // Appl. Mathematics. 2014. Vol. 5. P. 1516–1527.
- [17] Germider O.V., Popov V.N., Yushkanov A.A. // J. Eng. Phys. Thermophysics. 2016. Vol. 89. N 5. P. 1338–1343.
- [18] Graur I., Sharipov F. // European J. Mechanics B / Fluids. 2008. Vol. 27. P. 335–345.
- [19] Pantazis S., Varoutis S., Hauer V., Day C, Valougeorgis D. // Vacuum. 2011. Vol. 85. P. 1161–1164.
- [20] *Cercignani C.* Mathematical Methods in Kinetic Theory. NY.: Plenum Press, 1969. 227 p.
- [21] *Курант Р.* Уравнения с частными производными. М.: Мир, 1964. 830 с.
- [22] Латышев А.В., Юшканов А.А. Кинетические уравнения типа Вильямса и их точные решения. М.: МГОУ, 2004. 271 с.