05

Флуктуационный объем аморфных веществ в модели делокализованных атомов

© Д.С. Сандитов^{1,2}, А.А. Машанов¹

¹ Бурятский государственный университет, 670000 Улан-Удэ, Россия ² Институт физического материаловедения СО РАН, 670047 Улан-Удэ, Россия e-mail: Sanditov@bsu.ru

(Поступило в Редакцию 27 октбря 2016 г. В окончательной редакции 3 мая 2017 г.)

Развито представление о соответствии "образования дырки" в аморфных веществах процессу делокализации атома. Показано, что при стандартной скорости охлаждения 3 К/min значения доли флуктуационного объема, рассчитанные по данным о вязкости и по данным зависимости температуры стеклования от скорости охлаждения расплава, оказываются одинаковыми. Приведены результаты применения уравнения Бартенева к бескислородным стеклам.

DOI: 10.21883/JTF.2017.11.45125.2085

Введение

В последние годы применительно к стеклообразным системам развита модель делокализованных атомов [1,2]. Одним из важных параметров модели является флуктуационный объем аморфных веществ, обусловленный смещениями частиц из равновесных положений.

В настоящей работе обсуждается природа доли флуктуационного объема, замороженной при температуре стеклования, а также понятия "дырка" и "делокализация атома" в жидкостях и стеклах [3–7]. Рассмотрены следствия, вытекающие отсюда, для практических приложений.

Теория свободного объема и модель делокализованных атомов

Свободный объем жидкости V_f определяется как суммарный объем дырок [3]

$$V_f = (V - V_0) = v_h N_h,$$

где N_h — число дырок, v_h — объем дырки, V_0 — занятый объем. Для относительного числа дырок используется соотношение, заимствованное из теории кристаллической решетки,

$$\frac{N_h}{N} = \exp\left(-\frac{\varepsilon_h + \upsilon_h p}{kT}\right). \tag{1}$$

Здесь ε_h — энергия образования дырки, N — число атомов. Если дырка в кристалле представляет собой пустой узел решетки, то в случае жидкости она остается не совсем ясным понятием, как отмечал сам Я.И. Френкель. Свободному объему жидкости он придавал смысл избыточного объема в сравнении с объемом твердого тела (" V_0 — истинный объем тела в отсутствие дырок" [3]).

Нами развито представление о том, что "образованию дырки в жидкости" (по Френкелю) соответствует процесс делокализации атома — его флуктуационное смещение из равновесного положения.

Методами статистической физики без привлечения понятий "дырка" и "свободный объем" выводится формула для относительного числа делокализованных атомов [1,2]

$$\frac{N_e}{N} = \exp\left(-\frac{\Delta\varepsilon_e + p\Delta v_e}{kT}\right).$$
 (2)

Здесь $\Delta \varepsilon_e = p_i \Delta v_e$ — энергия делокализации атома, равная работе смещения атома из равновесного положения, совершаемой против внутреннего давления p_i , обусловленного силами межатомного притяжения, Δv_e — элементарный флуктуационный объем, необходимый для смещения атома (объем делокализации атома).

Данный подход назван моделью делокализованных атомов [1,8], одним из важных параметров которой является флуктуационный объем аморфного вещества ΔV_e :

$$\Delta V_e = N_e \Delta v_e. \tag{3}$$

Как видно, зависимости (1) и (2) совпадают. Из их сравнения следует, что избыточный свободный объем $V_f = N_h v_h$ приобретает смысл флуктуационного объема (3), а число дырок N_h — числа делокализованных атомов N_e . Энергия образования дырки ε_h совпадает с энергией делокализации атома $\Delta \varepsilon_e$ и объем дырки v_h — с объемом делокализации атома Δv_e .

Теорию свободного объема по Френкелю уже давно стали называть теорией флуктуационного свободного объема [6,9], подчеркивая тем самым флуктуационный характер процесса образования дырки (см. (1)). Из изложенного выше видно, что математический аппарат модели делокализованных атомов совпадает с формализмом теории флуктуационного свободного объема. С точки зрения модели делокализованных атомов термин "флуктуационный свободный объем" целесообразно переименовать во "флуктуационный объем" без прилагательного "свободный", ибо он по существу не является свободным объемом, а термин "свободный объем" предлагаем сохранить для традиционного ван-дерваальсова свободного объема. Классический свободный объем по Ван-дер-Ваальсу V_F — пустое пространство между атомами — входит в состав атомных комплексов структуры. Его называют структурно-обусловленным [5], геометрическим [6] свободным объемом.

Флуктуационный объем в области стеклования. Оценка по данным о вязкости

В области стеклования жидкости температурная зависимость времени структурной релаксации $\tau(T)$ и вязкости $\eta(T)$ успешно описывается уравнением ВЛФ (Вильямса–Ландела–Ферри) [9,10], получившим широкое распространение в физике аморфных полимеров [9] и стекол [6]:

$$\ln a_T = C_1 \frac{T - T_g}{T - T_g + C_2}, \quad a_T = \frac{\tau(T)}{\tau(T_g)} = \frac{\eta(T)}{\eta(T_g)}.$$
 (4)

Эмпирические постоянные данного уравнения C_1 и C_2 выражаются через параметры модели делокализованных атомов следующим образом [1]:

$$C_1 = \frac{1}{f_g} \text{ и } C_2 = \frac{f_g}{\beta_f}, \tag{5}$$

где $f_g = (\Delta V_e/V)_{T=T_g}$ — доля флуктуационного объема, замороженная при температуре стеклования T_g , β_f коэффициент теплового расширения флуктуационного объема при $T = T_g$ ($\beta_f = (df/dT)_{T=T_g}$). Эти формулы (5) были получены ранее в терминах теории флуктуационного свободного объема [6,9].

Для проверки применимости уравнения ВЛФ к температурной зависимости вязкости $\eta(T)$ в области стеклования, а также для расчета C_1 и C_2 можно представить его в виде уравнения прямой

$$-\frac{(T-T_g)}{\ln a_T} = \frac{1}{C_1} (T-T_g) + \frac{C_2}{C_1}$$

и построить график в координатах $[-(T - T_g)/k \ln a_T] - (T - T_g)$. Указанная зависимость в этих координатах оказывается линейной в достаточно широком интервале температур (рис. 1) (у силикатных стекол от T_g до $T_g + 700$ K), что подтверждает справедливость уравнения ВЛФ. Из этих графиков определяются значения C_1 и C_2 [6].

В соответствии с одной из формул (5) доля флуктуационного объема f_g , замороженная при температуре стеклования, рассчитывается по данным о параметре

Рис. 1. Температурная зависимость вязкости оконного силикатного стекла в координатах уравнения ВЛФ: $-(T - T_g)/\lg a_T - (T - T_g). a_T = \eta(T)/\eta(T_g).$

Таблица 1. Доля флуктуационного объема f_g , замороженная при температуре стеклования T_g , и параметры уравнения ВЛФ C_1 и C_2 для неорганических стекол, органических аморфных полимеров и металлических аморфных сплавов

Аморфные вещества	T_g , K	C_1	C_2	f_g	
Натриево-силикатные стекла Na ₂ O-SiO ₂ [17]					
Na ₂ O, mol.%					
15	782	36	430	0.028	
20	759	36	390	0.028	
25	739	35	355	0.028	
30	721	35	322	0.028	
33	712	35	304	0.028	
35	705	35	291	0.028	
Аморфные органические полимеры [9] и селен [6]					
Поливинилацетат	305	36	47	0.028	
Натуральный каучук	300	38	54	0.026	
Метакрилат этиловый	335	40	65	0.025	
Селен	303	32	58	0.031	
Металлические стекла (аморфные сплавы [2])					
Pd40Ni40P20	602	39	93	0.026	
Pt ₆₀ Ni ₁₅ P ₂₅	500	37	95	0.027	
Pd77.5Cu ₆ Si _{16.5}	653	38	100	0.026	
Fe ₈₀ P ₁₃ C ₇	736	38	120	0.026	

уравнения ВЛФ C_1 и слабо зависит от природы стеклообразующих веществ [1,2] (табл. 1)

$$f_g = \frac{1}{C_1} \approx \text{const} \approx 0.020 - 0.030. \tag{6}$$

У натриево-силикатных стекол Na₂O–SiO₂ (у аморфных веществ одного класса) при изменении содержания Na₂O в пределах от 15 до 35 mol.% величина f_g оказывается практически универсальной постоянной: $f_g = 0.028$ (табл. 1).

Стекло	T_g , K	$a_1 \cdot 10^3$, K ⁻¹	$a_2 \cdot 10^5$, K ⁻¹	a_2/a_1	$a_1/a_2 + 2.9$	f _g (уравнение (12))	Литература
Канифоль	313	3.098	8.3	0.027	40	0.025	[13]
ПС	345	2.78	9.0	0.032	34	0.029	[13]
ПММА	349	2.75	8.9	0.032	34	0.029	[13]
Каучук СКС-30	208	4.62	15.0	0.032	34	0.029	[14]
Каучук СКС-18	218	4.41	13.2	0.030	36	0.028	[14]
Каучук СКС-40	246	3.90	12.0	0.031	35	0.028	[14]
Эбонит	349	2.72	9.6	0.035	31	0.032	[13]
Борный ангидрид	534	1.81	5.6	0.031	35	0.028	[13]
Силикатное стекло* (mas.%)							
Nº 1	714	1.34	4.28	0.032	34	0.029	[13]
Nº 2	744	1.29	4.24	0.033	33	0.030	[13]
Nº 3	809	1.19	3.60	0.030	36	0.028	[13]
Nº 4	885	1.086	3.33	0.031	35	0.028	[13]
Nº 5	1025	0.94	2.67	0.028	39	0.026	[13]

Таблица 2. Параметры уравнения Бартенева (7) и доля флуктуационного объема f_g при температуре стеклования

Примечание. * Силикатные стекла: № 1: SiO₂ — 55.3, Na₂O — 3.8, K₂O — 9.2, PbO — 30, Al₂O₃ — 1.7; № 2: SiO₂ — 38.1, Na₂O — 1.3, K₂O — 2.5, PbO — 52, Al₂O₃ — 3.4, B₂O₃ — 1.8, CaO — 0.5, MgO — 0.4; № 3: SiO₂ — 70.9, Na₂O — 16.1, K₂O — 0.5, CaO — 8.1, MgO — 2.9, другие оксиды 1,4; № 4: SiO₂ — 56, CaO — 7.4, MgO — 8, K₂O — 2, Al₂O₃ — 25. ПС — полистирол, ПММА — полиметилметакрилат.

Предполагается, что значения f_g в табл. 1 относятся к "стандартной" скорости охлаждения расплава q = 0.05 K/s (см. ниже).

Оценка f_g по данным о зависимости температуры стеклования от скорости охлаждения

Проблема зависимости температуры стеклования от скорости охлаждения расплава является важнейшей частью теории стеклообразного состояния. Она важна и для практики, например, при разработке оптимального режима отжига и закалки стекол.

Бартенев [11] на основе предложенного им критерия стеклования и известной формулы времени релаксации, записанной при температуре стеклования, предложил следующую зависимость температуры стеклования от скорости охлаждения расплава q = dT/dt:

$$\frac{1}{T_g} = a_1 - a_2 \ln q.$$
 (7)

Оказывается, что отношение параметров уравнения Бартенева тесно связано с долей флуктуационного объема f_g [12]

$$\frac{1}{f_g} = \left(\frac{a_1}{a_2}\right) - \ln q. \tag{8}$$

Было установлено, что отношение эмпирических постоянных a_1 и a_2 слабо зависит от природы аморфных веществ — практически одинаково для них $(a_2/a_1 \approx 0.03)$ (табл. 2) [13–15]

$$\frac{a_2}{a_1} \approx \text{const} \approx 0.027 - 0.035. \tag{9}$$

Отсюда следует, что при данной скорости охлаждения q = const величина f_g в равенстве (8) также есть константа $f_g \approx \text{const.}$

В связи с зависимостью $T_g = T_g(q)$ было предложено пользоваться понятием о стандартной скорости охлаждения [13–15]

$$q = 3 \text{ K/min} = 0.05 \text{ K/s},$$
 (10)

принятой в технологии стекла. В дилатометрии стекол и полимеров фактически во всех странах мира используют, как правило, такую же скорость охлаждения (10). Ввиду слабой полулогарифмической зависимости T_g от q небольшие колебания q около стандартного значения особо не сказываются на величине T_g , за редкими исключениями. При изменении q в 10 раз температура стеклования смещается лишь на малую величину $\Delta T = 0.03T_g$ [13,15]. Поэтому обычно полагают, что подавляющее большинство имеющихся данных о T_g относится к стандартной скорости охлаждения.

Из выражения (8) выразим f_g

$$f_g = \left(\frac{a_1}{a_2} - \ln q\right)^{-1}.\tag{11}$$

Подставив в это равенство значения a_1 и a_2 из табл. 2 и $\ln q = -2.9$ (q = 0.05 K/s), вычислим долю флуктуационного объема f_g при стандартной скорости охлаждения (табл. 2)

$$f_g = \left(\frac{a_1}{a_2} + 2.9\right)^{-1} \approx \text{const} \approx 0.026 - 0.032.$$
 (12)

Примечательно то обстоятельство, что эти значения находятся в согласии с результатом расчета f_g по данным о вязкости (6) (табл. 1).

Стекло	T_g , K	$a_1 \cdot 10^3$, K ⁻¹	$a_2 \cdot 10^5$, K ⁻¹	a_2/a_1	f_{g} (12)
Se-Bi	309	3.12	10.45	0.034	0.031
Se–Ga	315	3.09	9.29	0.030	0.027
In-Se	316.7	3.09	5.54	0.018	0.017
As-Sb-Se	444.8	2.15	6.74	0.031	0.028
GeO ₂	762	1.23	3.45	0.028	0.026
$P_2O_5-TeO_2$	578	1.67	4.99	0.030	0.027
$SiO_2 - Al_2O_3 - B_2O_3 -$					
P ₂ O ₅ -MgO-Na ₂ O-K ₂ O	1064	0.89	3.20	0.036	0.032

Таблица 3. Параметры уравнения Бартенева (7) и доля флуктуационного объема f_g для бескислородных и ряда оксидных стекол [17]

Обсуждение результатов

1. Из совпадения расчетов f_g двумя разными способами (по соотношениям (6) и (12)) следует, что способ вычисления f_g по данным о вязкости (6) относится так же, как и в случае (12), к стандартной скорости охлаждения (10).

В формуле (11) отношение $(a_1/a_2) \approx 35-40$ не зависит от величины q и заметно превышает второе слагаемое (при q = 0.05 K/s)

$$\frac{a_1}{a_2} \gg \ln q,$$

поэтому доля флуктуационного объема f_g практически совпадает с отношением a_2/a_1 и слабо зависит от скорости охлаждения q. Она определяется, главным образом, "предельным" значением вязкости η_g при $T = T_g$, которое также слабо зависит от q: $\eta_g \approx \text{const} \approx 10^{12} \text{ Pa} \cdot \text{s}$ [12,16].

Таким образом, постоянство отношения параметров уравнения Бартенева $a_2/a_1 \approx \text{const}$ тесно связано с постоянством доли флуктуационного объема $f_g \approx \text{const}$ в модели делокализованных атомов.

Температура стеклования T_g измеряется как в режиме нагревания стекла в процессе его размягчения, так и в режиме охлаждения стеклообразующего расплава. Значения T_g , определенные этими способами, несколько отличаются. Тем не менее характеры зависимости T_g от скорости нагревания и скорости охлаждения оказываются идентичными. Экспериментальные точки ложатся на прямую в координатах $(1/T_g) - \lg q$, соответствующую уравнению (7).

В работах Бартенева с сотрудниками [13–15] проведено систематическое исследование зависимости $T_g = T_g(q)$ в широком диапазоне скоростей нагревания 0.2–50 К/тіп. В них изучены различные аморфные вещества: канифоль, эбонит, органические аморфные полимеры, силикатные стекла с температурами стеклования от 218 до 1025 К (табл. 2). Показана оправданность уравнения Бартенева (7), за редкими исключениями.

В табл. 3 приводятся результаты нашего исследования бескислородных стекол Se–Ga, Se–Bi, In–Se, As–Sb–Se.

Рис. 2. Зависимость температуры стеклования от скорости нагревания для бескислородных стекол в координатах $1/T_g - \ln q$. Содержание Se/Bi, mol.%: 77.28/22.72; Se/Ga, mol.%: 95.56/4.44; In/Se, mol.%: 7.11/92.89; As/Sb/Se, mol.%: 32.91/7.64/59.45. Использованы данные [17]. Se–Bi [(25097) Abu El-Oyoun M., 2000], Se–Ga [(26436) El-Oyoun M.A., 2003], In–Se [(26416) Abd El-Moiz A.B, 1992], As–Sb–Se [(25427) Mahadevan S., 1986].

Использованы данные в базе SciGlass [17]. Для них наблюдаются те же закономерности, что и для оксидных стекол: $a_2/a_1 \approx 0.028 - 0.034$, $f_g \approx 0.026 - 0.032$ (табл. 3). Лишь стекло In-Se выпадает из общей закономерности. Зависимость $1/T_g$ от ln q оказывается линейной (рис. 2), что подтверждает применимость уравнения (7) к этим и другим системам (рис. 3).

2. При делокализации атома речь идет о локальной упругой деформации межатомных связей без разрыва последних. Под "делокализацией атома", например, в неорганических стеклах и их расплавах подразумевается смещение мостикового атома (типа атома кислорода в мостике Si–O–Si), связанное с локальной низкоактивационной деформацией сетки валентных связей [1,8].

Рис. 3. Зависимость обратной величины температуры стеклования $1/T_g$ от логарифма скорости охлаждения $\ln q$ для оксидных стекол. Содержание SiO₂/Al₂O₃B₂O₃/P₂O₅/MgO/Na₂O/K₂O, mol.%: 55.09/22.01/1.01/1.72/19.78/0.32/0.0507; GeO₂, mol.%: 100; P₂O₅/TeO₂, mol.%: 69.39/30.61. Использованы данные [17]. SiO₂-Al₂O₃-B₂O₃-P₂O₅-MgO-Na₂O-K₂O [(24241) Watanabe K., 1994], GeO₂ [(14972) Bruning R., 1999], P₂O₅-TeO₂ [(8772) Elkholy M.M., 1995].

Рис. 4. Схема переключения валентной связи при вязком течении силикатного стекла [18]. (*A*-*B*) — делокализация мостикового атома кислорода в мостике Si-O-Si; (*B*-*C*) — переключение валентной связи.

На рис. 4 приводится схема элементарного акта вязкого течения силикатного стекла по Немилову [18], который, как мы считаем [19,20], состоит из двух этапов: (1) делокализации мостикового атома кислорода (A-B)и (2) переключения валентной связи (B-C). Полагаем, что делокализация атома — предельное смещение мостикового атома кислорода — служит необходимым условием переключения валентной связи и, следовательно, самого вязкого течения. Без делокализации атома ("пускового механизма" текучести) невозможно вязкое течение. Поэтому замораживание процесса делокализации активного атома в области стеклования приводит к прекращению вязкого течения и к переходу расплава в стеклообразное состояние.

3. Остановимся на некоторых следствиях, имеющих отношение к практическим приложениям.

3.1. Представление о том, что образование дырки в жидкостях и стеклах обусловлено делокализацией атома, позволяет устранить ряд противоречий между свободно-объемной теорией и экспериментальными данными.

С точки зрения теории свободного объема, вязкость жидкости, измеренная при ее постоянном объеме V = const, не должна меняться с изменением температуры, поскольку свободный объем остается без изменения. Однако, согласно опытным данным, вязкость уменьшается при нагревании при постоянном объеме. Такое же явление наблюдается и для других молекулярнокинетических процессов [21,22].

Данное кажущееся противоречие возникает из-за ошибочной трактовки свободного объема как структурнообусловленного ван-дер-ваальсова свободного объема, который не меняется при изменении температуры при V = const. В соответствии с предлагаемым механизмом образования дырки вполне возможно изменение флуктуационного свободного объема с изменением температуры при V = const, так как локальные тепловые смещения (делокализации) атомов могут происходить в принципе и при неизменном объеме системы. Нагревание жидкости при V = const сопровождается ростом числа делокализованных атомов ("дырок"), что приводит к снижению вязкости.

Другой аналогичный пример кажущегося противоречия встречается в работе [23], где утверждается, что исследование массивных и ленточных металлических стекол (состава $Pd_{40}Cu_{30}Ni_{10}P_{20}$), отличающихся на четыре порядка по скорости закалки и имеющих поэтому примерно вдвое различающийся свободный объем, не выявило сколько-нибудь заметной разницы их сдвиговых вязкостей, что противоречит теории свободного объема. Здесь авторы [23] под свободным объемом подразумевают структурно-обусловленный свободный объем, который практически не оказывает влияния на вязкость.

Очевидно, что процесс делокализации атома в локальных областях как массивных, так и ленточных металлических стекол (с разными геометрическими свободными объемами) происходит одинаково, поэтому доли флуктуационного свободного объема и значения сдвиговых вязкостей должны быть близки в обоих случаях, что и подтверждает эксперимент [23].

3.2. Величина f_g входит в основные формулы модели делокализованных атомов, с помощью которых можно объяснить, а иногда предсказать некоторые явления в стеклах [1],

$$\Delta \varepsilon_e = RT_g \ln(1/f_g), \tag{13}$$

$$\Delta v_e = \frac{3(1-2\mu)RT_g}{f_g E},\tag{14}$$

где R — газовая постоянная, μ — коэффициент Пуассона, E — модуль упругости при одноосной деформации.

В качестве примера рассмотрим так называемый эффект пластичности стекол [6,24–29]. Под действием механического напряжения, превышающего некоторый

предел σ_y , при 20°С в силикатных стеклах возникает деформация, которая после снятия внешнего напряжения может сохраняться сколь угодно долго. Однако примечательно то обстоятельство, что при нагревании (ниже T_g) данная деформация релаксирует практически до исчезновения. Следовательно, она оказывается замороженной обратимой вязкоупругой деформацией. Тем не менее, следуя многим авторам, будем пользоваться термином "пластическая", а величину σ_y назовем пределом текучести ("пластичности").

Аналогичная замороженная деформация наблюдается у аморфных органических полимеров [24]. У массивных металлических стекол недавно обнаружены также замороженная вязкоупругая деформация и ее термостимулированная релаксация [25], основные закономерности которых фактически такие же, как у неорганических стекол и аморфных полимеров.

"Пластичность" хрупких неорганических стекол удобно изучать методом микротвердости. При вдавливании алмазной пирамидки Виккерса (и других заостренных инденторов) в силикатное стекло образуется "пластичный" микроотпечаток (при 20°С). При этом микротвердость по Виккерсу H_v у силикатных, германатных и других неорганических стекол совпадает с предельным напряжением σ_y . Следовательно, микротвердость для них служит пределом текучести $H_v \approx \sigma_y$ [26].

Представление о том, что элементарный акт "пластической" деформации стекол сводится к делокализации атома (кинетической единицы), находится в удовлетворительном согласии с экспериментальными данными: расчеты предела текучести и энергии активации этой деформации согласуются с экспериментом [27].

Предел текучести σ_y имеет смысл напряжения, необходимого для критического смещения (делокализации) кинетической единицы. По величине он совпадает с

Рис. 5. Корреляция между микротвердостью H_v и температурой стеклования T_g силикатных стекол. I — свинцовосиликатное, 2 — щелочносиликатное, 3 — алюмосиликатное, 4 — кварцевое.

Таблица 4. Параметры модели делокализованных атомов для щелочно-силикатных стекол R_2O -SiO₂ (R = Na, K)

Стекло R ₂ O-SiO ₂	T_g , K	f_g	$\Delta v_e, \mathrm{\AA}^3$	$\Delta \varepsilon_e$, kJ/mol
Na ₂ O, mol.%				
19.6	744	0.029	10	19
30.1	713	0.028	9	18
36.3	694	0.029	8	18
K ₂ O, mol.%				
16.7	766	0.030	11	20
21.4	745	0.029	11	19
26.9	733	0.028	11	18
33	715	0.027	11	17

внутренним давлением $p_i = \Delta \varepsilon_e / \Delta v_e$, против которого совершается работа делокализации атома. Принимая во внимание $\sigma_y = p_i$ и соотношение для энергии делокализации атома $\Delta \varepsilon_e$ (13), приходим к заключению о линейной корреляции между пределом текучести σ_y и температурой размягчения (температурой стеклования) T_e

$$\sigma_{\rm y} = \frac{R\ln(1/f_g)}{\Delta v_e} T_g, \tag{15}$$

поскольку у стекол одного типа в данном выражении $f_g = \text{const}$ и $\Delta v_e = \text{const}$ (табл. 4). В самом деле, у ряда аморфных полимеров между σ_y и T_g обнаруживается линейная корреляция [27]. Как видно из рис. 5, микротвердость (предел текучести) силикатных стекол также линейно зависит от температуры стеклования T_g .

Таким образом, предлагаемый подход предсказывает наличие линейной корреляции между пределом текучести и температурой размягчения стекол.

Скорость термостимулированного восстановления деформированных стеклообразных полимеров как функция температуры и давления подчиняется экспоненциальной зависимости [28]

$$i = A \exp\left(-\frac{\Delta u + p\Delta v_y}{kT}\right). \tag{16}$$

Для эпоксидного аморфного полимера получено следующее значение активационного объема данного релаксационного процесса: $\Delta v_y = (55 \pm 8) \text{ Å}^3$. В рамках модели делокализованных атомов скорость термостимулированного восстановления исходного состояния деформированного стекла (16) определяется скоростью изменения числа делокализованных атомов в данном процессе

$$i \sim (dN_e/dt),$$

откуда зависимость (16) выводится из уравнения модели (2). При этом активационные параметры Δu и Δv_y получают следующую трактовку: $\Delta u = \Delta \varepsilon_e$ и $\Delta v_y = \Delta v_e$. У сетчатых эпоксидных полимеров типа модифицированной эпоксидной смолы ЭД-16 значения объема делокализации атома $\Delta v_e \approx 45-74 \text{ Å}^3$, рассчитанные по формуле модели (14), имеют такой же порядок величины, что и приведенное выше значение активационного объема Δv_y . Для указанных эпоксидных полимеров для расчета Δv_e приняты данные [29]: $T_g = 358$ K, $\mu = 0.33 - 0.37$, $E = (28 - 35) \cdot 10^8$ Pa.

Заключение

Представление, что образование дырки в жидкостях и стеклах обусловлено делокализацией атома, позволяет устранить противоречия между теорией свободного объема и экспериментальными данными. Многие исследователи при рассмотрении молекулярно-кинетических процессов в аморфных веществах под свободным объемом подразумевают структурно-обусловленный вандер-ваальсов свободный объем, что иногда приводит к кажущимся противоречиям между теорией и опытом. В вязком течении стеклообразующих жидкостей важную роль играет процесс делокализации активного атома его флуктуационное смещение из равновесного положения. Результаты расчета доли флуктуационного объема f_g , замороженной при температуре стеклования T_g , по данным о вязкости и по данным зависимости T_g от скорости охлаждения расплава приводят к одинаковым значениям f_g .

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (грант № 1932).

Список литературы

- [1] Сандитов Д.С. // ЖЭТФ. 2012. Т. 142. Вып. 1. С. 123–137.
- [2] Сандитов Д.С., Дармаев М.В., Сандитов Б.Д. // ЖТФ. 2017. Т. 87. Вып. 1. С. 43–47.
- [3] *Френкель Я.И.* Введение в теорию металлов. Л.-М.: Гостехиздат, 1948. 291 с.
- [4] Сандитов Д.С. // ДАН. 2015. Т. 464. № 6. С. 705–707.
- [5] Бетехтин В.И., Глезер А.М., Кадомцев А.Г., Кипяткова А.Ю. // ФТТ. 1998. Т. 40. Вып. 1. С. 85–89.
- [6] Сандитов Д.С., Бартенев Г.М. Физические свойства неупорядоченных структур. Новосибирск: Наука, 1982. 269 с.
- [7] Слонимский Г.Л., Китайгородский А.И., Аскадский А.А. // Высокомолек, соед. Сер. А. 1970. Т. 12. № 3. С. 494–512.
- [8] Сандитов Д.С., Бадмаев С.С. // Физ. и хим. стекла. 2015. Т. 41. № 5. С. 621–630.
- [9] Ferry J.D. Viscoelastic Properties of Polymers. NY., 1970.
 671 р. (Ферри Дж. Вязкоупругие свойства полимеров. М.: ИЛ, 1963. 535 с.)
- [10] Williams M.L., Landel R.F., Ferry J.D. // J. Amer. Chem. Soc. 1955. Vol. 77. N 14. P. 3701–3707.
- [11] Бартенев Г.М. // ДАН СССР. 1951. Т. 76. № 2. С. 227–230.
- [12] *Сандитов Д.С. //* ЖЭТФ. 2016. Т. 150. Вып. 3. № 9. С. 501– 515
- [13] Бартенев Г.М., Лукьянов И.А. // Журн. физ. химии. 1955.
 Т. 29. Вып. 8. С. 1486–1498.
- [14] Бартенев Г.М., Горбаткина Ю.А. // Высокомолек. соед. 1959. Т. 1. № 5. С. 769–775.

- [15] Бартенев Г.М. Строение и механические свойства неорганических стекол. М.: Стройиздат, 1966. 216 с.
- [16] Немилов С.В. // Физ. и хим. стекла. 2013. Т. 39. № 6. С. 857–878.
- [17] MDL
 SciGlass 7.8 Institute of Theoretical Chemistry, Shrewsbury, MA, 2012. www.sciglass.info.
- [18] *Немилов С.В.* // Физ. и хим. стекла. 1978. Т. 4. № 6. С. 662– 674.
- [19] Сандитов Д.С. Делокализация атомов и вязкое течение стеклообразующих расплавов. Германия: LAP Lambert Academic Publishing, 2016. 51 с.
- [20] Мункуева С.Б. Автореф. канд. дис. Температурная зависимость вязкости стеклообразующих расплавов в широком интервале, включающем область перехода жидкость-стекло: Иркутск: Ирк. гос. ун-т, 2016.
- [21] Кобеко П.П. Аморфные вещества. М.-Л.: Изд-во АН СССР, 1952. 432 с.
- [22] Ростиашвили В.Г., Иржак В.И., Розенберг Б.А. Стеклование полимеров. Л.: Химия, 1987. 192 с.
- [23] Лысенко А.В., Ляхов С.А., Хоник В.А., Язвицкий М.Ю. // ФТТ. 2009. Т. 51. Вып. 2. С. 209–213.
- [24] Олейник Э.Ф., Руднев С.Н., Саламатина О.Б., Котелянский М.И. // Высокомолек. соед. А. 2008. Т. 50. № 5. С. 773–788.
- [25] Чах К., Ляхов С.А., Хоник В.А. // Деформация и разрушение материалов. 2006. № 8. С. 22–25.
- [26] Сандитов Д.С., Сангадиев С.Ш. // Физ. и хим. стекла. 1998. Т. 24. № 6. С. 741–751.
- [27] Сандитов Д.С., Сангадиев С.Ш., Сандитов Б.Д. // Деформация и разрушение материалов. 2013. № 3. С. 2–7.
- [28] Магафуров И.Ш., Тополкараев В.А., Маркарян Р.Е. и др. // Высокомолек. соед. Б. 1991. Т. 32. № 2. С. 147– 152.
- [29] *Филянов Е.М.* // Высокомолек. соед. А. 1987. Т. 29. № 5. С. 975–983.