07

Емкостные свойства структур на основе мезопористого кремния, облученного малыми дозами гамма-излучения

© В.В. Галушка, Э.А. Жаркова, Д.В. Терин, В.И. Сидоров, Е.И. Хасина

Саратовский государственный университет им. Н.Г. Чернышевского E-mail: lab32@mail.ru

Поступило в Редакцию 27 июня 2017 г.

Исследовано влияние гамма-излучения малых доз на емкостные свойства структур на основе мезопористого кремния. По вольт-фарадным характеристикам на различных частотах тестирующего сигнала найдено распределение концентрации оборванных заряженных связей по глубине слоя, которое изменяется с облучением. Показано уменьшение концентрации и времени релаксации поверхностных заряженных состояний в структуре со слоем мезопористого кремния при гамма-облучении, что делает перспективным материал для применения в приборах с управляемой реактивностью (варакторах), стойких к гамма-облучению.

DOI: 10.21883/PJTF.2017.21.45164.16936

Исследование электрофизических свойств мезопористого кремния (SiMP) при гамма-облучении показало, что малые дозы гаммаквантов снижают дефектность материала, повышая его стабильность [1]. Однако для рассмотрения возможности применения такого материала для приборов с зарядовой связью необходимо знание поверхностных свойств, в частности поверхностной плотности дефектов. Одним из способов исследования поверхностных свойств является емкостная спектроскопия. С помощью емкостных методов можно определять сдвиг напряжения плоских зон и величину полного захваченного заряда на поверхностные ловушки [2,3]. Емкостная спектроскопия на низкой частоте позволяет выяснять особенности электропроводности на постоянном токе в многодефектных материалах, в частности полученных при радиации.

72

Расчет электрической емкости для сильно дефектного кремния показал немонотонную зависимость емкости от приложенного потенциала в случае прыжкового обмена зарядами в режиме как заполнения, так и опустошения ловушек [4]. Это свойство, как считают авторы, можно использовать для создания варакторов, стойких к радиации [5]. Таким образом, исследование емкостных свойств многодефектного материала позволяет получить дополнительные сведения о физических свойствах материала и возможности его практического применения.

Целью настоящей работы являются исследования воздействия гамма-излучения малых доз на емкостные свойства мезопористого кремния, позволяющего упорядочить структуру пористого кремния за счет изменения концентрации оборванных связей, а также выяснение возможности использования SiMP для создания устройств типа варакторов на его основе.

Слои SiMP были получены методом химического травления Si с использованием металлов [6] на кремниевых подложках р-типа с удельным сопротивлением $4.5\Omega \cdot \text{ст}$ в водном растворе AgNO₃ с концентрацией 0.02 mol и плавиковой кислоты с концентрацией 5 mol в течение часа. Технология создания двухслойной структуры Al-SiMP-p-Si-Al на основе мезопористых слоев описана в [1]. Для облучения полученных структур применялся пучок гамма-квантов тормозного излучения бетатрона Саратовского государственного университета при максимальной энергии $E_{\text{max}} = 25 \text{ MeV}$. Экспозиционная доза D менялась от 5 до 20 kR. Морфология и толщины слоев определялись на аналитическом комплексе на базе MIRA 2 LMU. Толщина слоев до облучения составляла 2-6 µm. После гамма-облучения наблюдается изменение структур от столбчатой ближе к "чешуйчатой", толщина слоя изменялась до 0.8-2.5 µm. Ранее проведенные исследования вольтамперных характеристик на постоянном токе подобных образцов показали стабильность и долговременную память воздействия [1].

Исследовались вольт-фарадные характеристики, частотные зависимости емкости C(f) и добротности Q(f) структур Al–SiMP–*p*-Si–Al в области низких частот 10^2-10^7 Hz до и после гамма-облучения экспозиционными дозами 5, 10 и 20 kR. Измерения проводились с помощью цифрового измерителя иммитанса LCR819, прецизионного анализатора компонентов WR6440B и высокочастотного прецизионного измерителя LCR Wayne Kerr 6500P с частотой до 10 MHz. Вольт-фарадные характеристики измерялись при подаче на структуру

Рис. 1. Вольт-фарадная характеристика структуры Al–SiMP–*p*-Si–Al до (1) и после (2-6) облучения (D = 20 kR) в зависимости от частоты тестирующего сигнала. *f*, kHz: 1, 2 — 100, 3 — 66, 4 — 40, 5 — 10, 6 — 5.

внешнего постоянного напряжения смещения от -10 до +10 V с шагом 0.01 V на фиксированных частотах тестового сигнала 5, 10, 20, 40, 66 и 100 kHz. Измерения проводились при нормальных условиях.

Вольт-фарадная характеристика структур на фиксированных частотах тестирующего сигнала, полученная до и после гамма-облучения структуры, представлена на рис. 1. Как видно, C/V имеет вид, характерный для МДП-структуры (структуры металл-диэлектрик-полупроводник) с наличием поверхностного заряда [7]. В качестве диэлектрика, очевидно, выступает обедненный слой пористого кремния, который включает в себя барьер Al–SiMP и часть слоя SiMP, приграничного к барьеру, толщина которого d_i изменяется с частотой. Как показано ранее [1] на постоянном токе, величина барьеров в структуре Al–SiMP и SiMP–p-Si изменяется с гамма-облучением. Общая емкость структуры включает в себя последовательно включенные емкость обедненного слоя C_i и емкость слоя пористого кремния с ионизированными донорами C_d . Величина C_i определяется как максимальное значение в зависимости C/V на каждой из измеряемых частот.

Рис. 2. Поверхностные концентрации заряженных ловушек по толщине слоя SiMP после облучения. Черный квадрат соответствует концентрации до облучения.

Емкость обедненного слоя при отрицательном смещении на электроде к SiMP изменяется от 2 до 0.6 nF в диапазоне частот от 5 до 100 kHz. Толщина изолятора находится из емкости: $d_i = \varepsilon' \varepsilon_0 S/C_i$, где ε' , S — диэлектрическая проницаемость пористого кремния и площадь электрода соответственно. Для исследуемых образцов при пористости 0.5–0.7 диэлектрическая проницаемость ε' составляет 4–5. Найденная величина d_i равна 0.2–0.7 μ m в диапазоне частот 10³–10⁵ Hz.

До облучения C/V-характеристика сдвинута в область положительных значений V, что указывает на наличие отрицательного заряда на поверхности слоя. При отрицательных напряжениях V > -(2-5) V на Al-электроде наблюдается завал C/V-характеристики, связанный, вероятно, с утечкой зарядов [7].

Сдвиг C/V в область отрицательных значений V свидетельствует о наличии положительного заряда ионизованных доноров в обедненном слое. По экспериментально полученным сдвигам ΔV до и после облучения и соответствующим значениям C_i определялась концентрация поверхностных заряженных состояний, отнесенных к единице поверх-

Рис. 3. Зависимость емкости слоя SiMP от приложенного постоянного напряжения при гамма-облучении. *D*, kR: *1* — 0, *2* — 10, *3* — 20.

ности на каждой фиксированной частоте тестового сигнала. Результаты приведены на рис. 2.

Полученная зависимость показывает, что эффективная концентрация оборванных заряженных состояний N_f в SiMP падает по глубине слоя от 10^{12} до $6 \cdot 10^{11}$ сm⁻². В образце до облучения с близким по толщине обедненным слоем N_f больше и составляет $8 \cdot 10^{11}$ сm⁻². Уменьшение поверхностных заряженных состояний при гамма-облучении согласуется с уменьшением объемной концентрации ловушек в SiMP при малых дозах гамма-облучения, полученным по измерениям вольт-амперных характеристик на постоянном токе [1].

Изменение поверхностного заряда Q_s с облучением приводит к изменению поверхностного потенциала φ_s , определяемого как $\varphi_s = (2kT/q) \ln Q_s$ [7]. Учитывая значения Q_s , определенные на 100 kHz до и после облучения, получаем соответствующие значения φ_s : -0.82 и -0.78 V. Таким образом, $\Delta \varphi_s = -0.04$ V. Отрицательное значение φ_s указывает на аккумуляцию дырок на поверхности. Частотная зависимость процесса перезарядки поверхностных состояний определяет время релаксации и заполнения ловушек. Сопротивление слоя в SiMP,

как показано ранее в [1], с облучением падает от 10^7 до $10^6 \Omega$. Емкость возрастает в 2–3 раза. Таким образом, время перезарядки ловушек в слое SiMP с облучением падает.

Полученные C/V-характеристики указывают на возможность управления емкостью структуры Al–SiMP–*p*-Si–Al, подвергнутой гаммаоблучению, напряжением смещения, что является характеристикой приборов с управляемой реактивностью, в данном случае варакторов.

Одной из основных характеристик варактора является чувствительность изменения емкости с напряжением. На рис. 3 приведена зависимость $\ln C$ от $\ln V$ для структуры Al-SiMP-p-Si-Al до и после гамма-облучения. Как видно из зависимости C(V), чувствительность емкости к воздействию напряжения повышается после гамма-облучения до 10 kHz, дальнейший рост дозы излучения до 20 kR несколько понижает чувствительность емкости к приложенному напряжению. Вероятно, существует оптимальная область дозы излучения для получения наибольшей чувствительности емкости к приложенному напряжению структуры.

Таким образом, показано, что в структурах на основе мезопористого кремния после гамма-облучения уменьшается концентрация поверхностных заряженных оборванных связей, уменьшается время релаксации поверхностных ловушек, повышается зависимость емкости от приложенного напряжения, что делает структуры перспективными для использования в приборах с управляемой реактивностью, в частности варакторах.

Список литературы

- Биленко Д.И., Галушка В.В., Жаркова Э.А. и др. // Письма в ЖТФ. 2015. Т. 41. В. 21. С. 80.
- [2] Аверкиев Н.С., Капитонова Л.М., Лебедев А.А. и др. // ФТП. 1996. Т. 30.
 В. 12. С. 2178.
- [3] Аверкиев Н.С., Шик А.Я. // ФТП. 1996. Т. 30. В. 2. С. 199.
- [4] Поклонский Н.А., Вырко С.А., Забродский А.Г. // ФТП. 2008. Т. 42. В. 12. С. 1420.
- [5] Поклонский Н.А., Горбачук Н.И., Шпаковский С.В., Wieck А. // ЖТФ. 2010. Т. 80. В. 10. С. 74.
- [6] Биленко Д.И., Галушка В.В., Жаркова Э.А. и др. // ФТП. 2014. Т. 48. В. 10. С. 1405.
- [7] Зи С. Физика полупроводниковых приборов. Т. 1. М.: Мир, 1984. 455 с.