07

Максимальное замедление и отрицательная дисперсия плазмонов вдоль металлического слоя

© М.В. Давидович

Саратовский государственный национальный исследовательский университет им. Н.Г. Чернышевского E-mail: DavidovichMV@info.sgu.ru

Поступило в Редакцию 30 декабря 2016 г.

Получены максимальные замедления и их резонансные частоты для плазмонов в тонком металлическом слое. Рассмотрены аномальная отрицательная дисперсия и обратные плазмоны. Показано, что отрицательная дисперсия в структурах с диссипацией не всегда означает наличие обратного плазмона.

DOI: 10.21883/PJTF.2017.22.45261.16629

В тонких металлических слоях возможны аномальная отрицательная дисперсия и обратные плазмоны [1-3]. Движение энергии в слое из-за отрицательной действительной части $\varepsilon' < 0$ диэлектрической проницаемости (ДП) противоположно ее движению в окружающем пространстве, а общий поток энергии может быть противоположен движению фазы. Смена знака у вектора Пойнтинга при $\varepsilon' > 0$ также имеет место, если меняет знак постоянная распространения k'_{r} . Рассмотрим металлический слой $|z| \leq t/2$ толщиной t в вакууме и электрические Е-плазмоны (ТМ-плазмоны) вдоль оси х с зависимостью $E_x(x, z) = E_x(z) \exp(i\omega t - ik_x x)$. Исследуем медленные поверхностные плазмоны (ПП). Компоненты E_z и H_y выражаются через E_x . Можно рассматривать и волны вдоль оси z, выражая все компоненты через Е_z. Тогда вводим нормированные волновые сопротивления $ho^e = E_x / \left((\mu_0 / \varepsilon_0)^{1/2} H_y
ight)$ в слое и вакууме, которые указывают на то, что выбор либо E_{ex} , либо H_v равноправен для описания ПП, поэтому можно классифицировать ПП по четности/нечетности компоненты H_y [1,4]. В вакууме $\rho_0^e = \sqrt{1 - k_x^2/k_0^2}$. В слое $\rho^e = \sqrt{\varepsilon - k_x^2/k_0^2/\varepsilon}$. Классификация ПП по четности/нечетности поперечных компонент [1,4] для

55

Рис. 1. Нормированная на плазменное волновое число дисперсия (a) и потери (b) электрического симметричного (ES), электрического антисимметричного (EAS) и магнитного симметричного (HS) ПП в слоях серебра. Числами около кривых указаны толщины пленок (в nm).

поперечно ограниченных структур менее общая, чем классификация по продольным компонентам, которая здесь использована. В случае диссипации $k_x = k'_x - ik''_x$, причем выбор k'' > 0 означает движение энергии в направлении x. Если при этом $k'_x > 0$, то плазмон прямой, а если $k'_x < 0$ — обратный. Корень берем из условия $k'_x > 0$. Тогда обратный ПП классифицируется при введении бесконечно малых потерь как отрицательный знак у k''_r . ДП металла используем в форме Друде-Лоренца $\varepsilon(\omega) = \varepsilon_L - \omega_p^2/(\omega^2 - i\omega\omega_c)$, где в ε_L учтены межзонные переходы и поляризация решетки. Поскольку плазмонный резонанс (ПР) имеет место при длинах волн 500-700 nm, считаем є действительной константой. Для серебряной пленки имеем $\varepsilon_L = 22.5, \, \omega_p = 1.9 \cdot 10^{16} \, \mathrm{Hz}, \, \omega_c = 4.5 \cdot 10^{13} \, \mathrm{Hz}.$ Дисперсионное уравнение (ДУ) симметричного (четного) относительно $E_x(z)$ *E*-ПП имеет вид $\rho_0^e = -i\rho^e/\tan(k_z t/2)$ [3], что означает равенство импеданса волны в вакууме и входного импеданса при условии магнитной стенки при z = 0 [5]. Имеем ДУ

$$n = k_x/k_0 = \sqrt{\varepsilon^2 \tanh^2 \theta - \varepsilon} / \sqrt{\varepsilon^2 \tanh^2 \theta - 1}.$$
 (1)

Здесь $\theta = t \sqrt{k_x^2 - k_0^2 \varepsilon}/2$. В отсутствие потерь $\varepsilon = \varepsilon_L - \omega_p^2/\omega^2$, $\varepsilon_L > 0$. Для плазмоники $\omega < \omega_p/\sqrt{\varepsilon_L}$, $\varepsilon < 0$. Пусть толщина *t* мала. Обозначим $\lambda = \omega_p^2/\omega^2$, $x = n^2 - 1$. Тогда $\theta = \alpha \sqrt{1 + (n^2 - \varepsilon_L)/\lambda}$, $\alpha = \omega_p/t/(2c)$. Пусть $\lambda > \varepsilon_L - n^2$, n > 1, что имеет место при $\lambda > \varepsilon_L - 1$. Для $\alpha \ll 1 \tanh^2 \theta \approx \theta^2 = \alpha^2 [1 - (\varepsilon_L - n^2)/\lambda]$. Возводя (1) в квадрат, имеем

$$x = (\lambda - \varepsilon_L + 1) \left[\alpha^2 (\lambda - \varepsilon_L)^2 [1 - (\varepsilon_L - 1 - x)/\lambda]^2 - 1 \right].$$
(2)

Максимальному замедлению n_m в (1) соответствует λ_m . Исследование кубического уравнения (2) показывает, что волны медленные при $\lambda < \varepsilon_L - 1$; ветвь быстрых волн расположена при $\varepsilon_L - 1 < \lambda < \varepsilon_L$, в области $\varepsilon_L < \lambda < \lambda_m$ находится запрещенная зона; в области $\lambda_m < \lambda < \infty$ волны медленные. При диссипации $k_x = k'_x - ik''_x$, запрещенная зона исчезает: в ней имеет место распространение быстрых волн с большим затуханием (рис. 1,2). Нет резкого обрыва дисперсионной ветви в точке λ_m , а имеет место перегиб ветви с аномальной отрицательной дисперсией. Она означает отрицательную (по отношению к фазовой скорости v_p) групповую скорость (ГС) v_g . В точке загиба $v_g = \infty$. ГС

в диссипативных средах и структурах может быть любой. Впервые на возможность $v_g > c$ обратил внимание Эренфест в 1910 г. [5]. Теорема Леонтовича—Лайтхилла—Рытова, утверждающая эквивалентность ГС энергии в монохроматической волне, верна в абсолютно недиссипативных (гамильтоновых) структурах. В недиссипативных средах и структурах отрицательная ГС означает обратную волну. Далее показано, что в случае четного *E*-ПП волна всегда прямая. Это следует как из вычисления вектора Пойнтинга [1–3], так и из определения знака k''_x . Уравнение (2) может быть записано следующим образом:

$$x^{3} - 2x^{2}(\lambda - \varepsilon_{L} + 1) + x \left[(\lambda - \varepsilon_{L} + 1)^{2} - \lambda^{2} / [\alpha(\lambda - \varepsilon_{L})]^{2} \right]$$

= $\lambda^{2}(\lambda - \varepsilon_{L} + 1) / [\alpha(\lambda - \varepsilon_{L})]^{2}.$ (3)

Условие максимума (2) $dx(\lambda)/d\lambda = 0$ эквивалентно условию $v_g = d\omega/dk_x = \infty$. В недиссипативных структурах $v_g \leq c$. Расчеты по формуле (1) показывают, что $v_g < c$ ниже ПР и $v_g \to 0$ при $\lambda \to \lambda_m + 0$, а при $\lambda < \lambda_m$ решения нет. Преобразование (1) привело к дифференцируемой функции $x(\lambda)$ в точке λ_m . К этому же приводят потери. Дифференцируя (3) λ и полагая $dx/d\lambda = 0$, имеем квадратное уравнение, из которого определяем x. В качестве нулевого приближения берем $\lambda_m = 3\varepsilon_L/2 - 1 + \sqrt{(\varepsilon_L/2 - 1)^2 - 1}$ и уточняем на основе (2). Для серебра $\lambda_0 = 31.7$, $\lambda_1 = 54.2$, и для t = 10 пт получаем $n_m = 5.8$. В качестве итерационной формулы удобно взять

$$\lambda_m = x_m [\alpha^2 (\lambda_m - \varepsilon_L)^3 - (x_m - (\lambda_m - \varepsilon_L + 1)) - \lambda_m \varepsilon_L] / [1 + (\lambda_m - \varepsilon_L) (\lambda_m / 2 - \varepsilon_L + 1)].$$
(4)

Тогда первая итерация дает $\lambda_m = 54.2257$, $x_m = 33.2061$. Вторая итерация приводит к значениям $x_m = 33.2064$, $\lambda_m = 54.2251$. В случае бесконечно толстой пленки $\tanh \theta = 1$, и уравнение (1) вырождается в ДУ Ценнека [5] $n = n' - in'' = k_x/k_0 = \sqrt{\varepsilon/(\varepsilon + 1)}$. Для нее ПР имеет место при $\lambda_m = \varepsilon_L + 1$ на частоте $\omega_s = \omega_P/\sqrt{\varepsilon_L + 1}$. Диссипация приводит к ПР чуть ниже ω_s и конечному максимальному замедлению (рис. 2). Считаем $\varepsilon'' \ll 1$, $\omega_c \ll \omega_s$, что означает $\omega_p^2 \omega_c/(\omega_s^3 + \omega_c^2 \omega_s) \ll 1$. Для металлов $\omega_c/\omega_p \leqslant 10^{-2}$. Ищем максимум

Рис. 2. Нормированная на плазмонное волновое число дисперсия симметричного *E*-ПП для $\varepsilon_L = 2$, $\omega_p = 10^{16}$ при t = 2 (*I*-6), 10 nm (7) и $t = \infty$ (8) для отношений $\omega_c/\omega_p = 10^{-4}$ (*I*), 10^{-2} (2,8), $5 \cdot 10^{-1}$ (3), 1 (4), $2 \cdot 10^{-1}$ (5,7), 10^{-1} (6). Штриховая кривая 8 построена для $\varepsilon_L = 2-0.01i$

 n_m , вводя новую нормированную переменную $\tilde{\lambda} = \omega_p^2/(\omega^2 + \omega_c^2)$ и малую расстройку относительно $\tilde{\lambda} = \varepsilon_L + 1$; получим $n_m \approx (1 - i)/\sqrt{2\varepsilon''}$. При максимальном замедлении имеют место максимальные потери: $n'_m \approx n''_m$. Для серебра получаем $n'_m \approx 3$. При конечной толщине пишем $\tanh^2 \theta \approx 1 - 4 \exp(-2\theta) = 1 - \gamma$, $\theta = \theta' - i\theta''$. Тогда имеем $n_m \approx \sqrt{1 + 3/2\delta} - \gamma/2 + i\varepsilon''/\sqrt{\delta} - \gamma/2 + i\varepsilon''}$. Рассмотрим вопрос об обратных ПП в тонких пленках, вводя бесконечно малые потери. В окрестности ПР можно записать $n_m \approx \sqrt{z}$. Для обратного ПП комплексное число z должно лежать либо в первом, либо во втором квадранте. Для *E*-ПП это приводит неравенству в виде отрицательного значения квадратного трехчлена. Оно не может быть выполнено из-за его

Рис. 3. Прямые (линии 1, 3, 5) и обратные (символ B, линии 2, 4, 6) плазмонполяритонные ветви для антисимметричного электрического (1-4) и симметричного магнитного (5, 6) плазмонов в слое 50 (1, 2), 100 (3, 4) и 10 nm (5, 6).

отрицательного детерминанта. Для антисимметричного *Е*-ПП обратный плазмон существует. В [1] это получено путем вычисления вектора Пойнтинга.

На рис. 1 приведены дисперсия и потери для четного и нечетного *E*-ПП в пленках серебра, полученные итерационным решением ДУ (1) с диссипацией. Там же приведены результаты для четного *H*-ПП. На рис. 2 приведены результаты для четного *E*-ПП и модельной среды $\varepsilon_L = 2$, $\omega_p - 10^{16}$ толщины 2 и 10 nm для разных отношений ω_c/ω_p . ДУ нечетного *E*-ПП имеет вид $n = \sqrt{\varepsilon^2 + |\varepsilon| \tanh^2 \theta} / \sqrt{\varepsilon^2 - \tanh^2 \theta}$. В области $\omega < \omega_s$ значительное замедление имеет место только при достаточно большой толщине, и в пределе $t \to \infty$ оно также

вырождается в уравнение Ценнека. Для нечетного *E*-ПП возможна ветвь с аномальной отрицательной дисперсией, при этом на одной ее части плазмон может быть прямым, а на другой — обратным (рис. 3). В тонкой пленке также может существовать симметричный медленный *H*-ПП [5] с ДУ $n = k_x/k_0 = \sqrt{1 + |\varepsilon|} \tanh^2 \theta / \sqrt{1 - \tanh^2 \theta}$. Он обратный и сильно замедленный на низких частотах, имеет там большие потери, не имеет компоненты E_x , т.е. не взаимодействует с электронными потоками, поэтому его весьма трудно возбудить. С ростом *t* замедление и потери растут, но при $t \to \infty$ он не существует. Результаты для прямых и обратных плазмонов приведены на рис. 3 для среды с $\varepsilon_1 = 9 - 0.01i$ и $\omega_p = 10^{16}$, $\omega_c = 10^{13}$ Hz. Ветви обратных плазмонов, контролируемые по условию $k_x'' < 0$, обозначены символом *B*.

В работе в рамках модели Друде—Лоренца исследованы решения ДУ четного и нечетного электрических ПП и четного магнитного плазмона в металлических пленках. Получены аналитические оценки для максимального замедления и частоты плазмонного резонанса $\tilde{\omega}_s < \omega_s$. Для четного *E*-ПП аномальная дисперсия при диссипации имеет место, но обратного плазмона нет. Для нечетного *E*-ПП максимумы замедления определяются условием $\varepsilon \approx \mp \tanh \theta$ и имеют место в плазмонной $\omega < \omega_s$ и поляритонной $\omega > \omega_p$ областях. Симметричный *H*-ПП существует в тонких пленках. Он обратный и замедленный в области низких частот при $\tanh \theta \approx 1$, где имеет существенные потери.

Потери приводят к возможности распространения плазмон-поляритонов в запрещенных зонах, при этом аномальная отрицательная дисперсия не означает наличие обратных плазмонов [5] (рис. 3). Возможны случаи обратных плазмонов при нормальной дисперсии, а также прямых плазмонов при аномальной дисперсии (рис. 1–3).

Список литературы

- [1] Tournoisa P., Laude V. // Opt. Communications. 1997. V. 137. P. 41-45.
- [2] Liu Y.M., Pile D.F.P., Liu Z.W., Wu D.M., Sun C., Zhang X. // SPIE Opt. Photon. conf. San Diego, California, USA (Aug. 19–24, 2006). Proc. SPIE. 2006. V. 6323. P. 63231 M.

- [3] Федянин Д.Ю., Арсенин А.В., Лейман В.Г., Гладун А.Д. // Квантовая электроника. 2009. Т. 39. № 8. С. 745.
- [4] Зуев В.С., Зуева Г.Я. // Оптика и спектроскопия. 2008. Т. 105. С. 852–859.
- [5] Давидович М.В. Втекающие и вытекающие несобственные моды: анализ диссипативных дисперсионных уравнений и волна Ценнека. Саратов: Издво Саратов. ун-та, 2014. 104 с.